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Choices

Question: Which model should I use?

Learning algorithm

SVM or random forests?

Parameters

# of trees in random forest?

Algorithm internals

Keep this rule or discard?

Answer: Evaluation

How well does the model predict new examples?
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Thesis Statement

Not all methods of generating thresholdless metrics are created equal,
and potential pitfalls and benefits accrue based on which methods are
chosen.

Specific contributions

Unachievable region in precision-recall (PR) space, Chapter 3
(Boyd, Santos Costa, Davis, and Page, ICML 2012)

Area under the PR curve estimation, Chapter 4
(Boyd, Eng, and Page, ECML 2013)

Differentially private evaluation, Chapter 5
(Boyd, Lantz, and Page, under review)
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Outline

1 Introduction

2 Evaluation Background

3 AUCPR Estimation

4 Unachievable Region

5 Differentially Private Evaluation

6 Conclusion
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Binary Classification

Dichotomous Classifiers

Label
Id Actual Predicted
1 Positive Positive
2 Positive Negative
3 Positive Positive
4 Negative Positive
5 Negative Negative
6 Negative Negative

True positive (tp)

True negative (tn)

False positive (fp)

False negative (fn)
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Confusion Matrix

Actual
Predicted Positive Negative
Positive tp fp
Negative fn tn

Total n m

Notation

n: # of positive examples

m: # of negative examples

π = n
n+m

: proportion of
positives (skew)

Metrics

Accuracy: tp+tn
n+m

True positive rate: tp
n

False positive rate: fp
m

Precision: tp
tp+fp
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Binary Classification

Scoring Classifier

Actual
Id Label Score
1 Positive 1.0
2 Positive 0.8
3 Negative 0.7
4 Positive 0.6
5 Negative 0.5
6 Negative 0.3
7 Positive 0.2
8 Negative 0.1

Actual
Predicted Positive Negative
Positive 2 0
Negative 2 4

Total 4 4

Accuracy = 6
8

TPR = 2
4

FPR = 0
4

Precision = 2
2
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3 Negative 0.7
4 Positive 0.6
5 Negative 0.5
6 Negative 0.3
7 Positive 0.2
8 Negative 0.1

Actual
Predicted Positive Negative
Positive 4 3
Negative 0 1

Total 4 4

Accuracy = 5
8

TPR = 4
4

FPR = 3
4

Precision = 4
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Thresholdless Metrics

Evaluate model without choosing a specific threshold

Receiver operating characteristic (ROC) curves (Provost,
Fawcett, et al., 1997)

Area under the ROC curve (AUCROC)

Precision-recall (PR) curves (V Raghavan, Bollmann, and Jung,
1989)

Area under the PR curve (AUCPR)

Lift curves (Piatetsky-Shapiro and Masand, 1999)

Cost curves (Drummond and Holte, 2006)

Brier curves (Ferri, Hernández-Orallo, and Flach, 2011)
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ROC Curves
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PR Curves

(1,0.1) all positive

(1,1) ideal

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
recall

pr
ec

is
io

n

Perfect Model

Good Model

Random Model

Mitigating the Risks of Thresholdless Metrics Evaluation Background August 1, 2014 11



Outline

1 Introduction

2 Evaluation Background

3 AUCPR Estimation

4 Unachievable Region

5 Differentially Private Evaluation

6 Conclusion
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Empirical PR Points

5 positives (n)

15 negatives (m)

π = 0.25

score true label
1.00 Positive
0.95 Negative
0.90 Negative
0.85 Positive
0.80 Positive
0.75 Negative
0.70 Negative
0.65 Negative
· · ·
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The Challenge

Given
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AUCPR = 0.5

Calculate confidence
interval:
[0.4, 0.6]

Our Goal
Empirically evaluate point estimates and confidence intervals of
AUCPR to identify their differences and recommend best practices.
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AUCPR Estimators

Many existing methods to estimate AUCPR:
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AUCPR Estimators

Many existing methods to estimate AUCPR:
(Manning, P Raghavan, and Schütze, 2008)
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AUCPR Estimators

Many existing methods to estimate AUCPR:
(Davis and Goadrich, 2006)
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AUCPR Estimators

Many existing methods to estimate AUCPR:
(Brodersen et al., 2010)
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Estimator Desiderata

Unbiased: expected estimate is equal to true AUCPR

Robust to different output distributions

Robust to various skews (π) and data set sizes (n + m)
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Simulation Setup

Assume example scores are
drawn from known distributions

Similar to binormal analysis
on ROC curves (Pepe, 2004;
Bamber, 1975)
Allows calculation of true PR
curve and AUCPR

Analyzed distributions

Binormal
Bibeta
Offset uniform

Additional parameters

# of examples (n + m)
skew (π = 0.1)
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AUCPR Estimator Results
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Confidence Intervals

Definition
A (1− α)% confidence interval is an interval that contains the true
value with probability at least (1− α).

Desiderata

Valid - at least (1− α)% coverage

Prefer narrower (but must still be valid)

Robust to different output distributions

Robust to various skews (π) and data sizes (n + m)
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AUCPR Confidence Intervals

Empirical

Cross-validation: compute interval using mean and variance of
K estimates from K-fold cross-validation
Bootstrap: choose interval that contains (1− α)% of empirical
distribution of AUCPR estimates

Parametric

Binomial: θ̂ ± Φ1−α/2

√
θ̂(1−θ̂)

n

θ̂ is the estimated AUCPR

Logit:
[

eη̂−Φ(1−α/2)τ̂

1+eη̂−Φ(1−α/2)τ̂ ,
eη̂+Φ(1−α/2)τ̂

1+eη̂+Φ(1−α/2)τ̂

]
η̂ = log θ̂

1−θ̂
, τ̂ = (nθ̂(1− θ̂))−1/2
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AUCPR Confidence Interval Results
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AUCPR Estimator Results

binormal bibeta

offset uniform

1.0

1.1

1.2

1.3

1.4

0.98

1.00

1.02

1.04

1.06

0.85

0.90

0.95

1.00

1.05

100
(n=10)

1000
(n=100)

10000
(n=1000)

n + m

bi
as

 r
at

io

estimator

interp conv

upper trap

interp max

avg prec

lower trap

interp mean

interp med

binormal

Mitigating the Risks of Thresholdless Metrics AUCPR Estimation August 1, 2014 22



AUCPR Summary

Choice of AUCPR estimator and confidence interval is important

Particularly for small data sets

Recommended estimators

Lower trapezoid
Average precision
Interpolated median

Recommended confidence intervals

Binomial
Logit
What about cross-validation and bootstrap?

Converge to proper coverage, but from below
Problematic for small data sets and low numbers of positive
examples
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5 Differentially Private Evaluation
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Unachievable Region in PR Space
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Attacks on Evaluation Metrics

Can evaluation metrics disclose private information?

Yes!

Disclosive methods

Empirical ROC curves (Matthews and Harel, 2013)
AUCROC (Section 5.2)

Information leaked

Class label
Score range from model (e.g., risk of disease)
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Need for Privacy

Large databases of patient information

Regulations and expectations of privacy
Enormous potential gains from data
mining
How to allow useful interaction with a
database while preserving privacy?

Privacy frameworks

k-anonymity (Sweeney, 2002)
Differential privacy (Dwork, 2006)
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Privacy Blueprint

Patient
Hospital

(Trusted)

?

Data Miner
(Untrusted)

data

query

output
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Differential Privacy (Dwork, 2006)

Goal
Small added risk of adversary learning (private) information about an
individual if his or her data is in the private database versus not in
the database.

Informal Definition
Query output does not change much between neighboring databases.
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Differential Privacy: Formally

Definition (Dwork, 2006)

For any input database D, a randomized algorithm
f ′ : D→ Range(f ′) is (ε, δ)-differentially private iff for any
S ⊂ Range(f ) and any database D ′ ∈ D where d(D,D ′) = 1,

Pr(f ′(D) ∈ S) ≤ eε Pr(f ′(D ′) ∈ S) + δ

d(D,D ′) - number of rows that differ between D and D ′

ε and δ are the privacy budget

Smaller means more private
If δ = 0, known as ε-differential privacy
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Obtaining Differential Privacy

Perturbation (Dwork, 2006)

Calculate correct answer: f (D)
Add noise: f (D) + η

Soft-max (McSherry and Talwar, 2007)

Quality function: q(D, s)
Exponential weighting: exp(εq(D, s))

Extensions

Propose-test-release (Dwork and Lei, 2009)
β-smooth sensitivity (Nissim, Raskhodnikova, and Smith, 2007)
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Global Sensitivity

Definition (Dwork, 2006)

Given a function f : D→ R, the global sensitivity of f is,

GS f = max
D,D′∈D:d(D,D′)=1

|f (D)− f (D ′)|

Worst case

Once D and f are chosen, global sensitivity is fixed
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Laplace Noise

Theorem (Dwork, 2006)

Given a function f : D→ R, the computation

f ′(D) = f (D) + Laplace

(
GSf

ε

)
guarantees ε-differential privacy.
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Local Sensitivity

Example
Median

For most databases, barely affected by changing a value

But worst case change is large

Definition (Nissim, Raskhodnikova, and Smith, 2007)

Given a function f : D→ R, the local sensitivity of f at D ∈ D is

LSf (D) = max
D′∈D:d(D,D′)=1

|f (D)− f (D ′)|.
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Using Local Sensitivity

Local sensitivity is not a direct replacement for global sensitivity

Definition (Nissim, Raskhodnikova, and Smith, 2007)

For β > 0, a function S : D→ R+ is a β-smooth upper bound on the
local sensitivity of f iff it satisfies:

∀D ∈ D : S(D) ≥ LSf (D) and

∀D,D ′ ∈ D, d(D,D ′) = 1 : S(D) ≤ eβS(D ′)

A β-smooth upper bound ensures neighboring databases will use
a similar scale of noise

β-smooth sensitivity is the smallest such function

Modified perturbation algorithms can use β-smooth sensitivity
Laplace noise provides (ε, δ)-differential privacy
Cauchy noise provides ε-differential privacy
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Privacy Applications

Existing applications of differential privacy

Consistent marginals (Barak et al., 2007)

PAC learning (Kasiviswanathan et al., 2011)

Learning algorithms (Blum et al., 2005; Nissim, Raskhodnikova,
and Smith, 2007; Dwork and Lei, 2009; Zhang et al., 2012)

Auctions (McSherry and Talwar, 2007)

Our Application: Evaluation
No previous usage of differential privacy specifically to the release of
evaluation metrics after testing a model on a private database.
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Private Evaluation Setup

Patient
Hospital

(Trusted)

?ε, δ

Data Miner
(Untrusted)

data

model

AUCROC randomized
AUCROC

Private metrics

Accuracy is a simple application of Laplace noise

AUCROC (Section 5.4)

Average precision (Section 5.5)
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Local Sensitivity of AUCROC

Theorem

LSAUCROC(n,m) =

{
1

min(n,m)
if n > 1 and m > 1

1 otherwise

n - number of positive examples in test set

m - number of negative examples in test set
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β-smooth Sensitivity of AUCROC
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Private Evaluation Experiments

Adult data set (Bache and Lichman, 2013)

Predict yearly income greater or less than $50,000
Features: capitol gain/loss, work status

Procedure

Train logistic regression model on half of the data
Calculate private metric on subsets of other half
Compare with non-private metric (RMSE)
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Private AUCROC Results
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Private Evaluation Summary

Privacy of test sets

Necessary due to demonstrated attacks on ROC curves
Just as important as privacy of train sets

Private evaluation metrics

Confusion matrix based metrics (accuracy, recall, etc.)
AUCROC
Average precision
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Outline

1 Introduction

2 Evaluation Background

3 AUCPR Estimation

4 Unachievable Region

5 Differentially Private Evaluation

6 Conclusion
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Future Work

Unachievable region in PR space

PR curve and AUCPR aggregation across different skews

AUCPR estimation

Less biased AUCPR estimators for small data sets
Tighter parametric AUCPR confidence intervals

Differentially private evaluation

Private ROC and PR curves
Private cross-validation mechanisms

Mitigating the Risks of Thresholdless Metrics Conclusion August 1, 2014 45



Thesis Restatement

Not all methods of generating thresholdless metrics are created equal,
and potential pitfalls and benefits accrue based on which methods are
chosen.
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Specific Contributions

Unachievable region in PR space

Recommendations

Show unachievable region in PR
curve plots

Report skew with PR metrics
(PR curve, AUCPR, F1)

Be aware of changing skew and
aggregating from different skews
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Specific Contributions

AUCPR estimators and confidence intervals

Recommendations

Choose estimator and interval
methods carefully based on task

Default to average precision,
lower trapezoid, or interpolated
median estimators

Default to binomial and logit
confidence intervals

Be aware of the tendencies of
bootstrap and cross-validation
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Specific Contributions

Differentially private evaluation

Recommendations

Be aware that evaluation metrics
can disclose private information

Use private versions of evaluation
algorithms

Accuracy, sensitivity,
specificity, etc.
AUCROC
Average precision
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Thank You

Questions?
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ROC/PR Space Interpolation
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PR Space Interpolation Theorem

Theorem (Boyd, Eng, and Page, 2013)

For two points, (r1, p1) and (r2, p2), in PR space, the interpolated
curve and r ′ is

p′ =
r ′

ar ′ + b

and the area under the interpolated curve between r1 and r2 is

ar2 − b log(ar2 + b)− ar1 + b log(ar1 + b)

a2

where

a = 1 +
(1− p2)r2
p2(r2 − r1)

− (1− p1)r1
p1(r2 − r1)

b =
(1− p1)r1

p1
− (1− p2)r1r2

p2(r2 − r1)
+

(1− p1)r 2
1

p1(r2 − r1)

Mitigating the Risks of Thresholdless Metrics Backup Slides August 1, 2014 58



AUCPR Estimator Results by Skew
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AUCPR Confidence Interval Widths
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AUCPR Confidence Interval Locations
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Bounded versus Unbounded

Differential Privacy
Output does not change much between neighboring databases.

Bounded: replace value of exactly one row

Unbounded: add or remove exactly one row

(Kifer and Machanavajjhala, 2011)
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β-smooth Sensitivity

Definition (Nissim, Raskhodnikova, and Smith, 2007)

For β > 0, the β-smooth sensitivity of f is

S∗f ,β(D) = max
D′∈D

LSf (D ′)e−βd(D,D′)
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Differential Privacy using β-smooth Sensitivity

Theorem (Nissim, Raskhodnikova, and Smith, 2007)

Let f : D→ R be any real-valued function and let S : D→ R be the
β-smooth sensitivity of f , then

1 If β ≤ ε
2(γ+1)

and γ > 1, the algorithm

f ′(D) = f (D) + 2(γ+1)S(D)
ε

η, where η is sampled from the
distribution with density h(z) ∝ 1

1+|z|γ , is ε-differentially private.
Note that when γ = 2, η is drawn from a standard Cauchy
distribution.

2 If β ≤ ε
2 ln( 2

δ
)

and δ ∈ (0, 1), the algorithm

f ′(D) = f (D) + 2S(D)
ε
η, where η ∼ Laplace(1), is

(ε, δ)-differentially private.
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AUCROC Attack Results
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Local Sensitivity of Average Precision

Theorem

LSAP =

{
max

(
log(n+1)

n , 9+log(n−1)
4(n−1)

)
+ max

(
log(n+1)

n , 9+log n
4n

)
if n > 1

1 if n ≤ 1

n - number of positive examples in test set
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AP Attack Results
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Unachievable Region Theorems

Theorem (Achievable Points)

An achievable point in PR space with precision p and recall r must
satisfy

p ≥ πr

1− π + πr

where π = n
n+m

is the skew.
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Unachievable Region Theorems

Theorem (Minimum AUCPR)

The area of the unachievable region in PR space and the minimum
AUCPR, for skew π, is

AUCPRMIN = 1 +
(1− π) ln(1− π)

π
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Unachievable Region Theorems

Theorem (Minimum AP)

The minimum AP, for a data set with n positive and m negative
examples is

APMIN =
1

n

n∑
i=1

i

i + m
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