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Abstract

We survey the current results of directed graph connectivity. We will focus on completeness
reusults, the algorithms of graph connectivity problems, developments in understanding the
complexity of the graph connectivity problem in different computational models and remaining
open problems.
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1 Introduction

This is the draft outline. It is far from complete and only a beginning outline.
We survey the current results of directed graph connectivity. We will focus on completeness

reusults, the algorithms of graph connectivity problems, developments in understanding the
complexity of the graph connectivity problem in different computational models and remaining
open problems.

For the graph connectivity algorithms, we survey the results about space complexity ob-
tained on graphs with different properties, including planar graphs [Asa+14; CT17], grid graphs,
mangroves [AL98; Gar+14], surface-embedded graphs [SV12] and unique-path graphs [KKR08].

For the lower bound side, we approach this problem through circuit computation model
and communication computation model. The results for circuit computation cover results on
Small Distance Connectivity [Che+16; Ros14; BIP98], and Monotone Circuit, including Span
Program [PR17] and Switching Network Model [Pot17]. On the models involving communication
complexity, we survey the results on Data Structure Lower Bound for both Dynamic [FS89] and
Static [Pa11] setting of graph connectivity problems, as well as Stream Model [SW15].

2 Preliminaries

2.1 Some Notation

Definition 2.1. L: Deterministic log space Turing Machine

Definition 2.2. NL: Non-Deterministic log space Turing Machine

Definition 2.3. Parity L: Non-Deterministic log space Turing Machine with determining if the
input if and only if the number of possible computation paths is odd

Definition 2.4. SL: Symmetric log-space Turing Machines

Definition 2.5. SC: Polylog-space, polynomial-time Turing Machine

Definition 2.6. USPACE(log n): Deterministic log space Turing Machine if, for every input, there
exists at most one accepting computation.

Clearly, DSPACE(log n) ⊆ USPACE(log n) ⊆ NSPACE(log n)

Definition 2.7. RUSPACE(log n): Deterministic log space Turing Machine if, for every pair of con-
figurations that are reachable from the start configuration, there exists at most one computational
path connecting these configurations.

Definition 2.8. StUSPACE(log n): Deterministic log space Turing Machine if, for every pair of
configurations, there exits at most one computational path connecting these configurations.

StUSPACE(log n) ⊆ RUSPACE(log n) ⊆ USPACE(log n)
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2.2 Circuit Complexity

Boolean Circuits are the computation model that take Boolean inputs and compute with a sequence
of operations, which can seen as gate. Normally, Boolean Circuits are composed with de Morgan
Basis, which are {∧,∨,¬}. Unlike algorithms, which can take inputs for any arbitrary length, one
Boolean Circuit can only handle one input length. Therefore, algorithms or Turing Machines are
uniform computation model and Circuits are non-uniform.

2.3 Communication Complexity

Communication Model is a 2-argument function, f : A× B→ Z, In computing, one input a ∈ A
is given to Alice and another input b ∈ B is given to Bob. They need compute the f (a, b) together
to obtain the result z ∈ Z. We measure the communication complexity by how many bit they
exchange during the computation.

2.3.1 Data Structure Lower Bound

For data structure lower bound, we use the cell-probe model. In this model, we have one part
known as ‘the space’ and another part as computation. The running time of an operation is
measured by the number of cell probes. All computation on already probed cells are free.

2.4 Information Theory

Definition 2.9. Information Entropy is the average rate at which information is produced by a
random source of data. For a discrete random variable X whose domain is {x1, x2, ..., xn}, the
information entropy of X is H(x) = −Σn

i=1Pr(X = xi) log2 Pr(X = xi).

3 Completeness Results

Theorem 3.1. STCONN is complete for NL.

So as we have shown in the section of Savitch’s Theorem, we have STCONN ∈ DSPACE(log2n)

Theorem 3.2. USTCONN is complete for SL.

Theorem 3.3. CYCLE is complete for L.
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4 Directed Graphs Connectivity Problems Algorithms

The first problem in this area is can we improve Savitch’s Bound. [Sav70] proved that the
reachability problem over directed graph can be deterministically solved in space of O(log2 n).
This result implies for polynomial space bounds, nondeterminism does not add any additional
power to determinism. This is bound is still the current best upper bound known. In order to
improve this result, previous researches have focused on graph with different properties.

4.1 Planar Graphs

A planar graph is a graph with the property that we can draw it on the plane such that its edges
only interest at their endpoints.

For reachability problem in planar graph, we have the following result:

Theorem 4.1. [Asa+14] There exists an algorithm that decides directed planar graph reachability in
polynomial time and Õ(

√
n) space.

Furthermore, for graph directed layered planar graphs, we have the following result:

Theorem 4.2. [CT17] For every ε > 0, there is a polynomial time and O(nε) space algorithm that decides
reachability in directed layered planar graphs.

4.2 Grid Graphs

Theorem 4.3. There exists an algorithm that computes the grid graph reachability in polynomial-time and
Õ(n1/3) space.

There is one work in arxiv claims they have obtained O(n1/4+ε).

4.3 Mangroves

G is unambiguous if there is at most one path from 1 to n as N(1, n) ≤ 1. G is called strongly
unambiguous or a Mangrove if for any pair (x, y) of nodes there is at most one path leading from
x to y, as ∀x,y∈B, N(x, y) ≤ 1. Although a mangrove does not need to be a tree, for each x the
subgraph of G induced by T(x) is indeed a tree and the same is true for the set of all nodes from
which x can be reached. G is called reach-unambiguous if N(1, i) ≤ 1 for each i.

Theorem 4.4. [AL98] RUSPACE(log n) ⊆ DSPACE(log2 n/ log log n).

The computation class ReachFewL is the class of computational tasks that are decidable by
nondeterministic log-space machines, where for every input, there are at most polynomially many
computation paths from the start configuration to any other configuration.

Theorem 4.5. [Gar+14] ReachFewL=UL.
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4.4 Surface-Embedded Graphs

In this section, we focus on designing reachability algorithms that improve Savitch’s Bound
for directed graphs with some topological structure, which are graphs that are embedded on
topological surfaces.

Theorem 4.6. [SV12] There is a log-space reduction that, given an instance < G, s, t > (presented as a
combinatorial embedding) where G ∈ Γ(m, g) and s, t are vertices of G, outputs an instance < G′, s′, t′ >
where G′ is a directed graph and s′, t′ vertices of G′, so that

• there is a directed path from s to t in G if and only if there is a directed path from s′ to t′ in G′,

• G′ has O(m + g) vertices.

4.5 Unique-Path Graphs

Unique-Path Graphs are graphs such that to a source vertex s if there is at most one simple path
from s to any vertex v ∈ V(G).

Theorem 4.7. [KKR08] For any ε ∈ (0, 1], STCON in unique-path graphs is solvable with O( nε

ε ) space
in nO( 1

ε ) time.
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5 Circuit Complexity

Theorem 5.1. uniform NC1 ⊆ L

Theorem 5.2. NL ⊆ uniform AC1 ⊆ uniform NC2

5.1 Small Distance Connectivity

Most of new results on proving the lower bound of graph connectivity problem study the small
distance connectivity problem. Small distance connectivity problems determine whether an
n-vertex graph has an s-to-t path of length at most k. The current best result of this problem is
near-optimal [Che+16]. [BIP98] and [Ros14] also gave some results on small distance connectivity
problem.

Theorem 5.3. [Che+16] For any k(n) ≤ n1/5 and any d = d(n), any depth-d circuit computing
STCONN(k(n)) must have size nΩ(k(1/d)/d). Furthermore, for any k(n) ≤ n and any d = d(n), any
depth-d circuit computing STCONN(k(n)) must have size nΩ(k1/5d/d).

[Ros14] shows a tight lower bound on the size of bounded-depth formulas solving distance
k(n) connectivity.

Theorem 5.4. [Ros14] Formulas of depth log n/(log log n)O(1) solving STCONN(k(n)) have size nΩ(log k)

for all k(n) ≤ log log n.

Corollary 5.5. Polynomial-size circuits solving STCONN(k(n)) require depth Ω(log k) for all k(n) ≤
log log n.

5.2 Monotone Circuit

5.2.1 Span Program

[PR17] shows the current best lower bound of size of monotone span program. Furthermore, lower
bound for st-connectivity implies a quasipolynomial separation between mNC2 and monotone
span programs, since st-connectivity is well-known to be computable.

Theorem 5.6. [PR17] The st-connectivity function requires nΩ(log n) size monotone span programs over
R.

The proof of this theorem also requires Communication Complexity.

5.2.2 Switching Network Model

[Pot17] analyzes the monotone space of complexity of directed connectivity for a large class of
input graphs G using the switching network model. This works generalizes and improves the
results obtained in the previous works in switching network model.

Theorem 5.7. [Pot17] If z and m are constants such that m ≤ n
2000z4 and G is a directed acyclic input

graph such that

• There is no path of length at most 2z−1 from s to t.
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• For any vertex v ∈ V(G), there are at most m vertices w ∈ V(G) such that either there is a path of
length at most 2z−2 from v to w in G or there is a path of length at most 2z−2 from w to v in G, then

m(G) ≥ (9mn)
1
4

20|E(G)|(z + 1)
√

2zz!( n
9m )

z
4

6 Communication Complexity

6.1 Data Structure Lower Bound

6.1.1 Static Connectivity in Sparse Directed Graphs

Communication complexity can be used to prove that such data structure for directed graphs
doesn’t exist [Pa11]:

Theorem 6.1. [Pa11] In any static data structure solving the directed graph connectivity problem on
graphs with at most nw edges and word size w, we must have

t ≥ Ω(
log n

log sw log n
n log w

)

If t = O(1) and w = O(log n) then s = n1+Ω(1).

6.1.2 Lower bound for Dynamic Graph Connectivity

The dynamic data structure of graph connectivity supports addition of edges and connectivity
queries. It maintains a graph on the vertex set [n]. [FS89] shows the following lower bound for
dynamic graph connectivity:

Theorem 6.2. [FS89] Any data structure solving the graph connectivity problem with error at most 1/3
for m ≥ n + 1 operations satisfies

tq × log tuw ≥ ω(log n)

6.2 Streams Model

In streams model, [SW15] shows tight Ω(n log n) space lower bounds for randomized algorithms
which succeed with constant probability in a stream of edge insertions for a number of graph
problems.

7 Open Problems

8 Acknowledgements
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