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ABSTRACT

In order to communicate with their users in a natural and effec-
tive manner, humanlike robots must seamlessly integrate behaviors
across multiple modalities, including speech, gaze, and gestures.
While researchers and designers have successfully drawn on stud-
ies of human interactions to build models of humanlike behavior
and to achieve such integration in robot behavior, the development
of such models involves a laborious process of inspecting data to
identify patterns within each modality or across modalities of be-
havior and to represent these patterns as “rules” or heuristics that
can be used to control the behaviors of a robot, but provides little
support for validation, extensibility, and learning. In this paper, we
explore how a learning-based approach to modeling multimodal
behaviors might address these limitations. We demonstrate the use
of a dynamic Bayesian network (DBN) for modeling how humans
coordinate speech, gaze, and gesture behaviors in narration and
for achieving such coordination with robots. The evaluation of
this approach in a human-robot interaction study shows that this
learning-based approach is comparable to conventional modeling
approaches in enabling effective robot behaviors while reducing
the effort involved in identifying behavioral patterns and providing
a probabilistic representation of the dynamics of human behavior.
We discuss the implications of this approach for designing natural,
effective multimodal robot behaviors.

Categories and Subject Descriptors

H.1.2 [Models and Principles]: User/Machine Systems—human
factors, software psychology; H.5.2 [Information Interfaces and
Presentation]: User Interfaces—evaluation/ methodology, user-
centered design

General Terms
Design, Human Factors

1. INTRODUCTION

In communication, people draw on a rich repertoire of behaviors
from multiple modalities, including speech, gaze, gestures, and so
on. While this repertoire offers a rich design space for creating
robot behaviors that achieve natural, effective communication, how
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Figure 1: We used a learning-based approach to model how humans employ
multimodal behaviors involving speech, gaze, and gestures during narration
and generate multimodal behaviors for a humanlike robot to perform the
same narration task.

behaviors across different modalities are integrated is critical to the
success of such robot behaviors. For example, previous work in
human-robot interaction has shown that robots that do not employ
gaze behaviors that are contingent with their speech impair learning,
collaboration, and user experience, while robots that better align
their gaze with their speech improve such interaction outcomes [9].

How might robots employ behaviors across multiple modalities
while ensuring proper alignment among them? To achieve such
alignment, researchers and designers have developed multimodal
models of behavior that specify patterns in which behaviors co-
occur, such as how speakers coordinate their gaze and speech to
manage conversational floor [30] or how gesture and speech are
aligned in giving directions [32]. However, the development of
such models involves a laborious process of sifting through data
to identify and extract distribution and alignment parameters and
provides limited support for validation, extensibility, and learning.

To facilitate this process and address its limitations, we propose
a learning-based approach that involves the use of probabilistic
graphical models (PGMs) to automatically learn distribution and
alignment parameters from annotated data on human behavior. In
this paper, we demonstrate the use of a dynamic Bayesian network
(DBN) to model the alignment among speech, gaze, and gesture



behaviors in a narration task and to estimate distribution and align-
ment parameters for these behaviors to enable a humanlike robot to
perform the same narration task (Figure 1). We also present an em-
pirical evaluation of the effectiveness of this approach in generating
robot behaviors against approaches that generate robot behaviors
based on designer-specified parameters, randomly-generated param-
eters, and no behaviors.

2. BACKGROUND

2.1. Human Multimodal Behavior

Humans naturally use multimodal behaviors involving speech, gaze,
and gestures during interaction. While speech serves as the main
channel to convey information, gestures are used to illustrate im-
agery [21], draw attention from other participants [7], disambiguate
unclear speech, and supplement speech with additional information
[16]. Gaze also supplement speech, facilitating turn-taking in con-
versation [14], signaling conversational roles [5], and regulating
intimacy between participants [1]. These three channels make up a
rich repertoire of social behaviors that play a critical role in effective
communication in settings such as narration [37] and reenactments
of previous events or experiences [38].

Research in human communication has extensively studied the
relationship between speech and gesture [15, 21], particularly the
four common types of gestures: (1) deictic gestures, which involve
pointing toward a shared reference, (2) iconic gestures that illustrate
concrete objects or actions, (3) metaphoric gestures, which use
concrete metaphors to represent abstract concepts such as time, and
(4) beat gestures, which are rhythmic movements that mark the
structure of the speaker’s discourse. Gestures and speech are tightly
linked at both semantic and structural levels. Deictic, iconic, and
metaphoric gestures are closely related to the semantics in speech
through lexical affiliates—the words or phrases with which gestures
co-express semantic meaning [35]. Beat gestures are linked to
speech at a structural level and indicate significant points in speech,
such as connecting discontinuous parts in speech and introducing a
new topic [21]. Research has also studied the relationship between
speech and gaze [6, 14, 23], identifying a close coupling between
these two channels, such as a tendency to gaze toward referents
before they refer to them in speech [6, 23] and the use of gaze cues
to signal opportunities for exchanging conversation floor [14].

2.2. Multimodal Behaviors in Robots

Previous research in human-robot interaction has explored the de-
velopment of mechanisms for achieving natural and effective mul-
timodal behaviors for robots, such as the development of models
of gaze for displaying appropriate head movements at meaningful
speech points for a museum guide robot [40], aligning gaze shifts
with discourse structure for a storytelling robot [29], and synchro-
nizing deictic verbal and gaze references for an instructional robot
[9]. These examples highlight the importance of temporal alignment
among different modalities of behavior to improve human-robot
collaboration, perceptions of the robot, and overall user experience.
Researchers have also developed models of gesture to improve
human-robot interaction, including a probabilistic model to generate
the four common types of gestures that are aligned with speech
and achieve varying levels of expressiveness for robots [31] and
a method for aligning speech and gesture strokes and smoothing
transitions between gestures to produce more fluent behavior [34].
Robot that appropriately align their speech and gesture using such
models were found to be more natural [32].

In our prior work, we explored how robots might display co-
herent multimodal behaviors involving speech, gaze, and gestures
[10]. We explicitly specified the semantic link between speech

and gestures and empirically obtained parameters to quantify the
temporal speech-gesture and gaze-gesture alignments. Specifically,
the speech-gesture associations were hand-coded by identifying the
lexical affiliate for each gesture according to literature on human
communication [21] and quantifying the alignment between them.
We also modeled the link between gaze and gestures by obtaining
distributions of where the speaker looked while performing different
types of gestures. While this approach yielded acceptable behaviors,
enabling us to study how gestures might shape interaction outcomes,
it required a deliberate selection of alignment parameters.
Additionally, while such inspection-based approaches might be
feasible for modeling a small number of behaviors from small
datasets, this feasibility diminishes when a larger number of be-
haviors or large datasets are considered. The models built by these
approaches are also highly sensitive to the decisions made and in-
spection methods used by the researcher or the designer in the mod-
eling process. To address these limitations, we propose a learning-
based approach to automatically learn these parameters from data.

2.3. Learning-based Modeling

Previous research in human-robot interaction has used learning-
based approaches primarily to achieve autonomous human-robot
interaction. Examples of such uses include unsupervised learning of
associations between human gestural commands and robot actions
using graphical models [24, 25] and using a multilayer Bayesian
approach to realize active perception [4].

Learning-based approaches have commonly been used to build
predictive models of human behavior and to control behaviors of em-
bodied conversational agents (e.g., [19, 26, 33]). These approaches
frequently use probabilistic graphical models (PGMs) for their sup-
port for modeling complex relationships under uncertainty.

Building on these approaches, the current work seeks to use PGMs
to represent human multimodal behaviors, learn model parameters
from annotated data on human behaviors, and draw on the learned
model to achieve natural, humanlike robot behaviors.

3. DESIGNING MULTIMODAL BEHAVIOR

We conceptualized the problem of generating multimodal robot
behaviors into two levels—the feature level and the domain level.
Figure 2 illustrates this conceptualization for the process of gen-
erating speech, gaze, and gestures. The feature level represents
high-level behavioral features of the target channel, such as “iconic
gesture” for gesture type and “listener” for gaze target. At the do-
main level, behavioral features are associated with specific motions,
such as specific arm motions for an iconic gesture and gaze shifts
toward the listener. This separation allows us to modularize the
problem space and develop and improve different components in
isolation. In this work, we focus on learning and inference at the
feature level and employ simple mechanisms to bridge the feature
and domain levels. The following sections describe how human data
was collected and annotated for learning and how the feature and
domain levels were associated to produce robot behaviors.

3.1. Data Collection and Annotation

Our investigation of human multimodal behavior focused on three
modalities—speech, gaze, and gestures—as widely observed behav-
iors in human interaction across various contexts and cultures [1,
21]. We contextualized our investigation in a narration task in which
a narrator presents the process of making paper to a recipient with
the aid of a projected illustration of the process (Figure 1). We chose
narration to model the dynamics of human behavior, because narra-
tion elicits the use of a wide range of gestures [21], and narrative
re-enactments involve a rich interplay between gaze and gestures
[37]. Additionally, robots are envisioned to serve in roles similar to
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Figure 2: Our conceptualization of the process of generating speech, gaze,
and gestures. Learning and inference for high-level features are performed
at the feature level, while specific motions are defined at the domain level.

that of a narrator conveying information to users, such as museums
tour guides, shopping assistants, or receptionists [2, 13, 20].

To understand how people concurrently use speech, gaze, and
gestures, we conducted a human-human interaction study with 16
participants, recruited from the University of Wisconsin—Madison
campus, whose ages ranged 19-26 (M =22.00,SD =2.16). Dyads
were gender-balanced so that two dyads represented each gender
combination in the study. Dyadic interactions yielded a total of
37.15 minutes (M =4.64,SD =1.16) of video data.

The video data was coded for speech, gaze, and gestures features.
Four typical types of gestures—deictics, iconics, metaphorics, and
beats—were coded according to the guidelines provided by McNeill
[21]. Instances of no gestures were also coded. Four clusters of
gaze targets—reference, recipient, narrator’s own gesture, and other
places—were observed in the collected data and used for coding to
represent features of gaze behavior. Additionally, we coded speech
for lexical affiliates for deictic, iconic, and metaphoric gestures
and significant structural points for beat gestures. Used affinity
diagramming, we categorized lexical affiliates and significant points
in speech. The top three categories for each type of gesture served
as speech features (Figure 3). A primary coder coded the eight
interaction episodes, and a secondary coder coded 10% of the data
to ensure inter-coder reliability. The reliability analysis showed
almost perfect agreement for speech features (Cohen’s x = .870),
gesture type (Cohen’s x = .845) and gaze target (Cohen’s x =.916)
based on guidelines suggested by Landis and Koch [18].

3.2. Dynamic Bayesian Network

A dynamic Bayesian network (DBN) is a type of probabilistic graph-
ical model (PGM) that provides compact representations of condi-
tional independence among random variables [17]. DBNs generalize
hidden Markov models (HMMs) to represent the hidden state and
the observation as a set of random variables. In their basic form,
DBNs are directed acyclic graphs in which nodes represent ran-
dom variables and edges represent conditional dependencies (e.g.,
Figure 4). Semantically, an edge from a parent node A to a child
node B means that node A has influence over node B. A dynamic
Bayesian network extends static Bayesian nets (BNs) to incorporate
the temporal dependencies among variables. These characteristics
for dealing with uncertain and temporal relations among random
variables make dynamic Bayesian networks particularly useful in
modeling the dynamics of multimodal behaviors. Murphy [28]
provides an extensive introduction to representation, learning, and
inference in DBNs.

Gesture Type Speech Features

Deictic gestures | Concrete reference Abstract reference  Pronoun

“a big pot” “the first step” “this person”

Iconic gestures | Concrete object
“two boards”

Descriptive verb  Non-descriptive action
“peel it off” “make it”

Metaphoric gestures | Abstract concept Abstract process  Abstract object

“for six hours” “how paper is made”  “the water soluble elements”

Beat gestures | Important information New information ~ Connector

“at least ten times of water”  “for example” “so that”

Figure 3: Speech features for gestures. Features were identified through
affinity diagramming of human data and by using the guideline suggested by
McNeill [21]. An example of each type of feature is also provided.

3.3. Model Representation

Informed by literature in human communication [8, 11, 21], we
propose a network structure, shown in Figure 4, to represent the
relationships among speech, gaze, and gestures. In developing this
network, we included a hidden random variable denoting a cognitive
process (C) that directs how humans coordinate speech (S), gaze
(Ga), and gestures (Ge), which were considered observations. We
assumed the latent cognitive process was a discrete-time Markov
process. This assumption is consistent with psycholinguistic models
of speech production [8, 11]. Additionally, we assumed that speech
influences gaze and gestures, as research suggests that nonverbal
behaviors might be contingent on verbal utterances [21]. Based
on our exploratory tests, we empirically determined there were
three hidden states and that the discrete time window of the Markov
process was 500 ms.

3.4. Learning and Inference

To learn the parameters of each conditional probability distribution
(CPD) in the DBN (Figure 4), the expectation-maximization (EM)
algorithm [3] was used. The eight coded episodes of interaction
were used as the training data.

To control the robot’s behaviors using the learned DBN, we as-
sumed that the robot’s speech features would be given and the most
probable gesture type and gaze target would be inferred at any given
time 7. To this end, we used a junction tree algorithm to perform
offline smoothing [28] and compute the most probable explanation
(MPE)—the maximal posterior probability of a set of variables given
observations of another set of variables—of gaze and gestures. We
used the Bayes Net Toolbox [27] for learning and inference.

The latent cognitive process contained three states (C = c¢j,i =
1,2,3). Gaze and gestures contained four (Ga=a;,i=1,...,4) and five
(Ge=e¢;,i=1,...,5) values, respectively. Speech () was represented
by 12 boolean variables, each of which corresponded to a speech
feature (Figure 3). As a result, the model is characterized by a vector

Ga @ Ga

Verbal Nonverbal

Figure 4: The proposed dynamic Bayesian network for modeling and gen-
erating multimodal behaviors. C denotes a latent cognitive process that
directs verbal, involving speech (S), and nonverbal, involving gaze (Ga) and
gestures (Ge), processes.
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Figure 5: An example of the robot displaying speech, gaze, and gesture
behaviors generated by the proposed learning-based approach.

of 15 discrete values at each time step. Given the speech features,
the most probable latent cognitive state (Cy), gesture type (Gey),
and gaze target (Ga;) at any given time ¢ over the duration of the
speech (S1.7) can therefore be computed using Equation 1. Here, X
represents C, Ga, and Ge, and x represents c, a, and e.

argmax p(X; =x;1S1.7) VteT (1)
i

The features of the robot’s speech were manually marked, and the
annotated speech features were discretized into feature sequences
at the rate of 500 ms per feature. During inference, the sequences
of speech features were used as partial observations, and gaze and
gesture were treated as missing values. The consecutive states in-
ferred for each behavior were combined into a sequence of behavior
that was considered to be one continuous instance of behavior. For
example, six consecutive states of iconic gestures were combined
into one iconic gesture lasting 3,000 ms.

3.5. Model Evaluation

An evaluation of the model sought to determine to what extent the
DBN model, as illustrated in Figure 4, accurately predicted gaze
targets and gesture types when given speech features by comparing
gaze and gestures predicted by Equation 1 against the human data.
The evaluation was conducted using eight-fold leave-one-out cross
validation. We used gaze and gesture data from seven dyads to train
the DBN and evaluated the performance of the trained model in
predicting gaze targets and gesture types, given speech features from
the eighth dyad. While the behaviors are continuous in time, we
chose to discretize the data using a window 500 ms and to compare
the predicted behavior to the behavior in the test dataset at each
discrete window. The accuracy of prediction was on average 54.57%
for gaze targets and 62.77% for gesture type. While prediction
accuracy is significantly better than chance (25% for gaze and 20%
for gestures), it might be further improved by considering more
features. Moreover, the highest and lowest accuracies in the cross
validation for gaze were 68.23% and 46.48%, respectively, and
for gestures were 69.76% and 44.25%, respectively. These results
suggest a large variation in how people employed behaviors during
narration. Collecting more data to train the model might improve
predictive accuracy.

3.6. Generating Robot Behavior

At the domain level, the robot’s gestures were designed based on
our observations of human narrators’ gestures. While gesture per-
formance at a given gesture point varied slightly among narrators,
narrators displayed semantically similar elements. For example,
to describe “beating (paper) with a stick,” participants displayed
one-handed or two-handed up and down movements, but at different
speeds and with different hand angles with respect to the ground.
For each unique gesture point, we created one robot gesture that cap-
tured the common elements we observed from the human narrators.
Robot gestures were created through puppeteering, which involved

manually moving the robot’s arms while recording key frames of
the gestural trajectories. Gesture libraries were created for the four
common gesture types to include all the gestures that might be used
in the narration task.

To generate robot behaviors, simple mechanisms were used to link
components at the feature and domain levels. Lexical affiliates in
the robot’s speech were manually annotated and tagged with gesture
types. The mechanism for linking inferred gesture types to actual
robot gestures functioned as follows. For each inferred gesture, we
first checked whether the robot’s speech included lexical affiliates
that temporally overlapped with the gesture within a window of
2,000 ms—1,000 ms before and 1,000 ms after the beginning of the
gesture. No lexical affiliates or a lexical affiliate for a gesture type
that did not match with the inferred gesture type within this window
prompted the robot to randomly select and perform a gesture from
the gesture library of the inferred gesture type. If the gesture type of
the found lexical affiliate was consistent with the inferred gesture
type, the lexical affiliate was linked to an actual gesture using an
association mechanism.

Speech and inferred gaze and gesture motions were synchronized
using the Robot Behavior Toolkit [9], a Robot Operating System
(ROS) module for controlling multimodal robot behaviors. Figure 5
illustrates a sample sequence of speech, gaze, and gesture behaviors
that were controlled by the proposed learning-based approach.

4. EVALUATION

In addition to the model evaluation described above, we evalu-
ated how robot behaviors produced by the learning-based approach
shaped people’s perceptions of the robot in a human-robot inter-
action study. The evaluation sought to test our central hypothesis
that robot behaviors produced by learned parameters would im-
prove interaction outcomes, specifically improved perceptions of the
robot in terms of immediacy, naturalness, effectiveness, likability,
and credibility and improved ability of the participants to retell the
robot’s story, over baseline behaviors such as behaviors produced
by randomly generated parameters or no behaviors, while resulting
in outcomes that are comparable to those elicited by conventional
modeling approaches.

4.1. Study Design, Task, and Procedure

The evaluation study used the same narration task as the one used in
the modeling study. We manipulated the method used to control the
robot’s gaze and gesture behaviors while keeping the robot’s speech
the same across conditions. We designed a between-participants
study, in which each participant was randomly assigned to one of
the following conditions:

1. In the learning-based condition, the learned DBN described
in the previous section directed the robot’s gaze and gestures.

2. In the unimodal condition, the robot only used the speech
channel to verbally present the narration topic without gaze or
gesture behaviors. This condition served as the experimental
control.

3. In the random condition, the same network structure as de-
scribed in the previous section was used to generate behaviors.
However, the model instead used randomly generated param-
eters, introducing temporal and spatial randomness in the
produced behavior.

4. The conventional condition involved directing the robot’s
gaze and gestures based on designer-specified parameters for
aligning behaviors. In particular, the parameters specified how
different types of gestures were aligned with speech features
(i.e., lexical affiliates) according to the literature on human



Figure 6: An experimenter demonstrating the setup of the evaluation study.

communication [21]. The parameters also specified gaze-
gesture relationships by extracting distributions representing
where a speaker looked while performing different types of
gestures. Every time its gesture state changed, the robot de-
termined its new gaze target based on these distributions. The
behaviors generated using this approach predicted significant
improvements in learning and perceptions of the robot [10].

After obtaining informed consent, the experimenter directed par-
ticipants to a controlled laboratory environment, where each par-
ticipant listened to the robot narrate the process of making paper
(Figure 6). The robot’s narration lasted approximately six minutes.
Following the narration, participants completed a distractor task that
lasted approximately five minutes and then took a quiz on the pre-
sented information. Participants then retold the narration and filled
out a post-experiment questionnaire that evaluated their perceptions
of the robot. Participants received $5 for their participation. The
entire experiment took approximately 30 minutes per participant.

4.2. Participants

A total of 29 participants (16 males, 13 females), whose ages ranged
18-38 (M =22.62,5D =4.35), were recruited from the University of
Wisconsin—-Madison campus. There were six, eight, seven, and eight
participants in the learning-based, unimodal, random, and conven-
tional conditions, respectively. Participants reported relatively low
familiarity with robots (M =2.48,SD = 1.53) and with the process of
making paper (M =1.69,SD=1.11) in seven-point rating scales.

4.3. Measurement and Analysis
We used a post-experiment questionnaire to evaluate the participants’
perceptions of the robot’s behavior. Four measurement scales were
developed using seven-point questionnaire items. Immediacy, de-
fined as psychological distance between individuals [22], assessed
how close participants felt to the robot and how engaging they
thought the robot was (3 items, Cronbach’s a =.79). Naturalness
gauged how natural the robot’s motions were (5 items, Cronbach’s
a = .84). Effectiveness measured how participants perceived the
robot’s effectiveness as a presenter (4 items, Cronbach’s a =.87).
Likability evaluated how likable the robot was (8 items, Cronbach’s
a =.88). An additional item measured the robot’s credibility using a
question about whether or not the robot provided sufficient informa-
tion for the participant to answer the quiz questions. Moreover, we
asked participants to choose from a list of 20 adjectives to describe
the robot’s overall behavior. The list of 20 adjectives consisted of 10
positive and 10 negative adjectives. Two manipulation-check items
were included to ensure that manipulations in the trained model to
create the unimodal and random conditions were successful.

In addition to questionnaire evaluation, we evaluated participants’
performance in retelling the information that the robot presented,
calculating measures of familiarity with the narration topic, their

use of body language, and an overall evaluation of presenter effec-
tiveness. Three raters who were blind to the experimental conditions
rated video recordings of the participants’ retelling performance
on these measures using seven-point scales. Inter-rater reliability
analysis using intra-class correlation coefficient (ICC) [36] as a mea-
sure revealed high correlations among the three raters on measures
of familiarity of content (ICC(3,3)=.884), use of body language
(ICC(3,3)=.897), and overall evaluation (ICC(3,3)=.771).

While we did not develop any hypothesis regarding the effect of
the robot’s behaviors on participants’ learning of the information
presented by the robot, we included an exploratory measure that
involved a quiz consisting of 18 questions on this information. This
measure explored whether or not the manipulations in the robot’s
behaviors affected participants’ recall of the narrated information.

One-way fixed-effects analysis of variance (ANOVA) tests, us-
ing the manipulation in the robot’s behaviors as the fixed factor,
were conducted to analyze the manipulation checks, questionnaire
measures, quiz data, and retelling evaluation. Planned many-to-
one multiple comparisons used the Dunnett’s method, considering
the learning-based approach as the comparison baseline, to assess
how the unimodal, random, and conventional conditions compared
against the learning-based condition. Additionally, we performed
Dunnett’s tests, considering the unimodal and random conditions as
baselines, using data on manipulation checks to verify whether the
learned model was successfully manipulated to create the unimodal
and random conditions. To determine whether behaviors produced
by the learning-based and conventional approaches are comparable,
we followed guidelines suggested by Walker and Nowacki [39] and
Julnes and Mohr [12], applying a conservative equivalence margin of
0.50 (i.e., p>.50) to the comparisons between these two conditions.

4.4. Results
4.4.1. Manipulation checks

To check whether our manipulations to create the unimodal be-
havior condition was successful, we asked participants whether
or not they perceived the robot to be motionless. The analysis of
variance found a significant effect of our manipulation on this mea-
sure, F(3,25)=22.88,p <.001. Comparisons using the Dunnett’s
test showed that participants in the unimodal condition perceived
the robot to be more motionless than those in the learning-based,
p<.001, random, p <.001, and conventional, p <.001, conditions.
We also asked participants whether the robot’s motions appeared
random to verify that we successfully created the random condition.
The analysis found a significant effect of our manipulation on this
measure, F'(3,25)=6.12,p=.003. Comparisons showed that partici-
pants in the random condition perceived the robot’s motions to be
more random than those in the learning-based, p =.005, unimodal,
p=.017, and conventional, p =.002, conditions did.

4.4.2.  Perceptions of the robot

We found that our manipulation had a significant effect on the per-
ceived immediacy, F(3,25)=6.91,p =.002, naturalness, F(3,25)=
5.77,p = .004, effectiveness, F(3,25)=4.59,p =.011, and likabil-
ity, F(3,25) =6.44,p = .002, of the robot, but not on participants’
perceptions of the robot’s credibility, F(3,25)=2.07,p=.130. Com-
parisons further revealed that the learning-based and conventional
approaches showed equivalence in measures of perceived immedi-
acy, p=.923, naturalness, p=.917, effectiveness, p =.999, likability,
p=.722, and credibility, p =.645.

Comparisons also showed that participants in the learning-based
condition rated the robot to have higher immediacy, p =.002, and
to be more natural, p =.003, more effective, p =.027, and more
likable, p =.023, than those in the unimodal condition. However,
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no significant differences were found between the learning-based
and unimodal conditions in perceived credibility, p =.191. While
the comparisons showed that participants in the learning-based con-
dition perceived the robot to have higher immediacy, p =.032, and
marginally more credibility than in the random condition, p =.072,
no differences were found between the learning-based and ran-
dom conditions in measures of naturalness, p =.378, effectiveness,
p=.131, and likability, p=.931. Figure 7 summarizes these results.

Our analysis also found a significant effect of our manipulation on
the number of positive adjectives that participants used to describe
the robot’s behaviors, F(3,25)=6.44,p =.002. Comparisons showed
that participants in the learning-based condition used more positive
adjectives than those in the unimodal, p =.013, and random, p =.027,
conditions did. The learning-based and conventional conditions
demonstrated equivalence in the use of positive adjectives, p =.999
(Figure 8) . However, our manipulation did not have a significant
effect on the number of negative adjectives used, F(3,25)=1.86,p =
.162. Comparisons showed that participants in the unimodal, p =
.354, random, p = .460, and conventional, p =.947, conditions used
a similar number of negative adjectives in describing the robot’s
behavior to those in the learning-based condition did. Figure 8 shows
the top three adjectives used to describe the robot’s behaviors.

4.4.3. Retelling performance

We found a significant effect of our manipulation on participants’
perceived familiarity with the narration topic, F(3,25)=3.37,p=
.034, and effective use of body language, F(3,25)=4.67,p=.010,

[P

—

Positive Negative
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but not on the overall evaluation of the participant as an effective
presenter, F(3,25)=2.16,p =.118. Comparisons revealed equiva-
lence between the learning-based and conventional approaches with
respect to familiarity of the topic, p = 1.000, effective use of body
language, p =.848, and overall evaluation of presenter effectiveness,
p=.977, as shown in Figure 7.

Comparisons also showed that participants in the learning-based
condition were rated to be more familiar with the topic, p =.042, and
to more effectively use body language, p =.033, than those in the
random condition. They were also rated marginally higher in overall
evaluation than those in the random condition, p =.084. However,
comparisons did not find significant differences in participants’ fa-
miliarity with the topic, p = .986, effective use of body language,
p=.569, and overall performance as an effective presenter, p =.447,
between the learning-based and unimodal conditions (Figure 7).

4.4.4. Cognitive assessment

The manipulation in the robot’s behaviors did not have a significant
effect on participants’ information recall in the quiz, F(3,25) =
0.98,p = .418. No significant differences were found between the
learning-based condition and the unimodal, p =.621, random, p =
.866, and conventional, p =.986, conditions in comparisons.

4.4.5.  Summary and Discussion

Overall, our results showed that participants in the learning-based
condition rated the immediacy, naturalness, effectiveness, and lika-
bility of the robot higher than those in the unimodal condition did.
Participants in the learning-based condition were also rated higher
in their retelling of the narration topic compared with those in the
random condition. Additionally, the learning-based and conven-

M Positive Learning-based (6) 70.83% 29.17% ! o . . o .
9 | M Negative Coleret 5) ) S0 tional conditions showed equivalence in participants’ perceptions of
o ommunicative .
g 8- Confident (5) the robot and retelling performance.
> 7 Unimodal (8) 40.38% 59.62% While behaviors in the unimodal condition negatively affected
2 Rigid (6) Precise (5) .. . R h 7
6 Robotic (6) Scripted (5) how participants perceived the robot in terms of immediacy, natu-
&1 Artifiial (5) ralness, effectiveness, and likability, it did not affect participants’
3:5 . 1}:!;‘31,‘:1"(‘5)(7) 43.48% 56.52% perceived credibility of the robot, retelling performance, or informa-
] i
5 Co;ﬁde»? )(5) tion recall. The following excerpts from post-experiment interviews
0 34 Robotic (5, . P .
g provide some insight into these results:
PN Conventional (8) 75.41% 24.59%
Z Coherent (7) Lively (6) “« e . . .7 .
14 Confident (7)  Scripted (6) The robot didn’t particularly move, which I didn’t think was
Communicative (6) realistic, and also it didn’t make eye contact with me.”

Learning Random
Unimodal
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Figure 8: Results on participants’ use of positive and negative adjectives
in describing the robot’s behavior. Top three choices of adjectives and
percentages of used positive and negative adjectives are listed. Values in
parentheses indicate how many participants used the adjective to describe
the robot. Only significant results are marked. (*) denote p <.050.

“When it switched steps, it would be more engaging if it would
[like] point to the new step...”

“I was more focused on what the robot was saying and the
screen...”



While participants in the unimodal condition noticed that the robot’s
behaviors were not natural, they still paid attention to the verbal
information and the projected illustration to understand the pre-
sented information, demonstrating comparable results in perceived
credibility, retelling of the topic, and learning.

Participant comments also provided insight into why the random
manipulation did not affect their perceptions of the robot but affected
their retelling performance, as illustrated in the excerpts below:

“The motion was kind of distracting ... sometimes maybe it used
hand gestures in a way that I wouldn’t necessary to use that ...
[but] I feel like people do that sometimes too...”

“It was very distracting... what are you [the robot] trying to do,
1 don’t know what you [the robot] are trying to do. It was just
odd.”

Most participants in the random condition found the robot’s behav-
iors to be distracting, which suggests that participants may have
found it difficult to focus on the information presented by the robot,
potentially leading to poor retelling performance. The discrepancy
between quiz results and topic familiarity in retelling may reflect
the effects distraction may have had on their learning.

However, while some of the participants in the random condition
perceived that the robot’s behaviors deviated from social norms,
others found these behaviors to be acceptable. These results are
consistent with previous work on robots’ use of gestures to support
speech, which found no differences in participants’ ratings of a
robot displaying gestures that were semantically incongruent with
its speech and one that displayed congruent behaviors in measures
of how lively, active, engaged, communicative, and fun-loving they
perceived the robot to be [34].

The participants perceived the robot in the learning-based condi-
tion as showing higher immediacy—displaying more engagement
and psychological closeness—than they did in the unimodal and
random conditions. This result is consistent with research in educa-
tion, which shows that instructors with high immediacy use more
gestures and greater eye contact with students [22].

Finally, our results suggested that the behaviors driven by the
learning-based and conventional approaches demonstrated similar
effectiveness in every measure. Participant comments also highlight
similar limitations both approaches have in generating natural, hu-
manlike behaviors, as suggested by the following comments on the
robot’s gaze behavior, the first by a participant in the learning-based
condition and the other two from participants in the conventional
condition:

“It seemed not to sometimes make eye contact when I expected it
to. There were a few periods where it was talking and talking
straight at the screen and not making eye contact.”

“What it [the robot] could do more is to look as if it is an ac-
tual human were presenting. It could look more at the screen
[be]cause that’s how I feel a lot people do.”

“There were a few times I noticed it pointed to the screen
without looking at it.”

These comments also highlight the variability in people’s expecta-
tions of the behaviors of an effective presenter and suggest that gaze
behaviors controlled by the learning-based and conventional ap-
proaches will require further improvement to meet the expectations
of a broader population of users.

S. GENERAL DISCUSSION

5.1. Design Implications

To generate robot behaviors that enable natural and effective human-
robot interaction, researchers and designers have constructed models
of multimodal behavior from human data through an inspection-
based process that identifies behavioral patterns and extracts align-
ment parameters for behaviors in different modalities. While this
process has been successfully used to design robot behaviors that
achieve predicted outcomes (e.g., [9, 10, 29, 40]), the inspection-
based approach to identifying and extracting behavioral parameters
does not scale well to more challenging modeling tasks, such as mod-
eling relationships among a large number of multimodal behaviors
from large datasets. The learning-based approach presented in this
paper facilitates this process by automatically learning behavioral
patterns and alignment parameters from annotated human data and
promising greater scalability to large datasets and a large number
of behavioral modalities. Additionally, the learning-based approach
offers formalisms in the form of probabilistic representations of the
design space for robot behaviors, which might facilitate the vali-
dation of the learned models and extensions of these models using
methods such as active learning. While our results show that the
learning-based and conventional approaches reach comparable effec-
tiveness in generating robot behaviors, we expect the learning-based
approach to better capture the dynamics of multimodal behavior
when more data and behavioral modalities are considered.

5.2. Limitations and Future work

A key limitation of our work is the assumption that the Markov
process that underlies the production of multimodal behavior is dis-
crete, following an empirically determined window size of 500 ms.
However, human behavior is inherently more continuous. While
the use of this discrete window yielded acceptable behaviors, a con-
sideration of human behavior as a continuous process in modeling
might yield better outcomes. We also assumed that the duration of
state transitions were identical across different behavioral modali-
ties, although different behaviors might have different state duration.
For example, gaze behavior might change more frequently than
gestures. Methods that explicitly model duration, such as the use of
a hidden semi-Markov model (HSMM), might be more appropriate
for modeling these temporal characteristics.

In designing robot behaviors, we considered the speaker’s behav-
iors independent of the recipient’s behaviors. While this approach
might be adequate for a narration scenario, extending our work
to more interactive scenarios such as conversations will require
jointly modeling recipient and speaker behaviors using modeling
approaches such as the coupled hidden Markov model (CHMM).
We also focused on gaze and gesture as nonverbal channels, while
other nonverbal behaviors, such as head nods and facial expressions,
play a key role in communication.

In our proposed approach, the specific network structure of the
model, which we constructed based on literature on human com-
munication, has a significant effect on the success of the model
in achieving natural, effective humanlike behavior, and alternative
network structures or structures that are learned directly from data
might achieve different or better results. Finally, this work used
simple, proof-of-concept mechanisms to link components in the
feature and domain levels (Figure 2). Future work could extend the
learning-based approach to jointly learn at both feature and domain
levels and the associations between the two levels, which might
facilitate the generation of richer and more accurate robot behaviors.



6. CONCLUSION

Human behavior offers a rich space for designing natural and effec-
tive behaviors for robots. Researchers and designers have explored
ways of capturing the patterns in which humans behave as models
and heuristics to control robot behaviors. However, these approaches
usually involve a laborious process of inspecting large volumes of
data to identify temporal patterns in behaviors and alignments across
behaviors in different modalities. To facilitate this process, we pro-
posed a learning-based modeling approach that uses probabilistic
graphical models (PGMs) to automatically learn distribution and
alignment parameters from data on human behavior. In this paper,
we demonstrated a specific instantiation of this approach that used
a dynamic Bayesian network (DBN) to model speech, gaze, and
gesture behaviors in a narration task and to estimate distribution
and alignment parameters for these behaviors to enable a humanlike
robot to perform the same narration task. We then evaluated the
effectiveness of our approach in achieving natural, humanlike robot
behaviors by comparing it against a number of baselines. The results
showed behaviors generated by a learned model to be more effective
than no behavior and random behavior baselines in a number of
measures and equally effective as those controlled by a set of heuris-
tics. Our findings suggest that the proposed learning-based approach
offers design outcomes that are comparable to those obtained by
heuristics-based approaches while promising significant reduction
in the effort involved in constructing models of multimodal behav-
ior and greater scalability to more complex modeling tasks toward
achieving richer and more natural human-robot interactions.
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