
Three-dimensional reconstruction from

multiple reflected views within a realist painting:

An application to Scott Fraser’s Three way vanitas

Brandon M. Smith,a David G. Storkb and Li Zhanga

aDepartment of Computer Science, University of Wisconsin, Madison WI 53706 USA
bRicoh Innovations, 2882 Sand Hill Road Suite 115, Menlo Park CA 94025 USA

and Department of Statistics, Stanford University, Stanford CA 94305 USA

ABSTRACT

The problem of reconstructing a three-dimensional scene from single or multiple views has been thoroughly
studied in the computer vision literature, and recently has been applied to problems in the history of art.
Criminisi pioneered the application of single-view metrology to reconstructing the fictive spaces in Renaissance
paintings, such as the vault in Masaccio’s Trinità and the plaza in Piero della Francesca’s Flagellazione. While
the vast majority of realist paintings provide but a single view, some provide multiple views, through mirrors
depicted within their tableaus. The contemporary American realist Scott Fraser’s Three way vanitas is a highly
realistic still-life containing three mirrors; each mirror provides a new view of the objects in the tableau. We
applied multiple-view reconstruction methods to the direct image and the images reflected by these mirrors
to reconstruct the three-dimensional tableau. Our methods estimate virtual viewpoints for each view using
the geometric constraints provided by the direct view of the mirror frames, along with the reflected images
themselves. Moreover, our methods automatically discover inconsistencies between the different views, including
ones that might elude careful scrutiny by eye, for example the fact that the height of the water in the glass differs
between the direct view and that in the mirror at the right. We believe our work provides the first application
of multiple-view reconstruction to a single painting and will have application to other paintings and questions in
the history of art.

Keywords: painting analysis, three-dimensional reconstruction, multi-view reconstruction, Scott Fraser, Three
way vanitas, fundamental matrix, essential matrix

1. INTRODUCTION

Algorithms and techniques of computer image analysis are being applied with growing frequency to problems
in the understanding of fine art.1 Such techniques include multispectral imaging to reveal hidden or degraded
works,2 color modelling and digital “reverse aging” of artworks to recover original color schemes,3 image texture
analysis of brushstrokes to authenticate artworks,4, 5 fractal and image analysis to authenticate drip paintings
by Jackson Pollock,6–8 feature analysis of marks from worn press platens to date printed artwork,9 cast-shadow
analysis to estimate the location of illuminants within depicted scenes,10 rigorous image photogrammetry and
perspective estimation to infer artists’ working methods,11, 12 computer dewarping of distorted images in convex
mirrors depicted within paintings to attribute artists to these works,13, 14 analysis of the pattern of highlights
along occluding contours to locate illuminants within depicted scenes,15 and modelling putative projectors by
computer ray tracing to test for artists’ use of optical drawing aids.16

The problem of reconstructing the three-dimensional picture space from two-dimensional projections is very
well studied for the case of digital photographs and videos. Inferring the space from a single image is formally
ill-posed and is generally addressed using constraints such as that particular lines are presumed parallel or
perpendicular in the picture space, that the relative sizes of objects depicted are known, and so on. Inferring
the three-dimensional space from two images—stereoscopically—is also well studied, and generally relies on
finding corresponding “interest” points in the images and then computing the fundamental matrix F, which
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Figure 1. Scott Fraser, Three way vanitas (2006), 89 × 124.5 cm, oil on board c© Scott Fraser. The depicted art books
here refer to French Fauvist painter Raoul Dufy (1877–1953) and the early Italian Renaissance master Fra Angelico
(c. 1395–1455), one of the earliest practitioners of geometrical perspective. The penny coin, hidden behind the egg cup,
appears due to two successive reflections; its central position and monetary value may reflect the artist’s worldly pecuniary
strivings. Decoding the reflected sight line of this and other objects requires weaving an interesting web through the three-
dimensional tableau, surely part of the goal of the artist. For instance, consider the view of the bottom of the egg cup
visible near the center of the painting. Working backward from the viewer: the viewer looks at the middle of the large
central mirror, then sees the rear reflecting surface of the blue hand mirror on the table, then sees in it the lower-right
corner of the large plane mirror at the left, then sees in it the bottom of the egg cub. Visible in the distance in the left
mirror a ticking metronome, a reminder of the passage of time, as well as a small photograph of the artist’s daughter,
part of his legacy. The drinking glass contains water not yet drunk, symbolizing tasks not accomplished in this corporeal
life. The chef’s hat, made by his pre-school son, sits atop a mountain lion skull, a gift to this Colorado-based artist from
a fellow artist. The dead moths, pinned on spools of string—one freestanding, one in an egg cup—evoke the beauty an
artist strives to leave behind. We can read this painting, then, as the artist’s self-reflective meditation on his career,
accomplishments, and ultimate legacy.

then provides the camera models. Reconstruction from three overlapping views relies on computing the trifocal
tensor T , the generalization of the fundamental matrix. Inferring the three-dimensional space from more than
three overlapping views involves the quadrifocal tensor which relates interest points visible in four views, but
this approach is rarely followed because computation of the tensor is generally unstable. Instead, such four-view
reconstruction relies on iterative refinement of successive subsets of images.

The new discipline of computer vision and image analysis in the study of art has addressed a number
of questions, including the problem of reconstructing a space from a painting. Criminisi applied single-view
uncalibrated methods to reconstruct the space in Hendrick van Steenwijck’s St. Jerome in his study (1630) and



the fictive space in Masaccio’s Trinità (1427–1428).11, 17 Stork and his colleagues have built computer models
of Georges de la Tour’s Christ in the carpenter’s studio (1645)18 and Jan Vermeer’s Girl with a pearl earring
(c. 1665–1666)19 to answer questions about artists’ use of lighting, as well as of Hans Memling’s Diptych of
Maarten van Nieuwenhove (1487) to test whether the mirror in its left panel was painted in situ or instead added
later, and thus presumably from the Memling’s imagination.14 Stork built a computer graphics model of the
space in Jan van Eyck’s Portrait of Giovanni (?) Arnolfini and his wife (1434) to estimate the focal length of
the convex mirror depicted in the painting.20 Wong and Stork built a highly faithful computer graphics model
of Caravaggio’s The calling of St. Matthew to explore this artist’s number and placement of light sources.21

Figure 2. Scott Fraser, Three way vanitas (2006), 90.2 × 122 cm, graphite on paper (drawing) c© Scott Fraser. Although
the geometry in this study is nearly identical to that in the final oil painting of Fig. 1, the compositions differ in a number
of small ways: In this study there is neither penny at the center nor metronome nor photograph visible in the left mirror.
Likewise, there is no edge of table visible (and hence no droop of string), which gives a sense that this tableau is on a
floor, rather than a table.

We are unaware of prior research on the three-dimensional reconstruction of the picture space in a painting
from two separate views depicted within a single artwork. Clearly, for accurate reconstruction the painting must
be geometrically accurate and highly realistic—possibly based on a photograph as reference, as in the case we
consider here. In Sect. 2 we describe the painting we consider, Scott Fraser’s Three way vanitas, and then in
Sect. 3 we review the basic theory and algorithms of reconstruction of three-dimensional spaces from multiple
views, to clarify our notation and conventions. In Sect. 4 we apply these methods to Fraser’s painting and in
Sect. 5 we interpret the results both on technical contributions and on how it expands humanistic understanding
of this painting. We conclude in Sect. 6 with future technical work on reconstruction from multiple views and
speculations on how these techniques might be used in further research in the visual arts.

2. THE PAINTING

Figure 1 shows the work in question, a formal, vanitas still life in oil on board executed in muted colors with
spare background, arrayed much like an altar. It was commissioned as part of The Object Project,22 in which 15
contemporary artists were given the same objects (hand mirror, moth, bone, spool of string, drinking glass), and
asked to create paintings. This work is a very sophisticated two- and three-dimensional composition, evoking a
sense of clarity, stasis and reason. The vanitas genre comprises allegorical paintings, generally still lifes, meant
to remind the viewer of the transitory nature of earthly life, and as such often contain a skull and a mirror, to
metaphorically remind the viewer to see him or herself in the scene.

For most of his works, Scott Fraser works directly from life, but Three way vanitas was an exception. He
used a photo for preliminary studies (such as in Fig. 2), and “blocked in” (set the overall composition) from a



distance of about 15 feet, then moved closer to observe details, such as the moths, spools of string and mountain
lion’s skull. The composition is very finely aligned: moving the viewing point an inch to the side in the studio
changes the composition significantly, as we discuss below.

3. RECONSTRUCTION THEORY

We now turn to the theory of reconstructing the three-dimensional scene based on the image in the painting.
Figure 3 shows the setup and our conventions. The primary center of projection is C0, corresponding to the
artist’s eye, or the pupil of the camera taking the reference figure; the image as viewed from this position is
denoted I0, that is, the painting as we see it. Each of the three plane mirrors—M1, M2 and M3, reading left-to-
right—has its own effective center of projection, that is, the viewpoint yielding the (reversed) image we see in
the painting. For instance, the center of projection C1 is symmetric to C0 with respect to the plane of M1, on
the left, and its corresponding image is I1. Likewise, the centers C2 and C3, have associated images I2 and I3.
Figure 3 shows the setup and our notation.

I0 from C0 I1 from C1 I2 from C2 I3 from C3

Figure 3. The top computer graphics figure shows the tableau and the centers of projection: the primary viewing point
(of the artist or reference camera), is C0 and the virtual centers of projection are Ci, symmetric with respect to each of
the three primary plane mirrors, as indicated by the red lines perpendicular to the planes defined by each mirror, and as
bisected by the green dots in each such plane. The four images beneath are I0, the projection from C0 and corresponds
to the painting we see, and the other images, Ii, corresponding to the views from Ci and the views visible in the mirrors
in I0. For the three-dimensional reconstructions from multiple views, we use the I1, I2 and I3 images restricted to the
views “through” the panes of the corresponding mirrors.



3.1 One view

Reconstructing a space from its projection to a single image, here I0 is ill-posed, but can be addressed using
geometrical constraints and assumptions. Criminisi pioneered the use of uncalibrated methods from computer
vision to reconstruct the three-dimensional space within paintings.11, 23, 24 Here elementary perspective analysis—
creation of vanishing points, horizon line, center of projection, and so forth—gives information about the viewing
point, relative sizes of objects, and so on, as shown in Fig 4.

Figure 4. Perspective analysis of Three way vanitas. The vanishing points defined by the frames of mirrors M1 and M3

are V P1 and V P3; the horizon line is shown. The center of projection is perpendicular to the painting at the center of
mirror M2 at the height of the horizon line. The relative height of the string spool to the water glass can be computed
geometrically using the red lines and vanishing point P according to the methods described by Criminisi,11 and found to
be approximately 1.04.

3.2 Two views

The basic theory underlying reconstructing three-dimensional spaces from two views is the foundation of stereo
perception, and is well understood and includes a number of basic algorithms, such as bundle adjustment.25 The
first step is to identify—either by hand, semi-automatically, or automatically—pairs of corresponding interest
points in the two images, then compute the fundamental matrix F. This 3 × 3 rank-two matrix has seven
degrees of freedom and is defined by xtFx′ = 0 for each pair of matching interest points x ↔ x′ in two images,
where x = (x, y, 1)t is in one image, and x′ = (x′, y′, 1)t in the other image. Each of the k pairs of points
xi ↔ x′

i
(i = 1, . . . , k) yields one linear equation in the unknown entries in F.25 One then derives from F

the two centers of projection and camera models; simple projective geometry then yields the three-dimensional
location of these corresponding interest points. There are a number of complexities in this basic algorithm, such
as when occlusion obscures one interest point in a matching pair, or when there are multiple locally optimal
correspondence solutions. We used these traditional methods, using the Levenberg-Marquart descent to find the
global minimum, as outlined in the Appendix. The overall scale is generally not provided by such analysis, but
requires some known size, for instance the absolute size of an object in the scene or known distance or angle of
view.

The generalization to three-view reconstructions involves three-way point matches, x ↔ x′ ↔ x′′, where the
role of the fundamental matrix is played by the trifocal tensor T , which consists of three 3 × 3 matrices, each
corresponding to one of the three pairs of images.25 The rigorous mathematical theory underlying general n-view
reconstruction for n ≥ 4 is not often employed because the estimation of higher-order tensors is very sensitive
to errors in the location of interest points. In practice, then, high-n multi-view algorithms iteratively refine the
reconstruction based on subsets of the images.25

3.3 Error measure

A principled measure of the quality of fit of a reconstruction is the first-order geometric error or Sampson
distance26 is given by:

k
∑

i=1

(x′t

i
Fxi)

2

(Fxi)21 + (Fxi)22 + (Fx′

i
)21 + (Fx′

i
)22

. (1)

This measure is the sum over k pairs of interest points of the normalized square of the distance of a point in one
view from the location predicted in the other view.



4. APPLICATION TO THREE WAY VANITAS

We now turn to the reconstruction of the space from the data in the painting. First we identified by hand
“interest” points, such as corners and inflection point of objects, noting for our database in which of the images,
I0, . . . , I3, the point was visible, as shown in Fig. 3.

4.1 One view

We assume naturally that the tabletop is horizontal, each mirror frame is rectangular and planar with many
vertical edges, that the intrinsic shapes of the flanking mirrors are the same, and so on. We consider first just the
single view provided by image I0 (cf., Fig. 3). Figure 4 shows a perspective analysis of the work including the
horizon line, vanishing points, and so on. There are a number of different single-view images and each could be
analyzed, but we are primarily concerned with multi-view reconstruction. Nevertheless, there are a few regions
that are visible in only one image, so we illustrate the kind of information that can be extracted from those. For
example, the spool behind mirror M1 is visible in only the direct image, I0. We can deduce the relative size of
the glass and this spool of string, as shown in red.11 The lower red line links the center of the bases of the glass
with that of the spool; this line, extended to the horizon line defines the vanishing point P . The upper red line
links P to the center of the top of the glass. All objects on the horizontal ground plane whose top touches this
red line and bottom touches the other red line are the same height, regardless of distance to the viewer. We
can thus read the height of the spool, h1, as a proportion of the separation of the red lines, h2, and thus find
that h1/h2 ≈ 1.04. The overall scale cannot be derived from the form information alone but can be inferred by
knowledge of the scale set by the penny coin, for instance.

4.2 Two views

Nearly every algorithm for multiple-view reconstruction rely on finding correspondences between interest points
(sometimes called key points): points visible in two or more views. In applications relying on a large number
of interest points, such points are computed automatically for example by SIFT features (shift-invariant feature
transform), points of high curvature, terminations, and so on.

Figure 3 shows C0 as the center of projection of the direct view, the virtual image in the left mirror (M1) has
center of projection C1, and likewise for the other two mirrors. The view we see is reversed, left-to-right from
those centers. There are

(

4

2

)

= 6 pairs of images that can be used in two-image reconstruction. Two views, such
as the direct view, and one provided by the central mirror provide the largest number of pairs of interest points.

Figure 6 shows the three-dimensional tableau reconstructed from images I0 and I2, the largest within the
tableau. (Other paired reconstructions are similar.) The general spatial arrangement seems plausible (the hand
mirror is behind the glass of water, the bone is closer than the moth at its right, and so on), but there are some
clear inconsistencies, such as the fact that the bone is significantly closer than the water glass.

5. INTERPRETATION AND ANALYSIS

Our three-dimensional reconstruction reveals the sophisticated composition in a way difficult in a purely two-
dimensional analysis. Our model allows us to adjust the viewing position (C′

0) slightly, or the placement of
objects. We find that the slightest realignment—by as little as a centimeter in the space of the tableau—can
introduce occlusions and awkward compositions in the direct final view, the reflected images in any or all of the
mirrors in the final painting. (We also can demonstrate this using our computer graphics model.)

6. CONCLUSIONS AND FUTURE DIRECTIONS

Clearly our work is preliminary, a mere proof of concept that one can reconstruct three-dimensional spaces from
multiple viewed depicted in a realist painting. There are a number of future research directions beyond those
identified in Sect. 5 above. In the technical algorithm development relevant to art, we envision two key directions,
both of which seem to have been overlooked in the computer vision literature:



Figure 5. The small red +s are the hand selected interest points, typically chosen to be point of high intrinsic curvature
or extrema on the boundary of objects, or intersections of two curves.

Integrate single-view with multiple-view estimates Our application of computer vision algorithms to this
painting highlights a challenge to reconstructing in general realist images: how to integrate information
about the separate “camera” models derived from the fundamental matrix (or trifocal tensor) and that
estimated from a single image. In the present case, this single-image information consists of the perspective
of each mirror frame depicted in the painting, which translates, by spatial mirror symmetry, into the location
of the virtual centers of projection. A related problem is how to use information from multiple sequential
reflections (i.e., reflections of reflections) in such reconstructions. Both these problems demand we weight
the different spatial errors or uncertainties and propagate them to the final three-dimensional points. We
are developing theory and algorithms to address both these general problems.

Incorporating single-view geometric constraints The method described here was purely image based, and
relied on finding the stereo correspondences between interest points to infer the Fundamental matrix and
thus the effective centers of projection. But note that the monocular view of each mirror frame and the
rules of geometrical optics of reflection provides information about the location of the corresponding centers
of projection. For instance, the single perspective view (from C0) of mirror M2, assumed to be rectangular,
gives an estimate of the location of the center of projection C2, up to a scale. One could use this estimate
in addition to the image I2 itself to get an improved three-dimensional reconstruction.

Reconstruct using convex mirror reflections Criminisi, Kemp and Kang showed how to dewarp painted
reflections in convex mirror depicted within paintings, such as the Arnolfini portrait and Heinrich von Werl
and St. John the Baptist for authentication, providing a new view.13 Stork argued that the high spatial
agreement between the direct view and the dewarped mirror view in the Arnolfini portrait implied that
van Eyck worked from an actual, rather than fictive, space.20 Future research could include using such a
dewarped image along with the direct view for three-dimensional reconstruction.



Figure 6. The three-dimensional reconstruction of the tableau based on the direct image, I0 and the reflected image in
the large central mirror, I2.

Our techniques might be applied to other works in the art historical canon, to provide new views into the
spaces depicted in paintings and hence shed light on art historical questions:

Reconstructing space in works depicting plane mirrors There are a number of realist paintings that in-
clude plane mirrors, and one might reconstruct parts of the three-dimensional tableau using the techniques
we describe: Jean-Auguste-Dominique Ingres’s Portrait of the Countess D’Haussonville (1845), Bernardo
Strozzi’s Old woman at the mirror (c. 1615), and Peter Paul Rubens’ Venus at the mirror (1613–1614) or
modern photorealists, such as Richard Estes’ Paris street scene, 1972 (1972) and Spirit (1995–1996).

Convex mirror reflections Reconstruct the three-dimensional space of the tableau from the direct view and
a dewarped view in a convex mirror, as in Jan van Eyck’s Portrait of Giovanni (?) Arnolfini and his wife
(1434), Robert Campin’s Heinrich von Werl and St. John the Baptist (1438) and other works.

Quantifying spatial composition Much of “stylometry” in the visual arts (the quantification of artistic style)
relies on low-level or two-dimensional features such color palette or the shape of brush strokes. Perhaps with
refinements and extensions to the methods described here, including uncalibrated single-image methods we
can begin to develop a stylometry for three-dimensional composition, one relying on sizes and distances of
objects.

Reconstruct spaces from different paintings Just as multiple photographs of a given object or building,
taken by different photographers at different times, can be used to reconstruct a three-dimensional model
of that building, so too perhaps can multiple realistic paintings of a given object be used to reconstruct
a three-dimensional model of a building. This would be particularly intriguing if the building no longer
exists, for instance a Greek or Roman building depicted in paintings.

Most importantly, we believe our work builds upon and further demonstrates the value of rigorous computer
vision methods in the humanistic study of art, but that its greatest value will be realized when art historians and



conservators understand the power and limitations of these methods and identify problems that can be addressed
by these methods.1
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APPENDIX

We can extend the Levenberg-Marquardt iteration method to perform a bundle adjustment of all the views at
the same time. As with using the Levenberg-Marquardt method for one pair of views, we must supply an initial
estimate. A problem arises when we do this, however, since 3D points recovered from one pair of views might
have a different scale associated with them than another pair of views. For example, a 3D point from one pair of
views might have the form X1 = (a, b, c)t and the same point recovered from another pair of views might have
the form X2 = (a/q, b/q, c/q)t, that is, the ratios between the coordinates are the same, but the actual points
differ by a scale. To make them consistent we can calculate a 3 × 3 matrix H such that X1 = HX2 and X2 is
updated by H by X′

2 = HX2.

The key to making this work is to also update the camera matrix P2 so that P′

2 = P2H
−1 such that

x2 = P2X2 = P2H
−1HX2 = P′

2X
′

2 = P′

2X1.

Thus, after updating we are free to use X1 as an initial estimate since it now works for both pairs of views. Thus
H has the form

H =

(

A t
vt k

)

where v and t are 3-vectors, A is a 3 × 3 matrix, and k is a scalar. The 3D points are really only off by a scale,
and so we can make the following simplification to H:

H =

(

I 0
vt k

)

=









1 0 0 0
0 1 0 0
0 0 1 0
v1 v2 v3 k









.
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