
Research Statement

Jayaram Bobba

January 23, 2010

The computer industry has thrived upon decades of exponential growth
in hardware and software capabilities. As hardware becomes more powerful
and cost-efficient (primarily facilitated by Moore’s Law), software expands
to utilize the additional capacity. This expansion of software in turn drives
the development of better hardware. Underlying this synergistic evolution
is an increasing human ability—assisted by better programming models and
software tools—to build bigger and more complex systems. In the future
too, increases in human productivity are going to be key to sustaining this
model of evolution and expansion of the computer industry.

Recent industry trends, however, have cast a shadow on programmer
productivity gains in software development. The shift to chip multiproces-
sors (CMP) as the vehicles for general-purpose computing has signalled a
move to writing parallel software. However, thus far, parallel software has
been hard to write and bug-prone. This problem is exacerbated by the lack
of efficient software tools to facilitate parallel programming. Unless we in-
novate in parallel programming models and software tools, we are likely to
run into a productivity wall that would halt the evolutionary cycle driving
our industry.

My research focusses on providing hardware support to ease soft-
ware programming and thus improving programmer productivity. This
support can be in the form of either facilitating better programming models
like Transactional Memory (TM) [12, 13] or more efficient software tools like
dynamic atomicity checkers [14]. In my dissertation research, I provide a
foundation for a broad class of such proposals, known as supervised systems,
along with exploring applications of supervised systems.

1



Dissertation Research

Supervised Memory (Under Submission)

Supervised systems use additional bits in hardware to store metadata that
is used for monitoring and controlling accesses to memory. Examples of su-
pervised systems include hardware TM (HTM) systems, memory-typestate
trackers [20, 21, 23, 27] like empty/full-bits [21], log-based architectures
[7, 8], deterministic shared memory [10], hardware-assisted garbage collec-
tors [9, 17, 25]. While existing work presents a wide range of uses for super-
vised systems, it is still incomplete and leaves many questions unanswered.
For instance, most of the work builds on top of slow sequentially-consistent
(SC) systems and takes an informal approach to specifying memory consis-
tency that could lead to ambiguities.

My thesis builds a firm foundation for current and future supervised
systems by addressing drawbacks with existing proposals. First, it demon-
strates implementation and correctness issues that could arise with super-
vised systems on a non-SC system. Using empty/full-bits and a determin-
istic shared memory proposal as examples, it identifies three issues that are
relevant to building supervised systems on top of a relaxed memory system.
To adress correctness concerns, my thesis proposes Supervised Memory,
a formal model that provides program metadata in hardware and forms the
substrate for many supervised systems. It also formally defines two consis-
tency models similar to the well-known TSO model [11]. In order to resolve
the classic tension between performance and ease of reasoning in the design
of memory models, I propose safe supervision, a program property akin
to data-race-freedom [1, 2] that simplifies memory models for most novice
programmers. Finally, my research investigates implementing a relaxed su-
pervised system on top of a real industry design. Using the OpenSPARC
T2 [16], an industrial-strength RTL-level design of a CMP, it demonstrates
mechanisms for handling low-level issues like late exceptions and load buffer
bypassing using RTL modifications and hypervisor support.

TokenTM [ISCA2008] and StealthTest [PACT2009]

I also examine HTM systems more extensively in my thesis. Transactional
Memory is a promising language model that provides an ‘atomic’ construct
which enables programmers to easily and declaratively specify the synchro-
nization intent corresponding to a block of code. However, existing TM sys-
tems suffer from a self-justifying ‘small-transaction’ assumption that could
restrict their applicability to software.

2



My thesis redresses the small-transaction assumption by demonstrating
an efficient TM virtualization solution. Going against convention, it takes a
tagged-memory approach and uses supervised memory’s metadata to carry
TM state. It combines existing ideas of token counting [15] and per-thread
software logs [18] to build TokenTM [3], an unbounded HTM system
that gracefully handles virtualization events while still imposing little
performance overhead on the execution of small transactions. As an added
benefit, TokenTM requires minimal changes in complex systems like cache
coherence and virtual memory.

Finally, my thesis expands the applicability of TM systems to the critical
area of software testing. While software testing is a hard problem, the emer-
gence of CMPs and the proliferation of bug-prone parallel software makes
testing even harder. Recently, researchers are exploring methods to continue
testing software after deployment. These on-line techniques typically fork
new processes to hide the functional impact of testing [19, 22]. Unfortu-
nately, the high overhead of fork() significantly degrades performance.

I propose StealthTest [6], an interface that exposes TM transactions as
the key mechanism for executing on-line tests. StealthTest allows on-line
tests to work in isolation on a consistent view of memory. Moreover, ex-
plicitly aborting the test transaction after it is done guarantees that its
changes are invisible to the rest of the system. To demonstrate the utility of
StealthTest, I apply it to two existing on-line testing frameworks that pre-
viously relied on forking processes: in vivo testing [19] and Delta Execution
[22].

Other Research

[HPCA2006,ASPLOS2006,HPCA2007,ISCA2007]
In addition to my dissertation research, I have contributed to the design

and development of a range of HTM system proposals from LogTM [18]
to LogTM-SE [26]. In the process, I co-led the development and release
of a HTM simulator built on the GEMS multiprocessor simulation frame-
work [24] leading to at least 13 external publications. I also performed the
first extensive comparison between various design points in the HTM design
space. Instead of a raw comparison between existing systems, this work
makes a more long-lasting contribution by identifying pathological work-
load behaviors that could arise with each of the design points [4]. This work
was well-received by the community and was selected for the 2008 IEEE
Micro Top Picks as one of the 10 most significant research publications in

3



Computer Architecture in 2007, based on novely and industry relevance [5].

Future Research

In the immediate future, I could continue exploring newer techniques for us-
ing hardware metabits to tackle the productivity wall. In this effort, I will
focus on two areas—richer programming models (e.g., object-oriented lan-
guages, implicitly parallel programming models) and whole-program analy-
sis tools. First, richer (and arguably easier to use) language models could use
hardware support in order to be implemented efficiently. For example, hard-
ware support has been shown to enable fast and scalable garbage collection in
object-oriented languages. This line of research has precedents in the 1970s
and early 1980s when hardware support was added for dynamically-typed
languages like LISP. Second, many whole-program analysis algorithms like
static dynamic escape analysis are intractable. However, with run-time sup-
port, these algorithms can be efficiently implemented dynamically enabling
many optimizations like stack allocation. For single-threaded programs, run-
time support could possibly be implemented entirely within software. How-
ever, for multi-threaded programs, efficient run-time support would most
likely require hardware support. Moreover, given the foundation provided
by my Supervised Memory model, I can provide more formal and accurate
specifications of such a hardware feature such that it can be readily incor-
porated on top of existing systems.

More broadly, I am interested in the field of Computer Architecture with
specific interest in designing hardware/software interfaces. These interfaces
represent a complex trade-off between many factors like simplicity, perfor-
mance and compatibility and hence provide exciting research opportunities.
Programmability challenges are already leading to a re-examination of the
hardware/software interface. Hardware reliability issues will soon need to
be exposed to software and hence will require an interface modification.
As computation systems expand in both dimensions, we are witnessing the
emergence of huge warehouse-size computers and tiny mobile computation
devices. This could also necessitate a re-examination of older CISC/RISC
interfaces in the context of these new systems.

4



References

[1] Sarita V. Adve and Kourosh Gharachorloo. Shared memory consistency mod-
els: A tutorial. 29(12):66–76, December 1996.

[2] Sarita V. Adve and Mark D. Hill. Weak ordering - a new definition. In Proc.
of the 17th Annual Intnl. Symp. on Computer Architecture, pages 2–14, May
1990.

[3] Jayaram Bobba, Neelam Goyal, Mark D. Hill, Michael M. Swift, and David A.
Wood. TokenTM: Efficient execution of large transactions with hardware
transactional memory. In Proc. of the 35th Annual Intnl. Symp. on Computer
Architecture, Jun 2008.

[4] Jayaram Bobba, Kevin E. Moore, Haris Volos, Luke Yen, Mark D. Hill,
Michael M. Swift, and David A. Wood. Performance pathologies in hardware
transactional memory. In Proc. of the 34th Annual Intnl. Symp. on Computer
Architecture, June 2007.

[5] Jayaram Bobba, Kevin E. Moore, Haris Volos, Luke Yen, Mark D. Hill,
Michael M. Swift, and David A. Wood. Performance pathologies in hardware
transactional memory. IEEE Micro, 28(1):32–41, Jan/Feb 2008.

[6] Jayaram Bobba, Weiwei Xiong, Luke Yen, Mark D. Hill, and David A. Wood.
StealthTest: Low overhead online software testing using transactional memory.
In Proc. of the 18th Intnl. Conf. on Parallel Architectures and Compilation
Techniques, September 2009.

[7] Shimin Chen, Babak Falsafi, Phillip B. Gibbons, Michael Kozuch, Todd C.
Mowry, Radu Teodorescu, Anastassia Ailamaki, Limor Fix, Gregory R.
Ganger, Bin Lin, and Steven W. Schlosser. Log-based architectures for general-
purpose monitoring of deployed code. In ASID ’06: Proceedings of the 1st
workshop on Architectural and system support for improving software depend-
ability, pages 63–65, New York, NY, USA, 2006. ACM.

[8] Shimin Chen, Michael Kozuch, Theodoros Strigkos, Babak Falsafi, Philip B.
Gibbons, Todd C. Mowry, Vijaya Ramachandran, Olatunji Ruwase, Michael
Ryan, and Evangelos Vlachos. Flexible hardware acceleration for instruction-
grain program monitoring. In Proc. of the 35th Annual Intnl. Symp. on Com-
puter Architecture, Jun 2008.

[9] Cliff Click, Gil Tene, and Michael Wolf. The pauseless gc algorithm. In VEE
’05: Proc. of the 1st Intnl. Conference on Virtual Execution Environments,
pages 46–56, 2005.

[10] Joseph Devietti, Brandon Lucia, Luis Ceze, and Mark Oskin. Dmp: Deter-
minisitc shared memory multiprocessing. In Proc. of the 14th Intnl. Conf.
on Architectural Support for Programming Languages and Operating Systems,
March 2009.

5



[11] Sudheendra Hangal, Durgam Vahia, Chaiyasit Manoit Juin-Yeu Joseph Lu,
and Shridhar Narayanan. Tsotool: A program for verifying memory systems
using the memory consistency model. In Proc. of the 31st Annual Intnl. Symp.
on Computer Architecture, June 2004.

[12] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: Architectural
support for lock-free data structures. In Proc. of the 20th Annual Intnl. Symp.
on Computer Architecture, pages 289–300, May 1993.

[13] James R. Larus and Ravi Rajwar. Transactional Memory. Morgan & Claypool
Publishers, 2007.

[14] Shan Lu, Joseph Tucek, Feng Qin, and Yuanyuan Zhou. Avio: detecting
atomicity violations via access interleaving invariants. In Proc. of the 12th
Intnl. Conf. on Architectural Support for Programming Languages and Oper-
ating Systems, pages 37–48, October 2006.

[15] Milo M. K. Martin, Mark D. Hill, and David A. Wood. Token coherence:
Decoupling performance and correctness. In Proc. of the 30th Annual Intnl.
Symp. on Computer Architecture, pages 182–193, June 2003.

[16] Sun Microsystems. Opensparc: World’s first free 64-bit cmt microprocessors.
http://www.opensparc.net/opensparc-t2/index.html.

[17] David A. Moon. Architecture of the symbolics 3600. In ISCA ’85: Proceedings
of the 12th annual international symposium on Computer architecture, pages
76–83, Los Alamitos, CA, USA, 1985. IEEE Computer Society Press.

[18] Kevin E. Moore, Jayaram Bobba, Michelle J. Moravan, Mark D. Hill, and
David A. Wood. Logtm: Log-based transactional memory. In Proc. of the
12th IEEE Symp. on High-Performance Computer Architecture, pages 258–
269, February 2006.

[19] C. Murphy, G. Kaiser, and M. Chu. Towards in vivo testing of software appli-
cations. Technical Report cucs-038-07, Columbia University, 2007.

[20] Feng Qin, Shan Lu, and Yuanyuan Zhou. Safemem: Exploiting ECC-memory
for detecting memory leaks and memory corruption during production runs. In
Proc. of the 11th IEEE Symp. on High-Performance Computer Architecture,
February 2005.

[21] Burton J. Smith. Architecture and applications of the hep multiprocessor com-
puter system. Society of Photo-optical Instrumentation Engineers, 298:241–
248, August 1981.

[22] Joseph Tucek, Weiwei Xiong, and Yuanyuan Zhou. Efficient online validation
with delta execution. In Proc. of the 14th Intnl. Conf. on Architectural Support
for Programming Languages and Operating Systems, March 2009.

6



[23] G. Venkataramani, B. Roemer, Y. Solihin, and M Prvulovic. Memtracker:
Efficient and programmable support for memory access monitoring and de-
bugging. In Proc. of the 13th IEEE Symp. on High-Performance Computer
Architecture, pages 273–284, February 2007.

[24] Wisconsin Multifacet GEMS Simulator. http://www.cs.wisc.edu/gems/.

[25] Greg Wright, Matthew L. Seidi, and Mario Wolczko. An object-aware mem-
ory architecture. Technical Report TR-2005-143, Sun Microsystems, February
2005.

[26] Luke Yen, Jayaram Bobba, Michael R. Marty, Kevin E. Moore, Haris Volos,
Mark D. Hill, Michael M. Swift, and David A. Wood. LogTM-SE: Decoupling
hardware transactional memory from caches. In Proc. of the 13th IEEE Symp.
on High-Performance Computer Architecture, pages 261–272, February 2007.

[27] Pin Zhou, Feng Qin, Wei Liu, Yuanyuan Zhou, and Josep Torrellas. iwatcher:
Efficient architectural support for software debugging. In Proc. of the 31st
Annual Intnl. Symp. on Computer Architecture, pages 224–237, June 2004.

7


