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Abstract

Many ring morphism problems held their importance in math, especially
in number theory and algebra. And they are considered as candidates of NP-
intermediate problems like MCSP, the Minimum Circuit Size Problem. We
show that deciding if two given rings are isomorphic is in RPMCSP. using the
techniques of Allender and Das [AD17]. Moreover, we also show that finding
an automorphism and counting automorphisms of one ring are in ZPPMCSP.

1 Introduction

A ring is a set with addition and multiplication operations defined. It is considered
as one fundamental structure in Math, especially in algebra and number theory. The
importance of researching ring isomorphism includes that many problems can be re-
duced to it in polynomial time, such as GI [KS06] and the automorphisms group of
a ring encodes profitable structure information of a ring. And from the computa-
tional complexity view, deciding if two given rings are isomorphic (RI) and finding
an automorphism (FRA) of one ring are considered as candidates of NP-intermediate
problems, which are, assuming P6= NP, not in P nor in NP-complete [Lad75].

Besides RI, FRA, and #RA, other prominent candidates for NP-intermediate in-
clude Graph Isomorphism (GI) and the Minimum Circuit Size Problem (MCSP).
MCSP is the problem that given a number i and a Boolean function f on n variables,
represented by its truth table of size 2n, determine if f has a circuit of size i. Even
though the relationship between GI and ring morphism problems has been widely
studied and MCSP has attracted special interests in math community [Tra85], no con-
nection between ring morphism problems and MCSP has been estalished. Therefore,
in this paper, we present the connection of relative complexity of these problems.

Many hardness results of MCSP are known. Allender and Das showed that en-
tire Statistical Zero Knowledge (SZK) are included in BPPMCSP and GI are contained
in RPMCSP [AD17]. Allender, Buhrman, Koucky, Van Melkebeek, and Ronneburger
proved that Integer Factoring is included in ZPPMCSP and Discrete Logarithm Prob-
lem is in BPPMCSP[ABK+06], where Rudow later improved result and showed that
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Discrete Logarithm Problem is in ZPPMCSP [Rud17]. Moreover, for the Minimum
KT Problem, where MKTP is a a time-bounded Kolmogorov complexity problem
that is similar to MCSP , it has been shown that Graph Isomorphism (GA) and it’s
related problems are in ZPPMKTP [AGvM+18] and the Hidden Subgroup Problem is
in ZPPMKTP [SdSV18].

Using techiques similar to those have been used in proving the relative complexity
of GI and RPMCSP [AD17], we present the result relating RI and MCSP. And by
relating FRA and #RA with Integer Factorization, we can relate them with MCSP.

2 Preliminaries

In this section, we first give basis of rings. Note that a ring (R,+, ∗) is a set with
two operations that generalize the operations of addition and multiplication defined.
For each ring the additive group is the set just with addition operation, called (R,+).
And (R, ∗) is the multiplicative group where R∗ is the the set of elements in R
having multiplicative inverses. In this section we first give formal definition of basic
representation of rings and presentation of maps on rings.

Definition 1. [KS06] Basis representation of rings: A finite ring R is given by
first describing its additive group in terms of n additive generators and then specifying
multiplication by giving for each pair of generators, their product as an element of
the additive group. More concretely, R is presented as:

(R,+, .) :=< (d1, d2, ..., dn), ((ai,j,k))1≤i,j,k≤n >

where, for all 1 ≤ i, j, k ≤ n, 0 ≤ ai,j,k < dk and ai,j,k ∈ Z

One ring R generated by elements b1, b2, ..., bn, where each bi has additive order
di has additive group R(,+) = (Z/d1Z)b1 ⊕ (Z/d2Z)b2...⊕ (Z/dnZ)bn. And for mul-
tiplicative structure in R, it is defined as the product of each pair of generators as an
integer linear combination of the generators: for 1 ≤ i, j ≤ n, bibj =

∑n
k=1 ai,j,kbk.

Definition 2. [KS06] Representation of maps on rings: Suppose R1 is a ring
given in terms of its additive generators b1, ..., bn and ringR2 given in terms of c1, ..., cn.
In this paper maps on rings would invariably be homomorphisms on the additive
group. Then to specify any map φ : R1 → R2, it is enough to give the images
φ(b1), ..., φ(bn).

Definition 3. [KS06] Indecomposable or local ring: A ring R is said to be
indecomposable or local if there do not exist rings R1, R2 such that R ∼= R1 × R2,
where × denotes the natural composition of two rings with component-wise addition
and multiplication.

With the formal definition of rings, we can define ring isomorphism and related
problems which will be discussed in this paper.
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Definition 4. Ring Isomorphism Problem: To decide if two given rings are
isomorphic.

RI := {(R1, R2)| rings R1, R2 are given in the basis representations and R1
∼= R2}

Definition 5. Ring Automorphism Problem: To decide if one given ring has a
nontrivial ring automorphism.

RA := {R| R is a ring in basis form s.t. #Aut(R) > 1}

Definition 6. Find Ring Automorphism Problem: To find a nontrivial auto-
morphism of a ring R in basis form.

More information about rings can be found in algebra texts, such as [McD74]. In
the following, we give the important preliminaries about MCSP.

Definition 7. The Minimum Circuit Size Problem: Given a number i and a
Boolean function f on n variables, represented by its truth table of size 2n, determine
if f has a circuit of size i.

With an oracle of MCSP, we have the sufficient tool to distinguish the uniform
distribution and the distribution generated by pseudorandomness, and it’s sufficient
to invert on average any function that can bu computed uniformly in polynomial time
of length of its input [ABK+06]. And we can have the following theorem:

Theorem 1. (from [ABK+06, Theorem 45]) Let L be a language of polynomial
density such that, for some ε > 0, for every x ∈ L, KT (x) ≥ |x|ε. Let f(y, x)
be computable uniformly in time polynomial in |x|. There exists a polynomial-time
probabilistic oracle Turing machine N and polynomial q such that for any n and y

Pr|x|=n,s[f(y,NL(y, f(y, x), s)) = f(y, x)] ≥ 1/q(n)

where x is chosen uniformly at random and s denotes the internal coin flips of N .

3 Ring Automorphism and Circuit Size

In this section, we present the relationship between Ring Automorphism (RA) and
circuit minization problem. We know that checking if a ring has nontrivial auto-
morphism can be done in deterministic polynomial time [KS06], but finding such a
nontrivial automorphism of rings remains its status that is not in P and not NP-
complete. With the existing theorems that establish the relationship of counting
version of RA with Integer Factorization IF, we can easily show connection between
finding versions of RA and MCSP.

Theorem 2. (follows from [ABK+06, Theorem 47]) IF∈ ZPPMCSP

Theorem 3. (follows from [KS06, Theorem 8.1]) IF ≡ZPPT FRA
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With these two theorems, we can establish the complexity relative relation between
circuit size problem and finding such a nontrivial automorphism of rings.

Theorem 4. FRA ∈ ZPPMCSP

Proof. Given one instance of FRA, we first reduce it to one instance of IF with ran-
domized polynomial time reduction by Theorem 3. And then by Theorem 2, we can
find the integer factorization results with an oracle of MCSP. Therefore, we have
FRA ∈ ZPPMCSP.

4 Ring Isomorphism and Circuit Size

In this section, we present the complexity relative relation between RI and MCSP.
Our proof follows the techniques in proving [AD17, Theorem 2] where they randomly
generate one permutation τ and permuting the two given graphs. Comparatively,
we randomly generate one automorphism of the additive group and generating two
elements based on the given rings and the automorphism.

Theorem 5. RI ∈ RPMCSP

Proof. We are given two rings R1 and R2 as input and we want to determine if there
are isomorphic.

First we check if (R1,+) ∼= (R2,+) which can be decided in polynomial time
as given in [KS06, Remark 2.12]. If (R1,+) � (R2,+), then we have that R1 � R1.
Therefore, assuming that (R1,+) ∼= (R2,+), we find the following form of the additive
groups of R1 and R2:

(R1,+) = ⊕ni=1(Z/p
αi
i Z)bi

(R2,+) = ⊕ni=1(Z/p
αi
i Z)ci

where pi are primes and αi ∈ Z≥1. Finding such form of additive groups is compu-
tationally equivalent to IF, and with oracle of MCSP and by Theorem 2, this can be
done in ZPPMCSP.

Then we describe how to find an automorphism of the additive group of R1 with
the following Lemma 1. This construction is inspired by the proof of [KS06, Propo-
sition 2.13].

Lemma 1. Structure Theorem for Abelian Groups If R is a finite ring then
its additive group (R,+) can be uniquely (up to permutations) expressed as:

(R1,+) = ⊕i(Z/pαi
i Z),

where pi are primes (not necessarily distinct) and αi ∈ Z≥1.

Automorphism of the additive group (R,+) is the invertible linear map on the
additive generators of R, so it’s same to find such an invertible linear map.
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Given (R,+) in the form ⊕li=1 ⊕j (Z/pαi,j

i Z), where pi are primes and αi ∈ Z≥1.
Then we can decompose R into subrings Ri where R ∼= R1 × ... × Rl, for 1 ≤ i ≤ l
where

Ri := {r ∈ R|r has power − of − pi additive order}

.
Therefore, it’s enough to show how to construct an automorphism of (R,+) where

(R,+) is in the following form:

(R,+) = (Z/pβ1)e1,1 ⊕ ...⊕ (Z/pβ1)e1,n1 ⊕ ...⊕ (Z/pβm)em,1 ⊕ ...⊕ (Z/pβm)em,nm

where
∑m

i=1 ni = n and 1 ≤ β1 ≤ ... ≤ βm.
Then, we can construct such an invertible (mod p) matrix A that describes the

map φ ∈ Aut(R,+) and preserves the additive orders of ei,j as following:

A =


B1,1 B1,2 ... B1,m

B2,1 B2,2 ... B2,m

...
Bm,1 Bm,2 ... Bm,m


n×n

The block matrices Bi,j are integer matrices of size ni × nj and satisify the following
properties:

• for 1 ≤ j < i ≤ m: entries in Bi,j are from {0, 1, ..., pβj − 1},

• for 1 ≤ i ≤ m: entries in Bi,i are from {0, 1, ..., pβj − 1} and Bi,i is invertible
(mod p),

• for 1 ≤ i < j ≤ m: entries in Bij, are from {0, 1, ..., pβj − 1} and Bi,j ≡
0(mod pβj−βi).

Based on the properties of such a matrix A that describes the automorphism of the
additive group of a ring, φ ∈ Aut(R,+), we can pick one φ ∈ Aut(R,+) by randomly
select primes and elements in A’s entries.

Given such automorphism of the additive group of a ring, we first check if this
isomorphism preserves the multiplication of the original ring by check for all i, j ∈
[n], if A(bi)A(bj) =

∑n
k=1 ai,j,kA(bk). If the randomly generated map statisifies this

condition, then it’s an isomorphism from R1 to R2. We note the number of (R,+) as
m(n), which is polynomial and can be found in polynomial time [KS06].

Consider the polynomial-time computable function f(R,A) where the two inputs
are a finite ring R and a randomly generate matrix A ∈ Aut(R,+), which is a matrix
of the map of ring isomorphism, it outputs A(R). Note that f is uniformly computable
in polynomial time.

Therefore, by Theorem 1, we have

PrA∈Aut(R,+),s[f(y,NL(R, f(R,A), s)) = f(R,A)] ≥ 1/q(n)
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where A is chosen uniformly randomly and s is the randomness inside our polynomial-
time probabilistic oracle Turing machine N . And q is a polynomial that hold the
inequality above for any n and R.

Given two inputs (R1, R2), we can do following trails for c × q(n) ×m(n) times
where c is a constant that is large enough:

1. pick the automorphism matrix A and probabilistic sequence s uniformly at
random.

2. check if this automorphism matrix A describes an automorphism of the given
ring, if not report ’not ring automorphism’; if yes, continue.

3. compute f(R1, A)

4. Report ’isomorphic’ if f(NMCSP(R2, f(R1, A), s), R2) = f(R1, A)

Given an automorphism map of additive group of this ring, it has a probability
at least 1

m(n)
is a map of this ring. And when an automorphism map of ring is

given, this algorithm has at least 1
q(n)

chance to report ’isomorphic’. So the excepted

number of trails that report isomorphic’ is #Aut(R)×c. By the Chernoff bounds, the
probability of having one ’isomorphic’ is larger than 1

2
. And if the two given rings are

not isomorphic, this algorithm will never return ’isomorphic’. Therefore, we complete
the proof that RI ∈ RPMCSP.

Theorem 6. (follows from [KS06, Theorem 4.4]) GI ≤Pm RI.

Corollary 1. GI ∈RPMCSP

5 Conclusion and Open Problems

In this paper, we showed the relative complexity of two ring morphism problems,
FRAand RI, which are two candidates of NP-intermediate problems and MCSP, one
of the most famous NP-intermediate problems. For FRA, our proof is involved with
reduction from IF to FRA, which is given in [KS06]. And for RI, we first show how to
uniformly generate one matrix that describes an automorphism of a ring from uniform
distribution, and then by following the proof techniques used by Allender and Das
[AD17], we proved that RI ∈ RPMCSP.

Naturally, the next step is two prove the a better reduction, say is RIin ZPPMCSP?
It has been already showed a powerful technique for obtaining zero- sided error re-
ductions of GI [AGvM+18]. So it’s possible to employ this technique to the relation
of MCSPand RI.
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