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abstract

This dissertation concerns machine learning evaluation: the process of
assessing an algorithm’s or model’s performance on a test set. Despite
being an integral part of machine learning, evaluation is often overlooked
and taken for granted. Through investigation of the privacy and properties
of thresholdless evaluation methods, this dissertation provides a better
understanding of thresholdless measures and demonstrates the dangers
of improper application of evaluation methods.

Precision-recall (PR) curves provide an assessment of a scoring model
over a range of decision thresholds. PR curves are often preferred over
the more well-known ROC curves in highly skewed tasks. We prove that
not all points in PR space are achievable. Thus, there is a region that a PR
curve cannot go through. The fact that this region changes depending on
the test set leads to several important considerations and potential pitfalls
for machine learning practitioners, which are discussed.

An additional concern when performing PR analysis is precisely how
the PR curve or the area under it is calculated. A number of methods to
calculate point estimates and confidence intervals of the area under the
PR curve exist in the literature, but there has been minimal investigation
into their performance. This dissertation includes an extensive empirical
evaluation of these existing methods. The results suggest that average pre-
cision, lower trapezoid, and interpolated median are the most robust point
estimates. For confidence intervals, the commonly used cross-validation
and bootstrap approaches do not provide the advertised coverage for small
data sets and should be used with caution. We show that easily calculable
parametric confidence intervals do provide the guaranteed coverage.

Differential privacy provides powerful guarantees that individuals in-
cur minimal additional risk by including their personal data in a database.
Existing work has focused on producing differentially private models,
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counts, and histograms. Nevertheless, even with a differentially private
model, directly reporting the model’s performance on a database has the
potential for disclosure. Thus, differentially private computation of eval-
uation metrics for machine learning is an important research area. This
dissertation presents effective mechanisms for releasing area under the
ROC curve and average precision.
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1 introduction

Evaluating learning algorithms is a critical aspect of machine learning.
The machine learning community is largely focused on prediction, so
evaluating a model on a separate test set where the correct predictions are
known is the gold standard for assessing algorithm performance. The test
sets used are as large as possible, given the available resources. Sizes range
from tens or hundreds to millions of examples. Therefore, some process
of summarizing performance on the test set is required. These summaries
to evaluate a model take many forms, from root-mean-square error for
real-valued predictions to accuracy and ROC curves for classification tasks.

We will focus on binary classification, where the task is to discriminate
between two categories. These categories or labels are often referred to
as positive and negative. If a model outputs one of the two labels as the
prediction, known as a dichotomous output or model, a simple summary
for evaluating a model’s performance is accuracy: the proportion of the
predicted labels that match the true labels. While an attractive approach
due to its simplicity, using accuracy alone suffers from several drawbacks
(Provost et al., 1998).

One of the drawbacks of accuracy is that it makes no distinction be-
tween true positives and true negatives or between false positives and false
negatives (defined in Table 2.1). While true positives and true negatives
both describe a correct prediction, obtaining the correct prediction may be
more or less important for one category compared to the other. Similarly,
the type of misclassification may be relevant. A false negative may be
much worse for a particular task than a false positive would be. Accuracy
only makes a distinction between correct and incorrect predictions and
ignores the further divisions of false positive versus false negative and true
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positive versus true negative. So in tasks where the mislabeling costs (cost
of false positive compared to cost of false negative) are different, accuracy
is not an ideal measure.

Since the distinction between false positives and false negatives can be
critical, another common way to summarize a model’s performance is by
how many false positives, false negatives, true positives, and true nega-
tives a model predicts for a test set. These counts are typically presented in
a confusion matrix (also known as a contingency table or, for binary classifi-
cation in particular, a 2× 2 table). The confusion matrix layout used in this
document is given in Table 2.2. A confusion matrix provides a compact
summary of a model’s predictions and contains sufficient information to
calculate many other evaluation measures, e.g., accuracy, precision, recall,
false positive rate (defined in Table 2.3).

A confusion matrix gives all the information required for most analyses
of dichotomous outputs. However, many models assign a probability
that each example is of a particular class (often the positive class). More
generally, a scoring model simply outputs a real number, with larger values
indicating the example is more likely to be of a particular class. If analyses
using accuracy or other measures derived from a confusion matrix are
desired, not only must such a model be learned, but a threshold for the
decision boundary must also be selected. There are numerous methods to
choose a threshold (Elkan, 2001; Hernández-Orallo et al., 2013), but here
we are primarily interested in a group of evaluation techniques that do
not require the selection of a specific threshold.

Instead, these techniques provide a summary of an algorithm’s perfor-
mance over a range of possible thresholds. We call this type of analysis
thresholdless to distinguish it from dichotomous analysis of a single confu-
sion matrix. The most well-known thresholdless method is ROC analysis
(Provost et al., 1997; Pepe, 2004; Fawcett, 2006), but there are other tech-
niques that analyze many thresholds simultaneously, e.g., precision-recall
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curves (Raghavan et al., 1989; Manning and Schütze, 1999), lift curves
(Piatetsky-Shapiro and Masand, 1999; Giudici, 2003), cost curves (Drum-
mond and Holte, 2006), Brier curves (Ferri et al., 2011). While these thresh-
oldless measures are often preferred over accuracy (Provost et al., 1998),
their use accrues additional risks that many people are not aware of, in-
cluding mistaken intuitions about results across different tasks, combining
multiple results, and high variance and bias of certain estimates.

The aforementioned metrics are always calculated by applying a model
to some test set of labeled data. It has long been known that machine
learning models can reveal information about the data used to train them.
In the extreme case, a nearest neighbor model might store the data set
itself, but more subtle disclosures occur with all types of models. Even
small changes in the training set can produce detectable changes in the
model. This fact has motivated work to preserve the privacy of the training
set by making it difficult for an adversary to discern information about
the training data. One popular framework is differential privacy (Dwork,
2006), which sets bounds on the amount of change that can occur when
any one training data set row is modified.

Several authors have modified existing machine learning algorithms
such that the models satisfy differential privacy (Chaudhuri and Mon-
teleoni, 2008; Friedman and Schuster, 2010; Zhang et al., 2012). In doing so,
the models can be released to the public, and the privacy risk to the owners
of the rows in the database is tightly bounded, even if the adversary has
auxiliary information. However, these protections only cover the training
data set, not any latter uses of the model on other data sets.

Consider a scenario in which multiple hospitals are collaborating to
predict disease onset but are prevented by policy or law from sharing their
data with one another. They may instead attempt to produce a model
using data from one institution and test the model at other sites in order
to evaluate how well the model generalizes. The institution generating the
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model might use a differentially private algorithm to create the model in
order to protect their own patients and then distribute the model to the
other hospitals. These hospitals in turn run the model on their patients and
produce an evaluation of the model’s performance, such as the area under
the ROC curve (AUCROC). The test data sets at the latter institutions are
not covered by any privacy protection that might have been used during
training. The problem remains even if the training and test data sets exist
at the same institution. While releasing an evaluation metric may seem to
be a limited potential privacy breach, it has been demonstrated that data
about patients can be reconstructed from ROC curves if the adversary has
access to a subset of the test data (Matthews and Harel, 2013).

Thus, an additional risk (though it is more general than just thresh-
oldless evaluation) is the potential leakage of private information, even
through the summarization of a thresholdless evaluation method. This
dissertation presents, discusses, and makes proposals to address these
risks of mistaken intuitions about results, high variance and bias, and
privacy for thresholdless metrics.

1.1 Thesis Statement

Evaluating models is an integral aspect of machine learning that is too
often taken for granted. Of particularly wide use in machine learning
are thresholdless methods such as ROC curves, areas under the ROC
curve (AUCROC), precision-recall (PR) curves, areas under the PR curve
(AUCPR), the closely related mean average precision (MAP), and error
bounds on all of these. This dissertation provides evidence for the follow-
ing thesis: Not all methods of generating thresholdless metrics are created equal,
and potential pitfalls and benefits accrue based on which methods are chosen.
Specific contributions that follow from the evidence provided include:

• The existence of an unachievable region in PR space that varies
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with class skew, which implies that AUCPR and MAP estimates and
comparisons of these for different methods should take into account
class skew.

• Some widely-used methods for computing confidence bounds on
AUCPR and MAP are substantially better than others in a way not
previously recognized.

• Publication of AUCROC, AUCPR, and other related metrics com-
puted on private data can violate privacy under a precise, widely-
used definition, but algorithms exist to add noise in a way that main-
tains utility of the estimates while providing guaranteed privacy
protection.

1.2 Contributions

While there have been several papers characterizing PR curves (Davis
and Goadrich, 2006; Goadrich et al., 2006; Clémençon and Vayatis, 2009),
we expand the theoretical and empirical understanding of PR space and
curves in Chapters 3 and 4. Chapter 3 concerns the unachievable region
of PR space.

• We prove theorems about the location and size of the unachievable
region.

• We propose AUCNPR - a modification of AUCPR to account for the
unachievable region.

• We discuss the impact of the unachievable region on cross-validation,
aggregation across multiple tasks, downsampling, and Fβ score.

In Chapter 4, we investigate methods of estimating AUCPR and providing
confidence intervals.
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• We perform an extensive empirical analysis of the performance of dif-
ferent point estimates and confidence interval methods for AUCPR
on simulated data.

• We find that the AUCPR estimators behave quite differently and rec-
ommend lower trapezoid, average precision, or interpolated median
as three estimators with reasonable performance.

• We find that the commonly used cross-validation and bootstrap
approaches to confidence intervals are not satisfactory on small data
sets and recommend using binomial or logit intervals instead.

In the final section, we turn to the question of protecting the privacy of
the test set in Chapter 5.

• We discuss the need for differential privacy in evaluation, not just
for training or data set release.

• We describe algorithms for differentially private AUCROC and aver-
age precision.

• We show that these algorithms provide both utility and privacy
through experiments on two real-world data sets.
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2 background

We review the foundations of evaluation of model’s with dichotomous
outputs in Section 2.1. Moving to thresholdless measures, we describe and
discuss related work on ROC analysis in Section 2.2 and the closely related
PR analysis in Section 2.3. Finally, we provide an overview of differential
privacy in Section 2.4.

2.1 Confusion Matrices and Related Metrics

This work focuses on evaluation for a binary classification task on a test set
with N total examples. We refer to the two classes of examples as positive
and negative, where the positive class often represents the item of interest.
For example, in an information retrieval task, the relevant documents
would be labeled positive and the irrelevant ones labeled negative. An
important property of a test set is the skew, denoted by π, which is the
proportion of positive examples. Following Bamber (1975), we denote
the number of positive examples by n (not to be confused with the total
number of examplesN) and the number of negative examples bym. Thus,
n+m = N and π = n

N
.

If a model outputs one of two possible values, we say the model has
dichotomous outputs. With two possible predicted values, the predicted and
actual labels can combine in four ways, shown in Table 2.1. The number of
occurrences of each type can be compactly described in a confusion matrix
(also known as a contingency table or 2×2 table), as in Table 2.2. A variety
of performance measures for dichotomous models can be calculated from
a confusion matrix. Such measures used in this document, as well as some
others included for completeness, are defined in Table 2.3.
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Table 2.1: The four possible results of a model with dichotomous outputs
for a binary classification task.

Predicted Actual Name Variable
Positive Positive True Positive tp
Negative Positive False Negative fn
Positive Negative False Positive fp
Negative Negative True Negative tn

Table 2.2: Confusion matrix: a concise presentation of the number of true
positives, false positives, false negatives, and true negatives of a model on
some data set. We use the row to denote the prediction and the column to
denote the actual label.

Actual
Predicted Positive Negative
Positive tp fp
Negative fn tn
Total n m

Dichotomous outputs, for which a model must make a hard choice
between positive and negative, are the simplest type of output for a binary
classification task. However, most models, including logistic regression,
SVMs, and Bayesian networks, internally calculate a score or probability
for each example. Then a decision threshold is used to predict positive if
the score is larger than the threshold and negative if the score is smaller.
Since the choice of decision threshold has an enormous impact on the
confusion matrix produced, in the next section we turn to ROC analysis.
ROC analysis is a thresholdless evaluation method that does not require
a threshold to be chosen and instead simultaneously evaluates a model

8



Table 2.3: Definitions of several machine learning measures that can be
calculated from a confusion matrix.

Name Formula Description

Accuracy tp+tn
tp+tn+fp+fn Proportion of all examples

correctly labeled

True Positive Rate
TPR
Sensitivity
Recall

r =
tp

tp+fn Proportion of positive
examples correctly labeled
positive

False Positive Rate
FPR
1 - Specificity

fp
fp+tn Proportion of negative

examples incorrectly labeled
positive

Specificity
1 - FPR

tn
fp+tn Proportion of negative

examples correctly labeled
negative

Precision
Positive Predictive Value
PPV

p =
tp

tp+fp Proportion of positively
labeled examples that are
actually positive

Negative Prediction Value
NPV

tn
tn+fn Proportion of negatively

labeled examples that are
actually negative

F1 score 2pr
p+r

Harmonic mean of precision
and recall

Fβ score (1+β2)pr
β2p+r

Weighted combination of
precision and recall
(generalization of F1 score)

9



over all possible thresholds.

2.2 ROC Analysis

Receiver operating characteristic (ROC) curves were originally developed
for signal detection theory in the 1940s. Most famously, ROC curves were
used to evaluate the ability of radar receivers to detect enemy aircraft
during World War II (Lobo et al., 2008). Subsequently, ROC curves have
been used in a variety of fields, including psychophysics (Green and Swets,
1966), evaluation of medical diagnostic tests (Swets and Pickett, 1982; Pepe,
2004), and machine learning (Provost et al., 1998; Flach, 2003; Fawcett,
2006).

ROC analysis summarizes a model’s performance using the true posi-
tive rate, also known as sensitivity, and false positive rate, equivalent to 1 -
specificity (Fawcett, 2006). These two measures are frequently visualized
in ROC space. ROC space is the unit square ([0, 1]× [0, 1]) with false posi-
tive rate on the x-axis and true positive rate on the y-axis. The performance
of a model with dichotomous outputs can be visualized in ROC space as
a point, (x,y), where x is the false positive rate and y is the true positive
rate (defined in Table 2.3). Some notable points in ROC space include
(0, 0), where all examples are labeled negative; (1, 1), where all examples
are labeled positive; and the ideal point, (0, 1), where all examples are
correctly labeled. In general, a point is better the closer it is to the ideal
point at (0, 1), i.e., the higher and farther left it is.

ROC Curves

As we move from a model with dichotomous outputs to one with ordered
or real-valued outputs, we can create many different dichotomous models
by choosing different thresholds for splitting the ordered outputs into two
sets, one labeled positive and the other labeled negative. By connecting
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Figure 2.1: A sample ROC curve and the random guessing curve.

points from adjacent thresholds with a line, we obtain the ROC curve for
the model. Note that the thresholds that label all examples positive or all
examples negative are always possible, so an ROC curve should always
start at (0, 0) and end at (1, 1). See Figure 2.1 for a sample ROC curve with
annotations of the notable points in ROC space.
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ROC curves have a variety of properties that make them attractive for
evaluating binary classification. A model that randomly guesses (e.g., by
outputting a random value between 0 and 1 for each example) has an
expected ROC curve of a diagonal line with y = x. An ROC curve below
the line y = x indicates a model that is worse than random guessing. Thus,
ROC curves are typically above the diagonal, with the ideal curve going
from (0, 0) to (0, 1) to (1, 1).

ROC curves are insensitive to the prevalence of positive examples,
denoted by π = n

n+m
and often referred to as class skew in machine

learning. Changing the ratio of positive to negative examples does not
change the true or false positive rates. This can be a particularly useful
property when evaluating medical tests where the prevalence in the test
data, due to the sampling from case-control studies, may not match the
true prevalence.

Another critical property of ROC space is that it grants the ability to
linearly interpolate between two points. If two points, A and B, in ROC
space are achieved by two models, then any point on the line between A
and B can be achieved by a model that randomly chooses between the
output of A and B with the appropriate probability (Bamber, 1975). This
validates using the convex hull of an ROC curve or set of points in ROC
space as the maximum achievable ROC curve (Provost and Fawcett, 2001;
Davis and Goadrich, 2006; Fawcett and Niculescu-Mizil, 2007).

Area Under the ROC Curve

The area under the ROC curve is often used as a summary measure for
an ROC curve (Bamber, 1975; Hanley and McNeil, 1982; Pepe, 2000, 2004;
Fawcett, 2006). Area under the ROC curve is traditionally abbreviated
with AUC, but we will use AUCROC to distinguish the area under the
ROC curve from areas under other curves. AUCROC ranges from 0 for
the worst possible model to 1 for the ideal model. Random guessing has
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an expected AUCROC of 0.5.
AUCROC is a well-studied quantity in statistics. It can be estimated

using parametric assumptions on the ROC curve (Metz and Kronman, 1980;
Swets and Pickett, 1982) or nonparametrically with the Mann-Whitney
U-statistic (Hanley and McNeil, 1982). Additionally, there are hypothesis
tests for determining if two AUCROCs are significantly different using
the DeLong method (DeLong et al., 1988). Bamber (1975) demonstrates
an intriguing equivalence that underlies the relationship with the Mann-
Whitney U-statistic: AUCROC is equal to the probability that a model will
correctly order a randomly drawn positive and randomly drawn negative
example. Therefore, if the random variable X denotes the scores of positive
examples and Y denotes the scores of negative examples, then

AUCROC = P(X > Y) +
1
2
P(X = Y).

This characterization of AUCROC is binomial if there are no ties (such
as when X and Y have continuous distributions and thus P(X = Y) = 0)
and justifies the use of t-tests for comparing AUCROCs because, for large
sample sizes, AUCROC is approximately normally distributed (Bamber,
1975).

The relationship between AUCROC and the Mann-Whitney U-statistic
also provides a simple plug-in estimator for calculating AUCROC:

AUCROC =
1
nm

m∑
i=1

n∑
j=1

1[xi < yj] (2.1)

where xi for 1 6 i 6 m are the scores on the negative examples in the test
set and yj for 1 6 j 6 n are the scores on the positive examples. Note that
neither the xis nor the yjs must be ordered.
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ROC Analysis Drawbacks

ROC analysis is ubiquitous and well-understood; however, when one class
is rare, it can be misleading. The true positive rate and false positive rate
characterize performance on actual positive and actual negative exam-
ples separately. They compare true positives to false negatives and false
positives to true negatives, but do not make other critical comparisons
such as between true positives and false positives. In many applications, a
comparison between true positives and false positives may be even more
important than the true positive rate or the false positive rate.

For example, in a medical diagnosis task such as predicting if a mam-
mogram contains a malignant tumor or not, the precision and negative
predictive value (defined in Table 2.3) may be the most relevant measures
for a patient. Given that a patient has a mammogram that is predicted
to be malignant, she is most concerned about the likelihood that it is, in
fact, malignant. This is exactly what precision captures: the probability
of an actual positive given a positive label. When positives are scarce, as
is the case in mammography because malignant tumors are fortunately
rare, good performance on true positive rate and false positive rate do not
necessarily lead to good precision. When the positive class is rare, even
with a high true positive rate and a low false positive rate, the number of
false positives can still be much larger than the number of true positives.
This leads to low precision despite good results from ROC analysis. A
confusion matrix illustrating this phenomenon is given in Table 2.4. De-
spite obtaining a false positive rate of just 0.1 and a true positive rate of
0.9, the precision is only 0.08 because positive examples are rare (π = 0.01).
Therefore, other thresholdless methods are still of interest, particularly for
evaluating tasks with low prevalence.
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Table 2.4: Confusion matrix for a highly skewed data set with π = 0.01.
Using ROC analysis, this confusion matrix looks very good, with a false
positive rate of 0.1 and a true positive rate of 0.9. However, precision is
only 0.08, so the probability that a positively labeled example is actually
positive is only 0.08.

Actual
Predicted Positive Negative
Positive 90 990
Negative 10 8910
Total 100 9900

2.3 PR Analysis

Precision-recall (PR) analysis is similar to ROC analysis, but it uses pre-
cision and recall for the axes instead of the true and false positive rates.
PR space is defined by the unit square with recall on the x-axis and preci-
sion on the y-axis. As in ROC space, a confusion matrix maps to a single
point in PR space (with some corner cases when precision is undefined). A
model with ordered outputs produces a set of points that can be connected
to create a PR curve. The proper method of connecting two points in PR
space, however, is not linear interpolation.

Linear interpolation in PR space leads to overly optimistic PR curves
(Goadrich et al., 2006; Davis and Goadrich, 2006). To obtain the correct
interpolation in PR space, Davis and Goadrich (2006) noted that points
in PR space can be mapped to ROC space. The interpolation in PR space
can therefore be done by mapping to ROC space, performing a linear
interpolation there, and then mapping back to PR space. This produces
a nonlinear interpolation in PR space. A critical aspect of the mapping
between PR space and ROC space is that the class skew must be known. For
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a particular ROC curve, the corresponding PR curve changes depending
on the class skew. This nonlinear interpolation in PR space is investigated
further in Section 4.3.

Similar to ROC space, several properties of PR space are known. The
expected random guessing PR curve is a horizontal line with y = π. The
ideal point in PR space is (1,1) and a model that always assigns a positive
label obtains the point (1,π). See Figure 2.2 for a sample PR curve with
annotations on notable points in PR space. A model that labels everything
negative is a bit problematic because precision is undefined when recall
is 0. Loosely speaking, labeling everything negative can be thought of
as the point (0,1): no recall but perfect precision. However, in practice,
the precision at low recall is highly variable. At low recall, only a few
examples are labeled positive, and the precision depends heavily on the
exact number of false positives. Small perturbations in the data set, such
as removing an example that is predicted as a false positive, can greatly
change the precision. At the extreme, if the example with the largest score
is positive, then the PR curve starts at ( 1

n
, 1). But if that example is a

negative, then the PR curve starts at ( 1
n

, 0). This variability in the PR curve
at low recall leads some users of PR analysis to focus only on high recall
(Davis et al., 2005).

Finally, as with ROC curves, the area under the PR curve (AUCPR)
is often used as a summary statistic. For example, information retrieval
(IR) systems are frequently judged by their mean average precision, which
is closely related to the mean AUCPR over the queries (Manning et al.,
2008). Similarly, AUCPR often serves as an evaluation criterion for machine
learning approaches that are typically applied to highly-skewed data, such
as statistical relational learning (Kok and Domingos, 2010; Davis et al.,
2005; Sutskever et al., 2009; Mihalkova and Mooney, 2007) and information
extraction (Ling and Weld, 2010; Goadrich et al., 2006). Some algorithms,
such as SVM-MAP (Yue et al., 2007) and SAYU (Davis et al., 2005), explicitly
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Figure 2.2: A sample PR curve and the random guessing curve for a data
set with 10 negatives for every positive example (π = 0.09).

optimize the AUCPR of the learned model.
While sensitivity to class skew may be seen as a drawback to PR anal-

ysis, this sensitivity can highlight differences between models in highly
skewed data sets that are not as apparent in ROC analysis. A small change
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in an already low false positive rate has a minimal impact on ROC analy-
sis: the performance looks good regardless. But in a highly skewed task,
a small change in false positive rate can substantially change precision.
Figure 2.3 illustrates this using results from two algorithms on the same
test set. This test set, and the train set used to learn the models, is highly
skewed with π ≈ 0.01. In ROC space, the algorithms are nearly identical,
but the difference is more pronounced in PR space. Furthermore, a hy-
pothesis test does not find a statistically significant difference between the
AUCROCs for algorithm A and B (p = 0.30). But for AUCPR, a statisti-
cally significant difference is found with p < 0.01 (details are presented
in Table 2.5). Thus, PR analysis is often preferred to ROC analysis when
there is a large skew in the class distribution (Manning and Schütze, 1999;
Bunescu et al., 2005; Davis and Goadrich, 2006). A variety of machine
learning applications exhibit a large skew. In information retrieval, only a
few documents are relevant to a given query. In medical diagnoses, only a
small proportion of the population has a specific disease at any given time.
In relational learning, only a small fraction of the possible groundings of
a relation are true in a database. PR analysis is increasingly relevant for
machine learning as work in these highly skewed data sets continues to
grow.

2.4 Differential Privacy

Differential privacy is a framework that guarantees that the presence or
absence of an individual’s information in the database has little effect on
the output of an algorithm. Thus, an adversary can learn limited informa-
tion about any individual. More precisely, for any databases D,D ′ ∈ D,
let d(D,D ′) be the number of rows that differ between the two databases.
Differential privacy requires that the probability an algorithm outputs the
same result on any pair of neighboring databases (those with d(D,D ′) = 1)
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Figure 2.3: ROC curves and PR curves for two algorithms on the same test
set. The slight improvement of algorithm A over algorithm B seen in the
ROC curves is more pronounced in the PR curves. The PR curve also shows
that much room remains for improvement. These curves are drawn from
experiments on a medical data set where the task is to predict if a patient
will develop breast cancer within one year. The PR curve explicitly shows
that the threshold at which 90% of the malignant tumors are identified
(x = 0.9) provides only about 10% precision. That is, roughly 90% of the
patients receiving a malignant diagnosis will not actually develop breast
cancer in the next year!

is bounded by a constant ratio. There is not a consensus amongst the dif-
ferential privacy literature as to whether “neighboring” databases means
adding or removing a row, or just changing a row. This leads Kifer and
Machanavajjhala (2011) to distinguish between bounded differential pri-
vacy, where a neighboring database is obtained by changing the value of
exactly one row, and unbounded differential privacy, where a neighboring
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Table 2.5: AUCROC for the ROC curves in Figure 2.3(a) and AUCPR for
recall above 0.5 for the PR curves in Figure 2.3(b). The p-value is the result
of performing a two-tailed, paired t-test on the cross-validated folds to
test for statistically significant differences in AUCROC and AUCPR. Even
though the PR and ROC curves are derived from the same two algorithms
on the same test set, a statistically significant difference is detected in
AUCPR but not in AUCROC.

Algorithm AUCROC AUCPR
(r > 0.5)

A 0.948 0.123
B 0.944 0.101
p-value 0.30 < 0.01

database is obtained by adding or removing a row. In this dissertation, we
use the bounded differential privacy definition and henceforth will refer
to it simply as differential privacy, defined in Definition 2.1. Thus, D refers
to the set of all databases with the same number of rows, N.1

Definition 2.1 (ε-differential privacy (Dwork, 2006; Kifer and Machanava-
jjhala, 2011)). For any input database D, a randomized algorithm f : D →
Range(f) is ε-differentially private iff for any S ⊆ Range(f) and any database
D ′ where d(D,D ′) = 1,

Pr(f(D) ∈ S) 6 eε Pr(f(D ′) ∈ S) (2.2)

A commonly used relaxation of Definition 2.1 is (ε, δ)-differential pri-
vacy, in which an additive constant of δ is allowed in addition to the
multiplicative eε.

1The most precise notation would be DN, but we drop the superscript to simplify
notation since the size of the database should always be clear from the context.
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Definition 2.2 ((ε, δ)-differential privacy (Dwork, 2006)). For any input
database D, a randomized algorithm f : D → Range(f) is (ε, δ)-differentially
private iff for any S ⊆ Range(f) and any database D ′ where d(D,D ′) = 1,

Pr(f(D) ∈ S) 6 eε Pr(f(D ′) ∈ S) + δ (2.3)

The most common approach to ensure differential privacy is to perturb
the correct result. To determine how much perturbation is required, we
must compute the sensitivity of the function we want to privatize. Here,
sensitivity is defined as the largest difference between the output of any
pair of neighboring databases and not the performance metric tp

n
.

Definition 2.3 (Global sensitivity (Dwork, 2006)). Given a function f : D→
R, the global sensitivity of f is:

GSf = max
d(D,D ′)=1

|f(D) − f(D ′)| (2.4)

Using Laplace noise to perturb any real-valued query gives the follow-
ing differentially private method:

Theorem 2.4 (Laplace noise (Dwork, 2006)). Given a function f : D→ R, the
computation

f ′(D) = f(D) + Laplace

(
GSf

ε

)
(2.5)

guarantees ε-differential privacy.

A sequence of differentially private computations also ensures differen-
tial privacy. This is called the composition property of differential privacy
as stated in Theorem 2.5.
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Theorem 2.5 (Composition (Dwork et al., 2006)). Given a sequence of com-
putations f = f1,. . .,fk, with fi guaranteeing εi-differential privacy, then f is
(
∑k
i=1 εi)-differentially private.

Sometimes we wish to apply differential privacy to domains that are
not real-valued, but rather have a number of discrete outcomes. Here, it is
unclear how to effectively perturb the output. Instead, an appropriately
weighted soft-max called the exponential mechanism can be used.

Theorem 2.6 (Exponential mechanism (McSherry and Talwar, 2007)). Given
a quality function q : (D× Z)→ R that assigns a score to each outcome z ∈ Z,
an algorithm that outputs z with probability

Pr(z|D,q) ∝ exp
(
εq(D, z)

2∆q

)
(2.6)

is ε-differentially private.

McSherry and Talwar (2007) note that the exponential mechanism
is also applicable when Z is continuous. Indeed, using Laplace noise
as in Theorem 2.4 is an instance of the exponential mechanism where
q(D, r) = −|f(D) − r|.

The preceding approaches for obtaining differential privacy use the
worst-case, global sensitivity to scale the added noise. For some functions,
such as median, the global sensitivity may be large, but the difference
between outputs for most neighboring databases is quite small. This
motivates the work of Nissim et al. (2007) to explore uses of local sensitivity.

Definition 2.7 (Local sensitivity (Nissim et al., 2007)). Given a function
f : D→ R, the local sensitivity of f at D is

LSf(D) = max
d(D,D ′)=1

|f(D) − f(D ′)|. (2.7)
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Local sensitivity cannot be directly used to provide differential privacy
as the change in the noise scale can actually release information, but a
smooth upper bound can be used.

Definition 2.8 (β-smooth sensitivity (Nissim et al., 2007)). For β > 0, the
β-smooth sensitivity of f is

S∗f,β(D) = max
D ′∈D

LSf(D
′)e−βd(D,D ′) (2.8)

Using the β-smooth sensitivity and Cauchy-like or Laplace noise pro-
vides differential privacy as specified in the following theorem from Nis-
sim et al. (2007).

Theorem 2.9 (Calibrating Noise to Smooth Bounds on Sensitivity (Nissim
et al., 2007)). Let f : D→ R be any real-valued function and let S : D→ R be
the β-smooth sensitivity of f, then

1. If β 6 ε
2(γ+1) and γ > 1, the algorithm f ′(D) = f(D) + 2(γ+1)S(D)

ε
η,

where η is sampled from the distribution with density h(z) ∝ 1
1+|z|γ

, is
ε-differentially private. Note that when γ = 2, η is drawn from a standard
Cauchy distribution.

2. If β 6 ε

2 ln( 2
δ )

and δ ∈ (0, 1), the algorithm f ′(D) = f(D) + 2S(D)
ε
η, where

η ∼ Laplace(1), is (ε, δ)-differentially private.
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3
unachievable region in
precision-recall space and
its effect on empirical
evaluation

The material in this chapter was published in Boyd et al. (2012).

3.1 Introduction

With the increased usage of PR curves and AUCPR, the differences be-
tween PR analysis and ROC analysis must not be forgotten. PR curves
and AUCPR are not a simple substitute for ROC curves and AUCROC in
skewed domains. PR curves and ROC curves have different properties,
summarized in Sections 2.2 and 2.3, such as the high variability of PR
curves at low recall. Additionally, for a given ROC curve, the correspond-
ing PR curve varies with class skew. A related and previously unproven
distinction between the two types of curves is that, while any point in ROC
space is achievable, not every point in PR space is achievable. Specifically,
for a given data set, it is possible to construct a confusion matrix that
corresponds to any (false positive rate, true positive rate) pair, but it is not
possible to do this for every (recall, precision) pair.1

We show that this distinction between ROC space and PR space has
major implications for the use of PR curves and AUCPR in machine learn-
ing. The foremost is that the unachievable points define a minimum PR

1To be strictly true in ROC space, fractional counts for tp, fp, fn, and tn must be
allowed. The fractional counts can be from a weighted data set or integer counts in an
expanded data set.
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curve. The area under the minimum PR curve constitutes a portion of
AUCPR that any algorithm, no matter how poor, is guaranteed to obtain
“for free.” Figure 3.1 illustrates this phenomenon. We prove that the size
of the unachievable region is only a function of class skew and has a simple,
closed form.

The unachievable region can influence algorithm evaluation and even
behavior in many ways. Even for evaluations using F1 score, which only
consider a single point in PR space, the unachievable region has subtle
implications. When averaging AUCPR over multiple tasks (e.g., target
predicates in statistical relational learning or queries in information re-
trieval), the area under the minimum PR curve alone for a non-skewed
task may outweigh the total area for all other tasks. A similar effect can
occur when the folds used for cross-validation do not have the same skew.
Downsampling that changes the skew will also change the minimum
PR curve. In algorithms that explicitly optimize AUCPR or MAP during
training, algorithm behavior can change substantially with a change in
skew. These undesirable effects of the unachievable region can be at least
partially offset with straightforward modifications to AUCPR, which we
describe.

We explain and characterize the unachievable region in Section 3.2,
present modifications to AUCPR in Section 3.3, and discuss the impli-
cations of the unachievable region for machine learning evaluation in
Section 3.4.

3.2 Achievable and Unachievable Points in PR
Space

We first precisely define the notion of an achievable point in PR space. Then
we provide an intuitive example to illustrate the concept of an unachievable
point. Finally, in Theorems 3.3 and 3.4 we present our central theoretical
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Figure 3.1: Sample PR curve, random guessing curve, and minimum PR
curve with π = 0.33.

contributions that formalize the notion of the unachievable region in PR
space.
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Consider a data set D with N = n + m examples, where n is the
number of positive examples andm is the number of negative examples.
This could be a weighted data set where each example has some weight
in R+, and n and m are the total weight for the positive and negative
examples, respectively. We characterize confusion matrices that could
actually arise from such a data set in the following definition.

Definition 3.1 (Valid Confusion Matrix). A valid confusion matrix for n
positive andm negative examples is a tuple (tp, fp, fn, tn) such that tp, fp, fn, tn >

0, tp + fn = n, and fp + tn = m.

Note that the cell counts in the confusion matrix are not restricted to
be integers because we allow weighted data sets.

Achievable points in PR space then are those points that can arise from
a valid confusion matrix.

Definition 3.2 (Achievable Point). For a data set D, an achievable point in
PR space is a point (r,p) such that there exists a valid confusion matrix with
recall r and precision p. That is, where

r =
tp

tp + fn
=

tp
n

(3.1)

and
p =

tp
tp + fp

(3.2)

Unachievable Points in PR Space

One can easily show that, as in ROC space, each valid confusion matrix,
where tp > 0, defines a unique point in PR space. In PR space, both recall
and precision depend on the tp cell of the confusion matrix, in contrast
to the true positive rate and false positive rate used in ROC space. This
dependence, together with the fact that a specific data set contains a fixed
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Table 3.1: For a data set with 100 positive and 200 negative examples, (a)
shows a valid confusion matrix with r = 0.2 and p = 0.2, while (b) is an
invalid confusion matrix attempting to obtain r = 0.6 and p = 0.2.

Actual
Predicted Positive Negative
Positive 20 80
Negative 80 120
Total 100 200

(a) Valid

Actual
Predicted Positive Negative
Positive 60 240
Negative 40 -40

Total 100 200

(b) Invalid

number of negative and positive examples, imposes limitations on what
precisions are possible for a particular recall. Thus, not every point in PR
space has a corresponding valid confusion matrix.

To illustrate this effect, consider a data set with n = 100 andm = 200.
Table 3.1(a) shows a valid confusion matrix with r = 0.2 and p = 0.2.
Consider holding precision constant while increasing recall. Obtaining
r = 0.4 is possible with tp = 40 and fn = 60. Notice that keeping p = 0.2
requires increasing fp from 80 to 160. With a fixed number of negative
examples in the data set, increases in fp cannot continue indefinitely. For
this data set, r = 0.5 with p = 0.2 is possible by using all of the negatives
as false positives (so tn = 0). However, maintaining p = 0.2 for any r > 0.5
is impossible. Table 3.1(b) illustrates an attempted confusion matrix with
r = 0.6 and p = 0.2. Achieving p = 0.2 at this recall requires fp > m. This
forces tn < 0 and makes the confusion matrix invalid.

The following theorem formalizes this restriction on achievable points
in PR space.
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Theorem 3.3. An achievable point in PR space with precision (p) and recall (r)
must satisfy

p >
πr

1 − π+ πr
(3.3)

where π = n
N

is the skew.

Proof. From the definition of precision,

p =
tp

tp+ fp
. (3.4)

But since the number of false positives is limited by the number of negatives
because the confusion matrix must be valid, fp 6 (1 − π)N, so

p >
tp

tp + (1 − π)N
. (3.5)

From the definition of recall, tp = rπN, and thus

p >
rπN

rπN+ (1 − π)N
. (3.6)

We can reasonably assume the data set is non-empty (N > 0), soN cancels
out and we are left with

p >
rπ

rπ+ 1 − π
. (3.7)

Note that a point’s achievability depends solely on the skew and not
on a data set’s size. Thus, we often refer to achievability in terms of the
skew and not in reference to any particular data set.
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Unachievable Region in PR Space

Theorem 3.3 gives a constraint that every achievable point in PR space
must satisfy. For a given skew, there are many points that are unachievable,
and we refer to this collection of points as the unachievable region of PR
space. In this section we study the properties of the unachievable region.

The constraint on precision and recall in Equation (3.3) makes no as-
sumptions about a model’s performance. Consider a model that produces
the worst possible ranking, where each negative example is ranked ahead
of every positive example. Building a PR curve based on this ranking
means placing one PR point at (0, 0) and a second PR point at (1,π). Davis
and Goadrich (2006) provide a method for interpolating between points in
PR space; interpolation is nonlinear in PR space but is linear between the
corresponding points in ROC space. Interpolating between the two known
points gives intermediate points with recall of ri = i

n
and precision of

pi =
πri

(1−π)+riπ
, for 0 6 i 6 n. This is the equality case from Theorem 3.3,

so Equation (3.3) is a tight lower bound on precision. We call the curve
produced by this ranking the minimum PR curve because it lies on the
boundary between the achievable and unachievable regions of PR space;
see Figure 3.2 for examples. For a given skew, all achievable points are on
or above the minimum PR curve.

The minimum PR curve has an interesting implication for AUCPR and
average precision (AP). Any model must produce a PR curve that lies
above the minimum PR curve. Thus, the AUCPR score includes the size of
the unachievable region “for free.” In the following theorem, we provide
a closed form solution for calculating the area of the unachievable region.

Theorem 3.4. The area of the unachievable region in PR space and the minimum
AUCPR, for skew π, is

AUCPRMIN = 1 +
(1 − π) ln(1 − π)

π
(3.8)
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Figure 3.2: Minimum PR curves for several values of π.

Proof. Since Equation (3.3) gives a lower bound for the precision at a
particular recall, the unachievable area is the area below the curve f(r) =
rπ

1−π+rπ .

AUCPRMIN =

∫ 1

0

rπ

1 − π+ rπ
dr
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=
rπ+ (π− 1) ln(π(r− 1) + 1)

π

∣∣∣∣r=1

r=0

=
1
π
(π+ (π− 1)(ln(1) − ln(1 − π)))

= 1 +
(1 − π) ln(1 − π)

π

A plot of AUCPRMIN versus the skew is shown in Figure 3.3(a).
Similar to AUCPR, Equation (3.3) also defines a minimum for AP. Av-

erage precision is the mean precision after correctly labeling each positive
example in the ranking, so the minimum takes the form of a discrete sum-
mation. Unlike AUCPR, which is calculated from interpolated curves, the
minimum AP depends on the number of positive examples because it
controls the number of terms in the summation.

Theorem 3.5. The minimum AP, for a data set with n positive andm negative
examples, is

APMIN =
1
n

n∑
i=1

i

i+m

Proof.

APMIN =
1
n

n∑
i=1

πi
n

1 − π+ πi
n

=
1
n

n∑
i=1

ni
(n+m)n

1 + n
n+m

( i
n
− 1)

=
1
n

n∑
i=1

i
n+m
i+m
n+m

=
1
n

n∑
i=1

i

i+m

This precisely captures the natural intuition that the worst AP involves
labeling all negatives examples as positive before starting to label the
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positives.
The existence of the minimum AUCPR and minimum AP can affect the

qualitative interpretation of a model’s performance. For example, chang-
ing the skew of a data set from 0.01 to 0.5 increases the minimum AUCPR
by approximately 0.3. This leads to an automatic jump of 0.3 in AUCPR
simply by changing the data set and with absolutely no change to the
learning algorithm. This type of change in skew is common in data from
case-control studies versus observational data or when downsampling the
negative examples for computational or learning reasons, as in Sutskever
et al. (2009) and Natarajan et al. (2012).

Since the majority of the unachievable region is at higher recalls, the
effect of AUCPRMIN becomes more pronounced when restricting the area
calculation to high levels of recall. Calculating AUCPR for recalls above
a threshold is frequently done due to the high variance of precision at
low recall or because the learning problem requires high recall solutions
(e.g., medical domains such as breast cancer risk prediction). Corollary 3.6
gives the formula for computing AUCPRMIN when the area is calculated
over a restricted range of recalls. See Figure 3.3(a) for minimum AUCPR
when calculating the area over restricted recall. The increased impact
of the minimum AUCPR when focusing on high recall is apparent in
Figure 3.3(b), where AUCPRMIN is scaled to the maximum AUCPR possible
in the restricted area. AUCPRMAX is the AUCPR achieved by a perfect
ranking of the examples. AUCPRMAX = 1 when working with the entire
PR curve and AUCPRMAX = b− awhen restricting recall to a 6 r 6 b.
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Figure 3.3: Minimum AUCPRs for area calculated over entire PR curve
[0,1], recall above 0.5 [0.5,1], and recall above 0.8 [0.8,1]. Direct areas are
shown in (a) and the area scaled to the maximum AUCPR in (b).
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Corollary 3.6. For calculation of AUCPR over recalls in [a,b] where 0 6 a <

b 6 1,
AUCPRMIN = b− a+

1 − π

π
ln
(
π(a− 1) + 1
π(b− 1) + 1

)
Proof. Same as the proof of Theorem 3.4 with limits of a and b in the
definite integral instead of 0 and 1.

Degenerate data sets where π = 0 and π = 1 are worth considering
briefly because they do sometimes occur and Equation (3.8) for AUCPRMIN

is undefined when π = 0 or π = 1. We propose setting AUCPRMIN = 0
when π = 0 and AUCPRMIN = 1 when π = 1 since these are the limits
of Equation (3.8) as π approaches 0 and 1, respectively. This also has a
reasonable interpretation for the area under the curve. When π = 0, there
are no positive examples, so precision is always 0. Therefore, the PR curve
must lie on the x-axis and the area under the curve is 0, regardless of
the ranking. Analogously, when π = 1 and all the examples are positive,
precision must be 1. So the PR curve is always a line at p = 1, and AUCPR
is 1.

3.3 Modifying AUCPR based on the
Unachievable Region

The unachievable region represents a lower bound on AUCPR and it is
important to develop evaluation metrics that account for this. We believe
that any metric A ′ that replaces AUCPR should satisfy at least the two
properties. First, A ′ should relate to AUCPR. Assume AUCPR was used
to estimate the performance of classifiers C1, . . . ,Cn on a single test set. If
AUCPR(Ci, testD) > AUCPR(Cj, testD), then A ′(Ci, testD) > A ′(Cj, testD),
as test set testD’s skew affects each model equally. Note that this property
may not be appropriate or desirable when aggregating scores across multi-
ple test sets, as is done in cross validation, because each test set may have
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a different skew. Second, A ′ should have the same range for every data
set, regardless of skew. This is necessary, though not sufficient, to achieve
meaningful comparisons across data sets. AUCPR does not satisfy the
second requirement because, as shown in Theorem 3.4, its range depends
on the data set’s skew.

We propose normalizing the area under the PR curve so the worst
ranking has a score of 0 and the best ranking has a score of 1.

Definition 3.7 (AUCNPR). The normalized area under the PR curve is

AUCNPR =
AUCPR − AUCPRMIN

AUCPRMAX − AUCPRMIN

where AUCPRMAX = 1 when calculating area under the entire PR curve and
AUCPRMAX = b− a when restricting recall to a 6 r 6 b.

Regardless of skew, the best possible classifier will have an AUCNPR
of 1 and the worst possible classifier will have an AUCNPR of 0. AUC-
NPR also preserves the ordering of algorithms on the same test set since
AUCPRMAX and AUCPRMIN are constant for the same data set. Thus, AUC-
NPR satisfies our proposed requirements for a replacement of AUCPR.
Furthermore, by accounting for the unachievable region, it makes compar-
isons between data sets with different skews more meaningful than when
using AUCPR.

AUCNPR measures the proportion of the achievable area in PR space
that a classifier attains. In this sense, AUCNPR is properly undefined when
π = 0 or π = 1 because there is no difference between the minimum and
maximum PR curves. At π = 0 or π = 1, every ranking of the examples
produces the exact same PR curve. As a convention, when a numeric
score is required, AUCNPR = 1 for π = 1 and AUCNPR = 0 for π = 0
seem reasonable. For π = 0, this is exactly what Definition 3.7 gives when
assuming AUCPRMIN = 0 if π = 0. Additionally, it makes sense for PR
analysis, which focuses on the positive examples, to give no credit in a
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task that has no positive examples. For π = 1, however, Definition 3.7 is
undefined. If a numeric score is required for reporting or aggregation
purposes, setting AUCNPR to always be 1 when π = 1 is a reasonable
solution, although arguments could be made for 0 or π depending on the
application and goals of evaluation.

We chose to normalize to the minimum AUCPR because it ensures
the range of AUCNPR is always the same. One simple alternative is to
normalize to the AUCPR for random guessing, which is simply π. While it
is simpler, normalizing to π has two drawbacks. First, the range of scores
depends on the skew, and therefore is not consistent across different data
sets. Second, it can result in a negative score if an algorithm performs
worse than random guessing, which seems counter-intuitive for an area
under a curve.

3.4 Discussion and Recommendations

We believe all practitioners using evaluation scores based on PR space
(e.g., PR curves, AUCPR, AP, F1) should be cognizant of the unachievable
region and how it affects their analyses.

Visually inspecting the PR curve or looking at an AUCPR score often
gives an intuitive sense for the quality of an algorithm or difficulty of a
task or data set. If the skew is extremely large, the effect of the very small
unachievable region on PR analysis is negligible. However, there are many
instances where the skew is closer to 0.5 and the unachievable area is
not insignificant. With π = 0.1, AUCPRMIN ≈ 0.05, and it increases as π
approaches 0.5. AUCPR is used in many applications where π > 0.1 (Hu
et al., 2009; Sonnenburg et al., 2006; Liu and Shriberg, 2007). Therefore,
a general awareness of the unachievable region and its relationship to
skew is important when casually comparing or inspecting PR curves and
AUCPR scores. A simple recommendation that will make the unachievable

37



region’s impact on results clear is to always show the minimum PR curve on
PR curve plots.

Next, we discuss several specific situations where the unachievable
region is highly relevant for machine learning.

Aggregation for Cross-Validation

In cross-validation, stratification is typically used to ensure all folds have
the same skew. However, particularly in relational domains, this is not
always the case. In relational domains, stratification must consider fold
membership constraints imposed by links between objects that, if violated,
would bias the results of cross-validation. For example, consider the
bioinformatics task of protein secondary structure prediction. Putting
amino acids from the same protein in different folds has two drawbacks.
First, it could bias the results as information about the same protein is
in both the train and test sets. Second, it does not properly simulate the
ultimate goal of predicting the structure of entirely novel proteins. Links
between examples occur in most relational domains, and placing all linked
items in the same fold can lead to substantial variation in the skew of the
folds. Because the different skews yield different AUCPRMINs, care must
be taken when aggregating results to create a single summary statistic of
an algorithm’s performance.

Cross-validation assumes that each fold is sampled from the same
underlying distribution. Even if the skew varies across folds, the merged
data set is the best estimate of the underlying distribution and thus the
overall skew. Ideally, aggregate descriptions, like a PR curve or AUCPR,
should be calculated on a single, merged data set. However, merging
directly compares probability estimates for examples in different folds
and assumes that the models are calibrated. Unfortunately, this is rarely a
primary goal of machine learning and learned models tend to be poorly
calibrated (Forman and Scholz, 2010).
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With uncalibrated models, the most common practice is to average the
results from each fold. For AUCPR, the mean of the AUCPR from each fold
is typically used. For a PR curve, vertical averaging of the individual PR
curves from each fold provides a summary curve. In both cases, averaging
fails to account for any differences in the unachievable region that arise
due to variations in class skew. As shown in Theorem 3.4, the range of
possible AUCPR values varies according to a fold’s skew. Similarly, when
vertically averaging PR curves, a particular recall level will have varying
ranges of potential precision values for each fold if the folds have different
skews. Even a single fold, which has much higher precision values due
to a substantially lower skew, can cause a higher vertically averaged PR
curve because of its larger unachievable region. Failing to account for
fold-by-fold variation in skew can lead to overly optimistic assessments
when using straightforward averaging.

We recommend averaging AUCNPR instead of AUCPR when evalu-
ating area under the curve. Averaging AUCNPR, which has the same
range regardless of skew, helps reduce (but not eliminate) the skew’s effect
compared to averaging AUCPR. A technique for creating a summary PR
curve from multiple curves with different skews is not known. Summary
PR curves are discussed as future work in Section 6.1.

Aggregation among Different Tasks

Machine learning algorithms are commonly evaluated on several different
tasks. This setting differs from cross-validation because each task is not
assumed to have the same underlying distribution. While the tasks may
be unrelated (Tang et al., 2009), they often come from the same domain.
For example, the tasks could be the truth values of different predicates in
a relational domain (Kok and Domingos, 2010; Mihalkova and Mooney,
2007) or different queries in an IR setting (Manning et al., 2008). Often,
researchers report a single, aggregate score by averaging the results across
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the different tasks. However, the tasks can potentially have very different
skews, and therefore different minimum AUCPRs. Therefore, averag-
ing AUCNPR scores, which (somewhat) control for skew, is preferred to
averaging AUCPR.

In statistical relational learning, researchers frequently evaluate algo-
rithms by reporting the average AUCPR over a variety of tasks in a single
data set (Mihalkova and Mooney, 2007; Kok and Domingos, 2010). As
a case study, consider the commonly used IMDB data set2 that describes
relationships among movies, actors, and directors. Here, the task is to pre-
dict the probability that each possible grounding of each predicate is true.
Across all predicates in IMDB, the skew of true groundings is relatively
low (π = 0.06), but there is significant variation in the skew of individual
predicates. For example, the gender predicate has a skew close to π = 0.5,
whereas a predicate such as genre has a skew closer to π = 0.05. While
presenting the mean AUCPR across all predicates is a good first approach,
it leads to averaging values that do not all have the same range. The gender
predicate’s range for AUCPR is [0.31, 1.0] while the genre predicate’s range
is [0.02, 1.0]. Thus, an AUCPR of 0.4 means very different things on these
two predicates. For the gender predicate, this score is worse than random
guessing, while for the genre predicate, this is a reasonably high score. In
a sense, all AUCPR scores of 0.4 are not created equal, but averaging the
AUCPR treats them as equals.

Table 3.2 shows AUCPR and AUCNPR for each predicate on a Markov
logic network model learned by the LSM algorithm (Kok and Domingos,
2010). Notice the wide range of scores and that AUCNPR gives a more
conservative overall estimate. AUCNPR is still sensitive to skew, so an
AUCNPR of 0.4 in the aforementioned predicates still does not imply
completely comparable performances, but it is closer than AUCPR.

2Available from http://alchemy.cs.washington.edu/.
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Table 3.2: Average AUCPR and AUCNPR scores for each predicate in the
IMDB data set. Results are for the LSM algorithm from Kok and Domin-
gos (2010). The range of scores shows the difficulty and skews of the
prediction tasks vary greatly. By accounting for the (potentially large) un-
achievable regions, AUCNPR yields a more conservative overall estimate
of performance.

Predicate AUCPR AUCNPR
actor 1.000 1.000
director 1.000 1.000
gender 0.509 0.325
genre 0.624 0.611
movie 0.267 0.141
workedUnder 1.000 1.000
Mean 0.733 0.680

Downsampling

Downsampling is common when learning on highly skewed tasks. Often
the downsampling alters the skew on the train set (e.g., subsampling
the negatives to facilitate learning, using data from case-control studies)
such that it does not reflect the true skew. PR analysis is frequently used
on the downsampled data sets (Sonnenburg et al., 2006; Natarajan et al.,
2012; Sutskever et al., 2009). The sensitivity of AUCPR and related scores
makes it important to recognize, and if possible quantify, the effect of
downsampling on evaluation metrics.

The varying size of the unachievable region provides an explanation
and quantification of some of the dependence of PR curves and AUCPR on
skew. Thus, AUCNPR, which adjusts for the unachievable region, should
be more stable than AUCPR to changes in skew. To explore this, we used
SAYU (Davis et al., 2005) to learn a model for the advisedBy task in the
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UW-CSE domain for several downsampled train sets. The UW-CSE data set3

(Richardson and Domingos, 2006) contains predicates that describe an
academic department, e.g., taughtBy and advisedBy. Table 3.3 shows
the AUCPR and AUCNPR scores on a test set downsampled to the same
skew as the train set and on the original (i.e., non-downsampled) test set.
AUCNPR has less variance than does AUCPR. However, there is still a
sizable difference between the scores on the downsampled test set and
the original test set. As expected, the difference increases as the ratio
approaches 1 positive to 1 negative. At this ratio, even the AUCNPR score
on the downsampled data is more than twice the score on the original skew.
This is a massive difference and it is disconcerting that it occurs simply
by changing the data set skew. An intriguing area for future research is
to investigate scoring metrics that either are less sensitive to skew or that
permit simple and accurate transformations that facilitate comparisons
between different skews.

Fβ Score

While PR curves allow evaluations without settling on a specific thresh-
old, some single-threshold evaluation measures are closely related to PR
analysis. If precision and recall are used in evaluating a confusion matrix,
such as with the F1 score, this corresponds to a point in PR space. Even
with a single operating point, the unachievable region still applies and the
minimum PR curve and random guessing PR curve are relevant. Thus,
the relationship between a point in PR space and the unachievable region
is informative.

The most commonly used single-threshold measure impacted by the
3Available from http://alchemy.cs.washington.edu/.
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Table 3.3: AUCPR and AUCNPR scores for SAYU on advisedBy task in the
UW-CSE data set for different train set skews. The downsampled columns
report scores on a test set with the same downsampled skew as the train
set. The original skew columns report scores on the original test set with
a ratio of 1 positive to 24 negatives (π = 0.04).

Downsampled Original Skew
Ratio AUCPR AUCNPR AUCPR AUCNPR
1:1 0.851 0.785 0.330 0.316
1:2 0.740 0.680 0.329 0.315
1:3 0.678 0.627 0.343 0.329
1:4 0.701 0.665 0.314 0.299
1:5 0.599 0.560 0.334 0.320
1:10 0.383 0.352 0.258 0.242
1:24 0.363 0.349 0.363 0.349

unachievable region is the Fβ family,

Fβ =
(1 + β2)pr

β2p+ r

where β > 0 is a parameter to control the relative importance of recall
and precision (Manning et al., 2008; Carterette and Voorhees, 2011). Most
often, the F1 score (β = 1) is used. The F1 score is also the harmonic mean
of precision and recall. We focus our discussion on the F1 score, but similar
analysis applies to Fβ. Figure 3.4 shows the contours of the F1 score over
PR space.

The unachievable region has a subtle interaction with F1 score that
changes depending on the skew. Because F1 combines precision and recall
into a single, real-valued score, it necessarily loses information. One aspect
of this information loss is that PR points with the same F1 score can have
vastly different relationships with the unachievable region. Consider
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points A and B in Figure 3.4. Both points have an F1 score of 0.4, but point
A has modest recall with good precision while point B is on the minimum
PR curve. The F1 score does not differentiate between two models with
these operating points in PR space. However, one model is even worse
than random guessing, while the other might be excellent for some tasks.

Whereas losing information is inevitable with a summary like the F1

score, the problem arises partly because the F1 score treats recall and
precision interchangeably. This is not unique to β = 1. While Fβ changes
their relative importance, the assumption remains that precision and recall,
appropriately scaled by β, are equivalent for assessing performance. Our
findings about the unachievable region show this is problematic, as recall
and precision have fundamentally different properties: every recall has
a minimum precision, there is a maximum recall for low precision, and
there are no constraints on recall otherwise.

We want to investigate how these drawbacks of F1 might be addressed.
Given the F1 score’s popularity, particularly in information retrieval, is
there a modification to the formula that would alleviate the problematic
interaction with the minimum PR curve and the unachievable region?
Or, would it be more informative to combine F1 with the distance to the
minimum PR curve?

While a modified F1 score that is sensitive to the unachievable region
would be useful, an ideal solution may not exist. Consider three simple
requirements for a modified F1 score, f ′:

∀p s.t. 0 < p 6 1, f ′(r1,p) < f ′(r2,p) iff r1 < r2 (3.9)

∀r s.t. 0 < r 6 1, f ′(r,p1) < f
′(r,p2) iff p1 < p2 (3.10)

f ′(r,p) = 0 if p =
rπ

1 − π+ rπ
(3.11)
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Figure 3.4: Contours of F1 score in PR space with minimum PR curve and
unachievable region for π = 0.33. Points A and B both have an F1 score of
0.4, but B is on the minimum PR curve while A has modest recall and high
precision. Using F1 score alone, these two very different performances are
indistinguishable.

Equations (3.9) and (3.10) capture the expectation that an increase in preci-
sion or recall while the other is constant should always increase f ′ (p = 0
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and r = 0 are excluded so that F1 satisfies these two conditions). Equa-
tion (3.11) ensures f ′ = 0 if the PR point is on the minimum PR curve and
is the additional constraint we want to impose.

However, these three properties are impossible to satisfy. Suppose we
have an f ′ that satisfies the three properties. Choose any recall 0 < r < 1
and let p = rπ

1−π+rπ . Note that 0 < p < π because r < 1. Then,

0 = f ′(r,p) from Equation (3.11)

f ′(r,p) < f ′(r,π) from Equation (3.10)

f ′(r,π) < f ′(1,π) from Equation (3.9)

f ′(1,π) = 0 from Equation (3.11)

Putting these four equations together we have a contradiction: 0 < 0. So
there cannot be an f ′ that has all three properties.

Relaxing Equations (3.9) and (3.10) to

∀p s.t. 0 < p 6 1, f ′(r1,p) 6 f ′(r2,p) iff r1 6 r2

∀r s.t. 0 < r 6 1, f ′(r,p1) 6 f
′(r,p2) iff p1 6 p2

makes it possible to construct an f ′ that satisfies the requirements, but
implies f ′(r,p) = 0 if p 6 π. This seems unsatisfactory because it ignores
all distinctions once the performance is worse than random guessing. If
assigning 0 whenever p 6 π is acceptable, one modified F1 score that
satisfies the relaxed requirements is

f ′(r,p) =

0 if p 6 π
2(p−π)r

p−π+(1−π)r if p > π

which assigns 0 to any PR point worse than random guessing and uses
the harmonic mean of recall and a normalized precision (p−π1−π ) otherwise.
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Extension to a modified Fβ for unequal weighting of recall and normalized
precision is straightforward.

3.5 Chapter Summary

In this chapter, we demonstrated that a region of precision-recall space
is unachievable for any particular ratio of positive to negative examples.
With the precise characterization of this unachievable region given in
Theorems 3.3 and 3.4, we further the understanding of the effects of down-
sampling and the impact of the minimum PR curve on score aggregation,
downsampling, and F measure. These nuances of precision-recall space,
particularly the dependence between precision and recall that leads to un-
achievable points, inspire us to explore the process of creating PR curves
and calculating AUCPR in more depth in the next chapter.
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4
area under the
precision-recall curve: point
estimates and confidence
intervals

After identifying and discussing the unachievable region in the previous
chapter, we seek the best methods for estimating AUCPR and creating
confidence intervals in this chapter. The interdependence of precision and
recall, unlike the true and false positive rates used in ROC space, creates
the distinctive “saw-shape” typical of simple plotting of the PR curve.
However, there are several other ways of calculating AUCPR and creating
a PR curve and we describe and empirically evaluate them in this chapter.
Additionally, we look at methods of generating confidence intervals for
AUCPR.

The material in this chapter was published in Boyd et al. (2013).

4.1 Introduction

Machine learning researchers build a PR curve by plotting precision-recall
pairs, or points, that are obtained using different thresholds on a proba-
bilistic or other continuous-output classifier. This is similar to the way an
ROC curve is built by plotting true and false positive rate pairs obtained
using different thresholds. After plotting the points in PR space, we next
seek to construct a curve, compute its AUCPR, and calculate 95% (or other)
confidence intervals (CIs) around the curve or the AUCPR.

However, the best method to construct the curve and calculate area
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is not readily apparent. The small data set in Table 4.1 produces the PR
points in Figure 4.1, and these points give rise to several questions. How
should multiple points with the same x-value (recall) be treated (i.e., is the
maximum, minimum, or mean representative)? Is linear interpolation in
any form appropriate? Davis and Goadrich (2006) showed that using a line
to connect the highest points at each recall is overly optimistic, but what
about other schemes for connecting points using lines? Should a convex
hull be used, either in ROC space, as suggested by Davis and Goadrich
(2006), or in PR space?

Different answers to the these questions lead to at least four distinct
methods, with several variations, that have been used in machine learn-
ing, statistics, and related areas to compute AUCPR. Additionally, we are
interested not just in point estimates of AUCPR, but in the variance as
well, and we identify four methods that have been used to construct CIs
for AUCPR. This chapter discusses and analyzes eight estimators and
four CIs empirically. We provide evidence in favor of computing AUCPR
using the lower trapezoid, average precision, or interpolated median estimators
and using binomial or logit CIs rather than other methods, including the
more widely-used ten-fold cross-validation. The differences in results using
these approaches are most striking when data are highly skewed, which
is exactly the case when PR curves are most preferred over ROC curves.

Section 4.2 describes our notation for PR curve points and areas, Sec-
tion 4.3 describes the estimators and CIs we evaluate, and Section 4.4
presents case studies of the estimators and CIs in action.

4.2 Area Under the Precision-Recall Curve

Consider a binary classification task where models produce continuous
outputs, denoted by the random variable Z, for each example. Diverse
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Table 4.1: Data set with n = 10 andm = 20 used to generate the PR points
in Figure 4.1. Model outputs were sampled from N(0, 1) for negatives and
N(0.5, 1) for positives. Recall and precision values are for labeling that
row and above as positive.

Output True Label Recall Precision
0.95 positive 0.20 1.00
0.90 negative 0.20 0.50
0.85 negative 0.20 0.33
0.80 positive 0.40 0.50
0.75 positive 0.60 0.60
0.70 negative 0.60 0.50
0.65 negative 0.60 0.43
0.60 negative 0.60 0.38
0.55 negative 0.60 0.33
0.50 positive 0.80 0.40
0.45 negative 0.80 0.36
0.40 negative 0.80 0.33
0.35 negative 0.80 0.31
0.30 negative 0.80 0.29
0.25 negative 0.80 0.27
0.20 negative 0.80 0.25
0.15 positive 1.00 0.29
0.10 negative 1.00 0.28
0.05 negative 1.00 0.26
0.00 negative 1.00 0.25
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Figure 4.1: Empirical PR points, random and minimum PR curves, and
unachievable region for outputs and labels in Table 4.1 where π = 0.25.
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applications are subsumed by this setup, e.g., a medical test to identify dis-
eased and disease-free patients, a document ranker to distinguish between
relevant and non-relevant documents for a particular query, and generally
any binary classification task. The two categories are often naturally la-
beled as positive (e.g., diseased, relevant) or negative (e.g., disease-free,
non-relevant). Following the literature on ROC curves (Bamber, 1975;
Pepe, 2004), we denote the output values for the negative examples by
the random variable X and the output values for the positive examples
by Y (Z is a mixture of X and Y). These populations are assumed to be
independent when the class is known. Larger output values are associated
with positive examples, so for a given threshold c, an example is predicted
positive if its score is greater than c. We represent the category or class
with the indicator random variable D, where D = 1 corresponds to posi-
tive examples and D = 0 to negative examples. An important aspect of
a task or data set is the class skew π = P(D = 1). Skew is also known as
prevalence or a prior class distribution.

Several techniques exist to assess the performance of binary classifica-
tion across a range of thresholds. While ROC analysis is the most common,
we are interested in the related PR curves. A PR curve may be defined as
the set of points:

PR(·) = {(Recall(c),Prec(c)),−∞ < c <∞}

where Recall(c) = P(Y > c) and Prec(c) = P(D = 1|Z > c). Recall is
equivalent to true positive rate or sensitivity (the y-axis in ROC curves),
while precision is the same as positive predictive value. Because larger
output values are assumed to be associated with positive examples, as c de-
creases, Recall(c) increases to 1 and Prec(c) approaches π. As c increases,
Prec(c) becomes highly variable, as discussed in Section 2.3, though we
generally think about Prec(c) reaching 1 as Recall(c) approaches 0. The
high variance of precision estimates for recall near 0 is a major difficulty
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of constructing PR curves.
It is often desirable to summarize the PR curve with a single scalar

value. One summary is the area under the PR curve (AUCPR), which we
will denote by θ. Following the work of Bamber (1975) on ROC curves,
AUCPR is an average of the precision weighted by the probability of a
given threshold.

θ =

∫∞
−∞ Prec(c)dP(Y 6 c) (4.1)

=

∫∞
−∞ P(D = 1|Z > c)dP(Y 6 c). (4.2)

By Bayes’ rule and using that Z is a mixture of X and Y,

P(D = 1|Z > c) = πP(Y > c)

πP(Y > c) + (1 − π)P(X > c)

and we note that 0 6 θ 6 1 since Prec(c) and P(Y 6 c) are bounded on the
unit square. Therefore, θmight be viewed as a probability. If we consider
Equation (4.2) as an importance-sampled Monte Carlo integral, we may
interpret θ as the fraction of positive examples among those whose output
values exceed a randomly selected c ∼ Y threshold.

4.3 AUCPR Estimators

In this section we summarize point estimators for θ and then introduce CI
methods.

Point Estimators

Let x1, . . . , xm and y1, . . . ,yn represent observed output values from neg-
ative and positive examples, respectively. The skew π is assumed to be
given or is set to n/(n+m). An empirical estimate of the PR curve, P̂R(·),
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can be derived by the empirical estimates of each coordinate:

R̂ecall(c) = n−1
n∑
i=1

I(yi > c)

P̂rec(c) =
πR̂ecall(c)

πR̂ecall(c) + (1 − π)m−1
∑m
j=1 1[xj > c]

where 1[A] is the indicator function for event A.
We review a number of possible estimators for θ. These estimators,

either directly or indirectly, correspond to some assumption about how
to interpolate between or approximate the empirical PR points. These
interpolations and the differences between the estimators are visually
shown on a small data set in Figure 4.2.

Trapezoidal Estimators

For fixed R̂ecall(t), the empirical precision may not be constant, therefore,
P̂R(·) is often not one-to-one. Multiple precision values for a single recall
occur when y(i) < xj < y(i+1) for some i and j, where y(i) denotes the
ith order statistic (ith largest value among the yi’s). As the threshold
increases from y(i) to xj, recall remains constant while precision decreases.
Let ri = R̂ecall(y(n−i)), such that r1 6 r2 6 · · · 6 rn, and let pmaxi be the
largest sample precision value corresponding to ri. Likewise, let pmini

be the smallest sample precision value corresponding to ri. This leads
immediately to a few choices for estimators based on the empirical curve
using trapezoidal estimation (Abeel et al., 2009):

θ̂LT =

n−1∑
i=1

pmini + pmaxi+1
2

(ri+1 − ri) (4.3)

θ̂UT =

n−1∑
i=1

pmaxi + pmaxi+1
2

(ri+1 − ri) (4.4)
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Figure 4.2: PR curves demonstrating the interpolation assumptions of the
point estimate methods on the predictions from Figure 4.1 and Table 4.1,
where π = 0.25. The unachievable region is shown in gray.
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These correspond to a lower trapezoid approximation in Equation (4.3) and
an upper trapezoid approximation in Equation (4.4). Note that the upper
trapezoid method uses an overly optimistic linear interpolation (Davis and
Goadrich, 2006). We include it for comparison as it is one of the first
methods a non-expert is likely to use due to its similarity to estimating
area under the ROC curve.

Interpolation Estimators

As suggested by Davis and Goadrich (2006) and Goadrich et al. (2006),
we use PR space interpolation as the basis for several estimators. These
methods use the non-linear interpolation between known points in PR
space derived from a linear interpolation in ROC space.

Davis and Goadrich (2006) and Goadrich et al. (2006) examine the
interpolation in terms of the number of true positives and false positives
corresponding to each PR point. Here we perform the same interpolation,
but use the recall and precision of the PR points directly, which leads to the
surprising observation that the interpolation (from the same PR points)
does not depend on π.

Theorem 4.1. For two points in PR space (r1,p1) and (r2,p2) (assume WLOG
r1 < r2), the interpolation for recall r ′ with r1 6 r ′ 6 r2 is

p ′ =
r ′

ar ′ + b
(4.5)

where

a = 1 +
(1 − p2)r2

p2(r2 − r1)
−

(1 − p1)r1

p1(r2 − r1)

b =
(1 − p1)r1

p1
−

(1 − p2)r1r2

p2(r2 − r1)
+

(1 − p1)r
2
1

p1(r2 − r1)

Proof. First, we convert the points to ROC space. Let s1, s2 be the false

56



positive rates for the points (r1,p1) and (r2,p2), respectively. By definition
of false positive rate,

si =
(1 − pi)πri
pi(1 − π)

. (4.6)

A linear interpolation in ROC space for r1 6 r ′ 6 r2 has a false positive
rate of

s ′ = s1 +
r ′ − r1

r2 − r1
(s2 − s1). (4.7)

Then convert back to PR space using

p ′ =
πr ′

πr ′ + (1 − π)s ′
. (4.8)

Substituting Equation (4.7) into Equation (4.8) and using Equation (4.6)
for s1 and s2, we have

p ′ = πr ′
[
πr ′ +

π(1 − p1)r1

p1
+
π(r ′ − r1)

r2 − r1

(
(1 − p2)r2

p2
−

(1 − p1)r1

p1

)]−1

= r ′
[
r ′
(

1 +
(1 − p2)r2

p2(r2 − r1)
−

(1 − p1)r1

p1(r2 − r1)

)
+

(1 − p1)r1

p1
−

(1 − p2)r1r2

p2(r2 − r1)
+

(1 − p1)r
2
1

p1(r2 − r1)

]−1

Thus, despite PR space being sensitive to π and the translation to and
from ROC space depending on π, the interpolation in PR space does not
depend on π. One explanation is that each particular PR space point
inherently contains the information about π, primarily in the precision
value, and no extra knowledge of π is required to perform the interpolation.

The area under the interpolated PR curve between these two points
has a closed form.

Theorem 4.2. The area under the interpolated PR curve from r1 to r2 defined in
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Theorem 4.1 is

ar2 − b log(ar2 + b) − ar1 + b log(ar1 + b)

a2 (4.9)

Proof. The proof is a simple application of calculus and definite integrals.

∫ r2

r1

r ′

ar ′ + b
dr ′ = ar ′ − b log(ar ′ + b)

a2

∣∣∣∣r ′=r2

r ′=r1

=
ar2 − b log(ar2 + b) − ar1 + b log(ar1 + b)

a2

With the definite integral to calculate the area between two PR points,
the question is which points should be used? The achievable PR curve
of Davis and Goadrich (2006) uses only those points (translated into PR
space) that are on the ROC convex hull. We also use three methods of
summarizing from multiple PR points at the same recall to a single PR
point to interpolate through. The summaries we investigate are the max,
mean, and median of all pi for a particular ri. So we have four estimators
using interpolation: convex, max, mean, and median.

Average Precision

Avoiding the empirical curve altogether, a plug-in estimate of θ, known in
information retrieval as average precision (Manning et al., 2008), is

θ̂A =
1
n

n∑
i=1

P̂rec(yi) (4.10)

which replaces the distribution function P(Y 6 c) in Equation (4.2) with
its empirical cumulative distribution function.
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Binormal Estimator

Conversely, a fully parametric estimator may be constructed by assuming
that Xj ∼ N(µx,σ2

x) and Yj ∼ N(µy,σ2
y). In this binormal model (Brodersen

et al., 2010), the MLE of θ is

θ̂B =

∫ 1

0

πt

πt+ (1 − π)Φ
(
µ̂y−µ̂x
σx

+
σ̂y
σ̂x
Φ−1(t)

) dt (4.11)

where µ̂x, σ̂x, µ̂y, σ̂y are the sample means and variances of X and Y and
Φ(t) is the standard normal cumulative distribution function.

Confidence Interval Estimation

Having discussed AUCPR estimators, we now turn our attention to com-
puting confidence intervals (CIs) for these estimators. Our goal is to
determine a simple, accurate interval estimate that is logistically easy to
implement. We will compare two computationally intensive methods
against two simple statistical intervals.

Bootstrap Procedure

A common approach uses a bootstrap procedure to estimate the variation
in the data and to either extend a symmetric, normal-based interval about
the point estimate or to take the empirical quantiles from the resampled
estimates as interval bounds (Efron, 1979). Because the relationship be-
tween the number of positive examples n and negative examples m is
crucial for estimating PR points and hence curves, we recommend using
stratified bootstrap so π is preserved in all replicates. In our simulations,
we chose to use empirical quantiles for the interval bounds and perform
1000 bootstrap replicates.
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Cross-Validation Procedure

Similarly, a cross-validation approach is a wholly data-driven method for
simultaneously producing the train/test splits required for unbiased es-
timation of future performance and producing variance estimates. In
k-fold cross-validation, the available data are partitioned into k folds. k−1
folds are used for training while the remaining fold is used for testing. By
evaluating the results of each fold separately, k estimates of performance
are obtained. A normal approximation of the interval can be constructed
using the mean and variance of the k estimates. For more details and
discussion of k-fold cross-validation, see Dietterich (1998). For our case
studies, we use the standard k = 10.

Binomial Interval

Recalling that 0 6 θ 6 1, we may interpret θ̂ as a probability associated
with some Binomial(1, θ) variable. If so, a CI for θ can be constructed
through the standard normal approximation to the binomial:

θ̂±Φ1−α/2

√
θ̂(1 − θ̂)

n

We use n for the sample size as opposed to n + m because n specifies
the (maximum) number of unique recall values in P̂R(·). The binomial
method can be applied to any θ̂ estimate once it is derived. A weakness of
this estimate is that it may produce bounds outside of [0, 1], even though
0 6 θ 6 1.

Logit Interval

To obtain an interval that is guaranteed to produce endpoints within [0, 1],
we may use the logistic transformation η̂ = log θ̂

(1−θ̂) where τ̂ = s.e.(η̂) =
(nθ̂(1 − θ̂))−1/2 by the delta method (DeGroot and Schervish, 2001).
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On the logistic scale, an interval for η is η̂ ± Φ1−a/2τ̂. This can be
converted pointwise to produce an asymmetric logit interval bounded in
(0, 1): [

eη̂−Φ(1−α/2)τ̂

1 + eη̂−Φ(1−α/2)τ̂ , eη̂+Φ(1−α/2)τ̂

1 + eη̂+Φ(1−α/2)τ̂

]
.

4.4 Case Studies

We use simulated data to evaluate the merits of the candidate point and
interval estimates discussed in Section 4.3 with the goal of selecting a
subset of desirable procedures.1 The ideal point estimate is unbiased,
robust to various distributional assumptions on X and Y, and has good
convergence as n+m increases. A CI should have appropriate coverage,
and smaller widths of the interval are preferred over larger widths.

We consider three scenarios for generating output values. We intend
to cover representative but not exhaustive cases whose conclusions will
be relevant more generally. The densities for these scenarios are plotted in
Figure 4.3. The true PR curves (calculated using the cumulative distribu-
tion functions of X and Y) for π = 0.1 are shown in Figure 4.4. Figure 4.4
also contains sampled empirical PR curves that result from drawing data
from X and Y. These are the curves the estimators work from, attempting
to recover the area under the true curve as accurately as possible.

For unbounded, continuous outputs, the binormal scenario assumes
that X ∼ N(0, 1) and Y ∼ N(µ, 1) where µ > 0. The distance between
the two normal distributions, µ, controls the discriminative ability of the
assumed model. For test values bounded by [0, 1], such as probabilis-
tic outputs, we replace the normal distribution with a beta distribution.
Therefore, the bibeta scenario has X ∼ Beta(a,b) and Y ∼ Beta(b,a) where
0 < a < b. The larger the ratio between a and b, the better we are able to

1R code for the estimators and simulations may be found at http://pages.cs.wisc.
edu/~boyd/projects/2013ecml_aucprestimation/
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Figure 4.3: Probability density functions for X (negative) and Y (pos-
itive) output values for binormal (X ∼ N(0, 1), Y ∼ N(1, 1)), bibeta
(X ∼ Beta(2, 5), Y ∼ Beta(5, 2)), and offset uniform (X ∼ Uniform(0, 1), Y ∼

Uniform(0.5, 1.5)) case studies.

distinguish between positive and negative examples. Finally, we model an
extreme scenario where the support of X and Y is not the same. This offset
uniform scenario is given by X ∼ Uniform(0, 1) and Y ∼ Uniform(γ, 1 + γ)

for γ > 0. If γ = 0 there is no ability to discriminate, while γ > 1 leads to
perfect classification of positive and negative examples with a threshold of
c = 1. All results in this paper use µ = 1,a = 2,b = 5, and γ = 0.5. These
were chosen as representative examples of the distributions that produce
reasonable PR curves.

This chapter exclusively uses simulated data drawn from specific,
known distributions because this allows calculation of the true PR curve
(shown in Figure 4.4) and the true AUCPR. Therefore, we have a target
value to compare the estimates against and we are able to evaluate the bias
of an estimator and the coverage of a CI. This analysis would be difficult
or impossible if we used a model’s predictions on real data because the
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Figure 4.4: True PR curves (calculated from the theoretical density func-
tions) and sampled empirical PR curves at π = 0.1. Sampled PR curves
use n+m = 500. The sampled PR curves were generated by connecting
PR points corresponding to adjacent thresholds.

true PR curve and AUCPR are unknown.

Bias and Robustness in Point Estimates

For each scenario, we evaluate eight estimators: the nonparametric average
precision, the parametric binormal, two trapezoidal estimates, and four
interpolated estimates. Figure 4.5 shows the bias ratio versus n+mwhere
π = 0.1 over 10,000 simulations, and Figure 4.6 shows the bias ratio versus
πwhere n+m = 1000. The bias ratio is the mean of the estimated AUCPR
divided by the true AUCPR, so an unbiased estimator has a bias ratio of
1.0. Good point estimates of AUCPR should be unbiased as n+m and π
increase. That is, an estimator should have an expected value equal to the
true AUCPR (calculated by numerically integrating Equation (4.2)).
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Figure 4.5: Ratio of estimated AUCPR to true AUCPR (bias ratio) versus
total number of examples (n+m). π = 0.1 for all cases.

As n +m grows large, most estimators converge to the true AUCPR
in every case. However, the binormal estimator shows the effect of model
misspecification. When the data are truly binormal, it shows excellent
performance, but when the data are bibeta or offset uniform, the binormal
estimator converges to the wrong value. Interestingly, the bias due to
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Figure 4.6: Ratio of estimated AUCPR to true AUCPR (bias ratio) versus π.
In all cases n+m = 1000.

misspecification that we observe for the binormal estimate is lessened as
the data become more balanced (π increases).

As predicted by Davis and Goadrich (2006), the upper trapezoid esti-
mator consistently overestimates the true AUCPR. Surprisingly, the only
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estimator that is always higher than the upper trapezoid method is the in-
terpolated convex estimator. Even when n +m = 10, 000, the interpolated
convex estimator is still far from the true value. The poor performance of
the interpolated convex estimator is unusual because it uses the popular
convex hull ROC curve and then converts back to PR space. Because the
other interpolated estimators perform adequately, the problem may lie
in evaluating the convex hull in ROC space. The convex hull chooses
those particular points that give the best performance on the test set. The
convex hull procedure is analogous to using the test set during training,
causing potential overfitting to the test set and leading to the observed
overestimation of AUCPR.

It is important to note that since π = 0.1 in Figure 4.5, data are sparse
at n+m = 100; there are only n = 10 values of Y from which to make the
estimate. In these situations, there is no clear winner across the three sce-
narios. The estimators tend to overestimate AUCPR when n is small, with
a few exceptions where AUCPR is substantially underestimated. Among
related estimators, lower trapezoid is more accurate than the upper trapezoid
method and the mean or median interpolation estimators outperform the
convex and max interpolation estimators. Consequently, we will only con-
sider the average precision, interpolated median, and lower trapezoid estimators
because they are unbiased in the limit, less biased for small sample sizes,
and robust to model misspecification.

Confidence Interval Evaluation

We use a two-step approach to evaluate confidence intervals (CIs) based
on Chapter 7 of Shao (2003). In practice, interval estimates must come with
a confidence guarantee: if we say an interval is a (1−α)% CI, we should be
assured that it covers the true value in at least (1 − α)% of data sets (Shao,
2003; Wasserman, 2004; Lehmann and Casella, 1998). It may be surprising
to non-statisticians that an interval with slightly low coverage is ruled
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inadmissible, but this invalidates the guarantee. Additionally, targeting
an exact (1 − α)% interval is often impractical for technical reasons, hence
the at least (1 − α)%. A valid interval provides at least (1 − α)% coverage,
and this is the first criterion a candidate interval must satisfy.

After identifying valid methods for CIs, the second step is determining
the narrowest (or optimal) intervals among the valid methods. The trivial
[−∞,+∞] interval is a valid 95% CI because it always has at least 95%
coverage (indeed, it has 100% coverage), but it conveys no useful infor-
mation about the estimate. We therefore seek methods that produce the
narrowest, valid intervals.

Confidence Interval Coverage

The first step in CI evaluation is identifying valid CIs with coverage of
at least (1 − α)%. In Figure 4.7, we show results of 10,000 simulations
for the coverage of the four CI methods described in Section 4.3. These
are 95% CIs, so the target coverage of 0.95 is denoted by the thick black
line. As mentioned at the end of Section 4.4, we only consider the average
precision, interpolated median, and lower trapezoid estimators during our CI
evaluation.

A strong pattern emerges from Figure 4.7 where the bootstrap and cross-
validation intervals tend to have coverage below 0.95, though asymptotically
approaching 0.95. Because the coverage is below 0.95, the computational
intervals are technically invalid. The two formula-based intervals are
consistently above the requisite 0.95 level. Thus, the binomial and logit
methods produce valid confidence intervals.

Given the widespread use of cross-validation within machine learning,
it is troubling that the CIs produced from that method fail to maintain the
confidence guarantee. This is not an argument against cross-validation in
general, only a caution against using it for AUCPR inference. Similarly,
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bootstrap is considered a rigorous (though computationally intensive) fall-
back for nonparametrically evaluating variance, yet Figure 4.7 shows it is
only successful asymptotically as data size increases, and it must be fairly
large before the bootstrap nears 95% coverage).

Confidence Interval Width

To better understand why bootstrap and cross-validation are failing, we ask:
are the intervals too narrow? Since we have simulated 10,000 data sets and
obtained AUCPR estimates on each using the various estimators, we have
an empirical distribution from which we can calculate an ideal empirical
width for the CIs. When creating a CI, only 1 data set is available, so this
empirical width is not available, but we can use it as a baseline, optimal
width. Figure 4.8 shows the coverage versus the ratio of mean width to em-
pirically ideal width. As expected, there is a positive correlation between
coverage and the width of the intervals. Wider intervals tend to provide
higher coverage. For cross-validation, the widths tend to be slightly smaller
than the logit and binomial intervals but still larger than the empirically
ideal width. However, coverage is frequently too low, suggesting the width
of the interval is not the reason for the poor performance of cross-validation.
But interval width may be part of the issue with bootstrap. The bootstrap
widths are either right at the empirically ideal width or even smaller.

Confidence Interval Location

Another possible cause for poor coverage is that the intervals are for the
wrong target value (i.e., the intervals are biased). To investigate this possi-
bility, we analyze the mean location of the intervals. We use the original
estimate from the full data set as the location for the binomial and logit
intervals because both intervals are constructed around that estimate, the
mid-point of the interval from cross-validation, and the median of the boot-
strap replicates since we use the quantiles to calculate the interval. The
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ratio of the mean location to the true value (similar to Figure 4.5) is pre-
sented in Figure 4.9. The location of the cross-validation intervals is much
farther from the true estimate than either the bootstrap or binomial locations
are, with bootstrap being a bit worse than binomial. We believe this targeting
of the wrong value for small n+m is the primary explanation for the low
coverage of bootstrap and cross-validation seen in Figure 4.7.

Comments on Bootstrap and Cross-Validation Intervals

The increased bias in the intervals produced by bootstrap and cross-validation
occurs because these methods use many smaller data sets to produce a
variance estimate. k-fold cross-validation reduces the effective data set
size by a factor of k, while bootstrap is less extreme but still reduces the
effective size by a factor of roughly 1.5. Since the estimators become more
biased with smaller data sets (as demonstrated in Figure 4.5), the point
estimates used to construct the bootstrap and cross-validation intervals are
more biased, leading to the misplaced intervals and less than (1 − α)%
coverage.

Additionally, the bootstrap has no small sample theoretical justification
and tends to break down for very small sample sizes (Efron, 1988). When
estimating AUCPR with skewed data, the critical number is the number
of positive examples n, not the size of the data set n+m. Even when the
data set itself seems reasonably large with n +m = 200, there are only
n = 20 positive examples if π = 0.1. With just 20 samples, it is difficult
to obtain representative samples during the bootstrap. The small sample
size contributes to the lower than expected 95% coverage and presents a
possible explanation for the bootstrap widths being even smaller than the
empirically ideal widths seen in Figure 4.8.

We emphasize that both the binomial and logit intervals are valid and
do not require the additional computation that the cross-validation and
bootstrap intervals do. For large sample sizes bootstrap approaches (1−α)%
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coverage, but it approaches from below, so care should be taken. Cross-
validation is even more problematic, with proper coverage not obtained
even at n+m = 10, 000 for some of our case studies.

4.5 Chapter Summary

Our computational study has determined that simple confidence interval
estimators can achieve nearly ideal interval widths while maintaining valid
coverage for AUCPR estimation. A key point is that these simple estimates
are easily evaluated and do not require resampling nor do they add to
the computational workload. Conversely, computationally expensive,
empirical procedures (bootstrap and cross-validation) yield interval estimates
that do not provide adequate coverage for small sample sizes and only
asymptotically approach (1 − α)% coverage.

We have also tested a variety of point estimates for AUCPR and we
determined that the parametric binormal estimate is extremely poor when
the true generating distribution is not normal. Practically, data may be
re-scaled (e.g., the Box-Cox transformation) to make this assumption fit
better, but this seems unnecessary because robust, easily accessible, non-
parametric estimates exist.

The scenarios we studied are by no means exhaustive, but they are
representative, and the conclusions can be further tested in specific cases
if necessary. In summary, our investigation concludes that the lower trape-
zoid, average precision, and interpolated median point estimates are the most
robust estimators and we recommend the binomial and logit methods for
constructing interval estimates.

This chapter concludes the section focused on PR space, where we
discussed the unachievable region in Chapter 3 and estimators of AUCPR
in this chapter. Next, we consider the data from which AUCROCs and
AUCPRs are generated and how to protect the privacy of those test sets
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while still releasing useful performance assessments.
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Figure 4.7: Coverage for selected estimators and 95% CIs calculated using
the four interval methods. Results for selected n+m are shown for π = 0.1.
To be valid 95% CIs, the coverage should be at least 0.95. Note that the
coverage for a few of the cross-validation intervals is below 0.75. These
points are represented as half-points along the bottom border.
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Figure 4.8: Mean normalized width ratio versus coverage for binomial,
logit, cross-validation, and bootstrap methods. Normalized width is the
ratio of the CI width to the empirically ideal width. Width ratios below
1 suggest the intervals are overly optimistic. Results shown for n+m ∈
200, 500, 1000, 5000, 10000 with π = 0.1. Note that the coverage for some
of the cross-validation intervals is below 0.75. These points are represented
as half-points along the bottom border.
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Figure 4.9: Mean location of the intervals produced by the binomial, boot-
strap, and cross-validation methods (logit is identical to binomial). As in
Figure 4.5, the y-axis is the bias ratio, the ratio of the location (essentially
a point estimate based on the interval) to the true AUCPR. Cross-validation
is considerably more biased than the other methods are and bootstrap is
slightly more biased than binomial is.
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5 differentially private
evaluation

After discussing properties and estimators of PR curves in the previous
chapters, we consider the data upon which evaluation is performed in
this chapter. As data sets and models leverage increasing amounts of
information about the examples, there is growing concern about privacy.
In particular, privacy is a concern when the examples are people, as is the
case in social networking and medical diagnosis tasks. In this chapter, we
address the privacy of the test set data.

5.1 Introduction

Our aim in this chapter is to expand the scope of differential privacy in
machine learning to include the protection of test data sets beyond the
existing work on the protection of training data sets. To our knowledge,
this is the first time the privacy of evaluating models, even differentially
private models, on new data and the added privacy risk involved has been
addressed.

We start by motivating our application of differential privacy to evalu-
ation by discussing potential attacks on ROC analysis in Section 5.2. In
Section 5.3, we define the task of differentially private evaluation, and then
discuss differentially private algorithms for AUCROC and average preci-
sion in Sections 5.4 and 5.5. Finally, in Section 5.6, we perform experiments
analyzing the utility and behavior of these algorithms.
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5.2 Attacks on ROC Curves and AUCROC

Prior work has demonstrated the vulnerability of data points in ROC
curves to reidentification (Matthews and Harel, 2013); we extend that to
AUCROC to demonstrate that the problem remains even with the summary
metric. Given the AUCROC of the full data set, consider the problem of
identifying the class of one of the examples. Here, the adversary has access
to all of the data points but one, and also knows the AUCROC of the full
data set. The goal is to predict whether the final example is a member of
the positive or negative class. Note that we do not assume the adversary
knows where the target example should go in the ranking.

The adversary’s algorithm is to attempt to place the target example
at each position in the ranking, and calculate the resulting AUCROC
under the assumption that the example is positive and again assuming
it is negative. The class that produces an answer closest to the released
AUCROC for the full data set (or the most frequent class in the case of
ties) is guessed as the class of the example. This setup is similar to the
assumptions of differential privacy in terms of looking at the influence of
a single example on AUCROC. However, it is not a worst case analysis and
it is concerned with identifying an attribute value of the target example,
not simply its presence in the original data.

Figure 5.1 shows the ability of the attacker to guess the class of the target
example given a sample of data from the UCI adult data set (details of
the data set are discussed in Section 5.6). One heuristic method that could
be used to interfere with this attack is to round the released AUCROC to
a smaller number of decimal places, and this is illustrated in Figure 5.1.
When the AUCROC is given to a high number of decimal places, the
adversary is able to recover the class value with high probability, though
this ability decreases as the number of data points increases. Rounding
the AUCROC value to fewer decimal places does reduce the adversary’s
success, but it comes at a cost to precision.
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Figure 5.1: Adversary’s success rate at identifying the class of the missing
example given AUCROC of a data set containing half positives and half
negatives with the specified significant digits. The horizontal black line at
0.5 denotes performance of randomly guessing the class.

5.3 Private Evaluation

Our discussion of differentially private evaluation will assume that a
classification model is applied to a private database. The model could be
hand-constructed by the submitter, trained on another private database in
a differentially private way, or trained on a public database. Our goal is to
ensure the evaluation output does not release too much information about
any particular example in the private database by requiring a differentially
private evaluation function.
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We assume that the size of the database, N = n +m, is public infor-
mation, but that the specific values of n andm are not publicly available.
Though allowing n andm to be public would make our analysis for AU-
CROC and AP simpler and might achieve induced neighbors privacy (Kifer
and Machanavajjhala, 2014), we believe that keeping the number of pos-
itive and negative examples private is a critical aspect of private model
evaluation. If n andm were public information, the worst-case adversary
for differential privacy who knows all but one row of the database would
be able to trivially infer whether the last row is a positive or negative.
Since the class label is often the most sensitive piece of information in a
prediction task, releasing precise counts of positives and negatives would
greatly weaken the security provided by a privacy framework. Instead,
we assume that only the size of the database, N, is public information.
As discussed in Section 2.4, we are using bounded differential privacy,
so neighboring databases always have the same number of examples or
rows. However, neighboring databases may differ (by a maximum of 1)
in the number of positives and number of negatives. To illustrate the
difference in neighboring databases in ROC analysis, ROC curves for two
neighboring databases are shown in Figure 5.2.

What types of evaluation metrics can be released privately under this
framework? Any metric based on a single confusion matrix can be made
private by applying the standard methods, such as Laplace noise, for
differentially private counts or marginals (Dwork, 2006). Therefore, differ-
entially private accuracy, recall, specificity, precision, etc. can be obtained.
We focus on more complex metrics, such as AUCROC, that are both more
useful for classifier evaluation (Provost et al., 1998) and more challenging
to implement privately.
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Figure 5.2: ROC curves for two neighboring databases where the difference
between D and D ′ is that a negative was changed to a positive and given
a new score. D contains 15 positives and 15 negatives and D ′ contains 16
positives and 14 negatives. AUCROCs for D and D ′ are 0.796 and 0.772,
respectively.
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5.4 Private AUCROC

To create a private AUCROC algorithm, we first need to find the sensi-
tivity of AUCROC. In particular, we will start with the local sensitivity
(Definition 2.7) that provides database-specific bounds on the change in
AUCROC.

We repeat the formula for AUCROC from Equation (2.1) for easy refer-
ence:

AUCROC =
1
nm

m∑
i=1

n∑
j=1

1[xi < yj] (5.1)

Looking at Equation (5.1) to calculate sensitivity of AUCROC, each
example can contribute to the sum multiple times. The sensitivity of
AUCROC is further complicated because the factor 1

nm
differs between

neighboring data sets when a positive example changes to a negative or
vice versa. Fortunately, we can bound the maximum change in AUCROC
between neighboring data sets to find the local sensitivity in Theorem 5.1.
Note that we assume no ties in the scores assigned to positive and nega-
tive examples to simplify the proofs, i.e., we assume a total ordering for
the ranking of examples from most to least likely to be positive. In case
of ties, a complete ordering can be created where an arbitrary order is
chosen within the tied negatives and tied positives and among scores with
both negatives and positives, the negative examples are placed before the
positive examples to avoid overestimation of the curves and areas.

Theorem 5.1. Local sensitivity of the area under the ROC curve (AUCROC) is

LSAUCROC(n,m) =

 1
min(n,m)

if n > 1 andm > 1

1 otherwise
(5.2)

where n andm are the number of positive and negative examples in the test set,
respectively.
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Proof. Let D and D ′ be two neighboring databases that differ by exactly
one row. Let n andm be the number of positive and negative examples in
D.

We consider the four cases of moving a negative in the ranking, moving
a positive, changing a positive to a negative (and moving it), and changing
a negative to a positive. Our analysis of these four cases requires n > 1
andm > 1, so for completeness, we say the local sensitivity of AUCROC
is 1 if either n 6 1 or m 6 1. Because the range of AUCROC is [0, 1], the
maximum change from neighboring databases is 1.
Case 1) Move negative: D ′ has the same xi and yj as D except for some xk
that is now x∗ in D ′. The only changes in Equation (5.1) occur when xk is
compared in the indicator functions. xk appears n times and each time
the indicator function can change by at most 1, so in this case, sensitivity is

n

nm
=

1
m

(5.3)

Case 2) Move positive: Similar to Case 1,D ′ is the same asD except for some
yk that changes to y∗. This yk appears in Equation (5.1) m times, so the
sensitivity is

m

nm
=

1
n

(5.4)

Case 3) Change negative to positive: Here, D ′ has n+ 1 positive andm− 1
negative examples with the same xi and yj except for some xk that has
been removed and a new positive example with score y∗ has been added.
Note that we are only concerned withm > 2, so D ′ has at least 1 negative
example. Without loss of generality, assume that k = m. Let C be the
result of the sum for the indicator functions that remain the same between
D and D ′. Note that 0 6 C 6 (m − 1)n. Using C to collect the identical
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terms, we have

AUCROC(D) =
1
nm

(C+

n∑
j=1

1[xm < yj]) (5.5)

AUCROC(D ′) =
1

(n+ 1)(m− 1)
(C+

m−1∑
i=1

1[xi < y
∗]). (5.6)

We need to bound the difference,

AUCROC(D) − AUCROC(D ′) = (
1
nm

−
1

(n+ 1)(m− 1)
)C

+
1
nm

n∑
j=1

1[xk < yj] −
1

(n+ 1)(m− 1)

m−1∑
i=1

1[xi < y
∗]

(5.7)

=
m− n− 1

nm(n+ 1)(m− 1)
C+

1
nm

n∑
j=1

1[xm < yj]

−
1

(n+ 1)(m− 1)

m−1∑
i=1

1[xi < y
∗]

(5.8)

Equation (5.8) is maximized when each of the three terms is maximized.
The first term is maximized whenm > n and C = (m− 1)n,

m− n− 1
nm(n+ 1)(m− 1)

C 6
m− n− 1
m(n+ 1)

. (5.9)

The second and third terms are bounded above by n
nm

and 0, respectively.
Putting it all together we have an upper bound of

m− n− 1
m(n+ 1)

+
n

nm
6
m− n− 1
nm

+
n

nm
=
m− 1
nm

6
m

nm
=

1
n

. (5.10)

Similarly, the lower bound for Equation (5.8) occurs when n > m and is

m− n− 1
m(n+ 1)

−
m− 1

(n+ 1)(m− 1)
=

(m− 1)(m− n− 1) −m(m− 1)
(n+ 1)m(m− 1)

(5.11)
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=
−n− 1
m(n+ 1)

= −
1
m

. (5.12)

Thus, for the case of changing a negative to a positive example, we have

LSAUCROC 6 max
(

1
n

, 1
m

)
=

1
min(n,m)

(5.13)

Case 4) Change positive to negative: Symmetric with Case 3, the result is the
same as Equation (5.13).

Taking the maximum among all four cases we have

LSAUCROC =
1

min(n,m)
(5.14)

as the local sensitivity for area under the ROC curve.

Local sensitivity itself is not suitable for creating differentially private al-
gorithms because adding different amounts of noise for adjacent databases
can leak information (Nissim et al., 2007). Instead, we use β-smooth sensi-
tivity which ensures that the scale of noise for adjacent databases is within
a factor of eβ.

Theorem 5.2. β-smooth sensitivity of the area under the ROC curve (AUCROC)
is

S∗AUCROC,β(D) = max
06i6n+m

LSAUCROC(i,n+m− i)e−β|i−n| (5.15)

where n andm are the number of positive and negative examples in D.

Proof. The proof is a straightforward application of the definition of β-
smooth sensitivity. Let n ′ andm ′ be the number of positive and negative
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examples in database D ′. From Definition 2.2 of Nissim et al. (2007),

S∗AUCROC,β(D) = max
D ′∈D

LSAUCROC(D ′)e−βd(D,D ′). (5.16)

The smallest row difference between D and D ′ occurs if we just need to
change the positive or negative labels on the minimal number of examples
to ensure the n andm counts are correct, hence d(D,D ′) > |n− n ′|. Then
we have,

S∗AUCROC,β(D) = max
D ′∈D

LSAUCROC(n ′,m ′)e−β|n−n ′| (5.17)

= max
06i6n+m

LSAUCROC(i,n+m− i)e−β|n−i| (5.18)

because there always exists some D ′ for which d(D,D ′) = |n− n ′|.

Figure 5.3 shows the smooth sensitivity given by Equation (5.15) for
several database sizes and values of β. The advantages of small smooth
sensitivity are only available with large β, large database size, and when
neither positive nor negative examples are extremely rare.

With theβ-smooth sensitivity of AUCROC, appropriately scaled Cauchy
noise can be used to obtain ε-differential privacy or Laplace noise can
be used to obtain (ε, δ)-differential privacy as described in Theorem 2.9.
Because the range of AUCROC is [0, 1], we truncate the output to be in
that range. The truncation does not violate differential privacy because an
adversary also knows the range of the true function (Ghosh et al., 2009).

5.5 Private Average Precision

Among the AUCPR estimators discussed in Chapter 4, average precision is
one of the recommended estimators. AP is somewhat similar to AUCROC
since it also uses sums and indicator functions for counting. This suggests
we may be able to bound the change in AP between neighboring databases
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Figure 5.3: β-smooth sensitivity for AUCROC versus n, the number of
positive examples in the database, for database sizes 100, 1000, and 10000.
β of none indicates the original, non-smoothed local sensitivity.

as we did for AUCROC in Theorem 5.1. We use the following formulation
for AP:

AP =
1
n

n∑
j=1

j

j+
∑m
i=1 1[xi > yj]

(5.19)

where xi for 1 6 i 6 m are the scores on the negative examples in the
test set and yj for 1 6 j 6 n are the scores on the positive examples.
Additionally, we assume that the yj’s (but not the xi’s) are sorted, i.e.,
y1 > y2 > ... > yn.

Precision at low recall has high variance because changing just a single
row for neighboring data sets can cause precision to go from 1 to 1

2 simply
by adding a high-scoring negative example. Though precision at low
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recalls can vary substantially between neighboring data sets, the impact
on average precision is mitigated by the 1

n
coefficient in Equation (5.19)

and the sensitivity is bounded in the following theorem.

Theorem 5.3. Local sensitivity of average precision (AP) is

LSAP =

max
(

log(n+1)
n

, 9+log(n−1)
4(n−1)

)
+ max

(
log(n+1)

n
, 9+logn

4n

)
if n > 1

1 if n 6 1
(5.20)

where n is the number of positive examples in the test set.

Proof. Let x1, x2, ..., xm and y1,y2, ...,yn be the classifier scores on the m
negative and n positive examples for a data setD. To bound the maximum
change in AP betweenD and a neighboring database, we consider the four
cases of adding or removing a positive example and adding or removing a
negative example. Once we have characterized adding and removing each
type of example, we consider the combination of adding and removing in
sequence to find the local sensitivity when the size of the database remains
the same.

The rest of this proof will assume n > 1, so for n 6 1 we default to a
local sensitivity of 1, which encompasses the maximum range from 0 to 1
of AP 1.
Case 1) Remove positive: Assume WLOG that y1 > y2 > ... > yn. Consider
makingD ′ by removing a positive example yz. Separating out the different
parts of the AP sum to facilitate comparison between D and D ′, we have

AP(D) =
1
n

[
z−1∑
i=1

i

i+ si
+

z

z+ sz
+

n∑
i=z+1

i

i+ si

]
(5.21)

1Though there is a non-zero minimum AP for any particular choice of n andm, the
minimum AP approaches 0 as n

m
→ 0.
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where si =
∑m
j=1 1[xj > yi]. Removing the yz example for D ′ yields

AP(D ′) = 1
n− 1

[
z−1∑
i=1

i

i+ si
+

n∑
i=z+1

i− 1
i− 1 + si

]
. (5.22)

We need to bound |AP(D) − AP(D ′)|, so we start by aligning like terms
from Equations (5.21) and (5.22).

AP(D) − AP(D ′) = 1
n(n− 1)

[
z−1∑
i=1

(
(n− 1)i
i+ si

−
ni

i+ si

)
+

(n− 1)z
z+ sz

+

n∑
i=z+1

(n− 1)i
i+ si

−
n(i− 1)
i− 1 + si

]
(5.23)

=
1

n(n− 1)

[
z−1∑
i=1

−i

i+ si
+

(n− 1)z
z+ sz

+

n∑
i=z+1

(n− 1)i(i− 1 + si) − n(i− 1)(i+ si)
(i+ si)(i− 1 + si)

]
(5.24)

=
1

n(n− 1)

[
z−1∑
i=1

−i

i+ si
+

(n− 1)z
z+ sz

+

n∑
i=z+1

i− i2 − isi + nsi
(i+ si)(i− 1 + si)

] (5.25)

=
1

n(n− 1)

[
z−1∑
i=1

−i

i+ si
+

(n− 1)z
z+ sz

+

n∑
i=z+1

−i

i+ si
+

n∑
i=z+1

nsi

(i+ si)(i− 1 + si)

] (5.26)

The two sums of −i
i+si

in Equation (5.26) include all i’s except i = z. So we
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can add and subtract z
z+sz

to get,

AP(D) − AP(D ′) = 1
n(n− 1)

[
nz

z+ sz
+

n∑
i=1

−i

i+ si

+

n∑
i=z+1

nsi

(i+ si)(i− 1 + si)

]
.

(5.27)

To find |AP(D) − AP(D ′)|, we maximize the absolute value of each term
in Equation (5.27) separately. The first term is maximized when sz = 0, so∣∣∣∣ z

(n− 1)(z+ sz)

∣∣∣∣ 6 1
n− 1

. (5.28)

The second term is maximized when si = 0 ∀ i,∣∣∣∣∣ 1
n(n− 1)

n∑
i=1

−i

i+ si

∣∣∣∣∣ 6 n

n(n− 1)
=

1
n− 1

. (5.29)

For the third term, the values of si that maximize the sum depend on i,∣∣∣∣∣ 1
n− 1

n∑
i=z+1

si

(i+ si)(i− 1 + si)

∣∣∣∣∣ 6
∣∣∣∣∣ 1
n− 1

n∑
i=z+1

si

(i− 1 + si)2

∣∣∣∣∣ . (5.30)

For a simpler analysis, we use the relaxation in Equation (5.30). We need
to maximize si

(i−1+si)2 for each i where si is free to take any (integer) value
between 0 and m. Taking the derivative of f(x) = x

(i−1+x)2 , setting it to
0, and then solving for x, we find that f(x) is maximized when x = i− 1.
Since i is an integer and i > 1, this means that the maximizer si = i− 1 is
always a valid choice for si, which gives an upper bound of

1
n− 1

n∑
i=z+1

i− 1
(i− 1 + i− 1)2 =

1
4(n− 1)

n∑
i=z+1

1
i− 1

. (5.31)
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Since all terms of the sum in Equation (5.31) are positive (z > 1 so i > 2), it
is maximized when there are as many terms as possible, i.e., when z = 1:

1
4(n− 1)

n∑
i=z+1

1
i− 1

6
1

4(n− 1)

n∑
i=2

1
i− 1

=
1

4(n− 1)

n−1∑
j=1

1
j

. (5.32)

The final sum in Equation (5.32) is simply the (n− 1)st harmonic number,
Hn−1. Therefore, an upper bound for the third term in Equation (5.27) is

Hn−1

4(n− 1)
. (5.33)

Combining the three terms from Equations (5.28), (5.29) and (5.33) to
bound Equation (5.27), we have

LSAP =
2

n− 1
+

Hn−1

4(n− 1)
=

8 +Hn−1

4(n− 1)
(5.34)

Case 2) Add positive: Equivalent to Case 1, but ifD has n positive examples,
then D ′ has n+ 1, so the sensitivity is

LSAP =
8 +Hn

4n
. (5.35)

Case 3) Remove negative: Consider making D ′ by removing a negative
example xk.

AP(D) =
1
n

n∑
i=1

i

i+ si
(5.36)

AP(D ′) = 1
n

n∑
i=1

i

i+ si + δi
(5.37)

where si =
∑m
j=1 1[xj > yi] and δi = −1[xk > yi] is the change in false
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positive counts between D and D ′. The difference in AP is

AP(D) − AP(D ′) = 1
n

n∑
i=1

i

i+ si
−

i

i+ si + δi
(5.38)

=
1
n

n∑
i=1

i(i+ si + δi) − i(i+ si)

(i+ si)(i+ si + δi)
(5.39)

=
1
n

n∑
i=1

iδi

(i+ si)(i+ si + δi)
. (5.40)

δi ∈ {0,−1}, so the absolute value of Equation (5.40) is maximized when
δi = −1 and si = 1 ∀ i (si = 1 and not 0 because there must be an existing
false positive to remove).

|AP(D) − AP(D ′)| 6 1
n

n∑
i=1

i

(i+ 1)i
=

1
n

n∑
i=1

1
i+ 1

(5.41)

This is again a harmonic sum (minus the first term), so

LSAP =
Hn+1 − 1

n
. (5.42)

Case 4) Add negative: If we add a negative example instead of removing it,
we again get to Equation (5.40), but now δi ∈ {0, 1}, and the absolute value
is maximized when δi = 1 and si = 0 ∀ i.

|AP(D) − AP(D ′)| 6 1
n

n∑
i=1

i

i(i+ 1)
=
Hn+1 − 1

n
. (5.43)

Therefore the sensitivity for adding a negative example is the same as for
removing a negative.

With bounds for each of the four cases, we can find the sensitivity of
AP for changing a single row in a database. Changing a row is equivalent
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to adding and removing a row (or vice versa), so the sensitivity is bounded
by the sum of sensitivities of adding and removing an example. Thus,

LSAP = max
(
Hn+1 − 1

n
, 8 +Hn−1

4(n− 1)

)
+ max

(
Hn+1 − 1

n
, 8 +Hn

4n

)
(5.44)

is our tightest bound on the sensitivity. We can remove the dependence
on the harmonic numbers by using the fact that Hn < 1 + logn:

LSAP = max
(

log(n+ 1)
n

, 9 + log(n− 1)
4(n− 1)

)
+ max

(
log(n+ 1)

n
, 9 + logn

4n

) (5.45)

Tighter bounds exist for the harmonic numbers (Guo and Qi, 2011; Qi and
Guo, 2009), but we use this approximation for its simplicity.

Note that the local sensitivity of AP depends only on the number of
positive examples, n, and not the number of negative examples. This
aligns with the notion that AP (and PR curves) focuses on the positives
and does not give credit for true negatives.

Theorem 5.4. β-smooth sensitivity of average precision (AP) is

S∗AP,β = max
06i6n+m

LSAP(i)e
−β|i−n| (5.46)

Proof is virtually identical to that of Theorem 5.2.
As in AUCROC, we can use Cauchy or Laplace noise to produce ε- or

(ε, δ)-differentially private outputs. As discussed in Chapter 3, the range
of AP is not [0,1] because the minimum AP for any particular n andm is
strictly greater than zero. Though the minimum AP can be sizable (about
0.3 when n = m), it depends on the non-public n and m, so we cannot
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Figure 5.4: Root-mean-square error (RMSE) of (ε, δ)-differentially private
AUCROC versus ε for several different data set sizes (n=m) usingβ-smooth
sensitivity. The far left subplots use Cauchy noise, such that δ = 0, and are
ε-differentially private. The other subplots use Laplace noise with varying
values of δ.

truncate to the database specific minimum AP and instead just truncate to
the overall range of [0,1].

5.6 Experiments

In this section, we apply the algorithms from Sections 5.4 and 5.5 to two
data sets. Since our mechanisms operate on the outputs of a classification
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model and the true labels, they should not be influenced by the number
of features in the original data set. The first data set is adult from the UCI
repository (Bache and Lichman, 2013). It contains potentially private infor-
mation in both the class label (yearly income greater or less than $50,000)
and other features (e.g., capital gain/loss and work status) that individuals
might be hesitant to provide without privacy guarantees. The data set
has 14 features and 48,842 examples. The second data set is diabetes –
a medical data set from a Kaggle competition2 to predict diabetes from
anonymized electronic health records. We processed the data set to in-
clude age, gender, and binary features for the 50 most common drugs,
diagnoses, and laboratory tests for a total of 152 features. The data set
contains 9,948 patients. Again, many of these features could be considered
private information.

We imagine a scenario where an organization collects this informa-
tion from individuals with the promise that all query responses will be
differentially private. In these experiments, we trained a model on part
of each data set using logistic regression. We perform differentially pri-
vate evaluation on subsets of the rest of the data set. These subsets are
a surrogate for a private test database. We investigate the accuracy of
the differentially private evaluations with root-mean-square error (RMSE)
between the differentially private output and the true answer as calculated
directly from the private data.

Figure 5.4 shows the error of private AUCROC for several data set
sizes. When δ = 0, Cauchy noise is used as described in Theorem 2.9.
This provides stronger privacy guarantees, but the RMSE approaches zero
error more slowly as ε and n increase. For δ > 0, Laplace noise is used
for the relaxed (ε, δ)-differential privacy. As data set size or ε increases,
utility improves as RMSE approaches 0. With 1000 each of positive and
negative examples in the data set, reasonable empirical accuracy of the

2http://www.kaggle.com/c/pf2012-diabetes
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differentially private AUCROC is obtained for ε > 0.25.
For AP, we begin with the same setup as Figure 5.4, with error versus

ε for several data set sizes with n = m. The general trends for AP in
Figure 5.5 are similar to those for AUCROC, but with much higher error
and slower decay of error as ε increases. This is due to the additional logn
factor in the local sensitivity of AP. Figure 5.6 shows the distribution of
outputted private AP values for selected n andm. For larger data sets like
the top histogram, the outputs are nicely clustered around the true AP.
However, when n and m are small, most of the outputs are truncated to 0
or 1.

5.7 Chapter Summary

Differentially private models allow organizations with sensitive data to
provide guarantees about the effect of model release on the privacy of
database entries. But for these models to be effectively evaluated, they
must be run on new data, which may have similar privacy concerns. We
presented methods for providing the same differential privacy guarantees
for model evaluation, irrespective of the training setting. We provided
high-utility mechanisms for AUCROC and AP and discussed the straight-
forward application of Laplace noise for accuracy and similar metrics.
Future work includes creating mechanisms for other evaluation methods,
such as private ROC and PR curves, and investigating the effect of per-
forming cross-validation on a private database. We hope the discussion
of differential privacy for model evaluation motivates future work to en-
able differential privacy to be applied more broadly throughout machine
learning.

This chapter on private evaluation concludes the main contributions
of this dissertation. In the final chapter we discuss future work in more
detail and conclude with a summary.
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Figure 5.5: Root-mean-square error of (ε, δ)-differentially private AP ver-
sus ε for several different data set sizes (n = m) using β-smooth sensi-
tivity. The far left subplots use Cauchy noise, such that δ = 0, and are
ε-differentially private. The other subplots use Laplace noise.
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Figure 5.6: Histograms of (ε, δ)-differentially private AP output with
varying data set sizes on the adult data set. ε = 1 and δ = 0.01.
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6 conclusion

6.1 Future Work

Before a final summary in Section 6.2, we briefly discuss several possibili-
ties for future work building upon and inspired by this dissertation.

Aggregation with Different Skews

As mentioned in Section 3.4, the best way to aggregate PR curves from tasks
with different skews is not known. The normalization used for AUCNPR
suggests calculating the percentage of the achievable range of precision
obtained at each recall by each of the curves. This can then be averaged
across the tasks and translated back to a PR curve by choosing a repre-
sentative skew. However, this leads to nonlinear transformations of PR
space that can change the area under the curves in counterintuitive ways.
An effective method for generating a summary PR curve that preserves
measures of area in a satisfactory way and accounts for the unachievable
region would be useful and is a promising area of future research.

AUCPR Estimators

While the lower trapezoid, average precision, and interpolated median estimators
from Chapter 4 all converge to the correct answer in expectation as the test
set size increases, they can have poor performance for small data sets. A
high variance of the estimates is to be expected with few samples, but the
fact that the recommended methods’ estimates were substantially biased is
troubling. Investigation of how these methods work on real outputs from
trained classifiers and how well real outputs match the three scenarios
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would tell us how concerning this really is. Additionally, development of
an improved estimator that is not as biased for small sample sizes would
be valuable. An improved estimator would be particularly useful for cross-
validation since cross-validation’s poor performance is mostly due to the
biased estimators providing the wrong center for the interval.

AUCPR Confidence Intervals

In Chapter 4, we recommend using the binomial or logit methods to com-
pute confidence intervals because they provide proper coverage. While the
coverage is above the nominal (1 −α)%, the intervals appear to be slightly
too wide, as the coverage is consistently above (1 − α)% in Figure 4.7. The
intervals being wider than necessary is also supported by Figure 4.8. This
suggests that the sample size, n, used in calculating the standard error
is not entirely correct. Perhaps the number of negative examples should
partially contribute to an effective sample size that would produce tighter,
but still valid, intervals. Thus, empirical and theoretical investigation
of a more representative effective sample size for use in the parametric
intervals is an intriguing area for future research.

Private Curves

Chapter 5 presented private methods for calculating AUCROC and AUCPR.
However, the ROC and PR curves themselves are highly indicative of per-
formance and provide a visual representation of the trade-offs at different
operating points. Therefore, it would useful to have private methods for
generating ROC and PR curves. Since confusion matrices are simply a
collection of count queries, a simple approach is to add Laplace noise to
each of the N confusion matrices from every decision threshold. Unfortu-
nately, because the privacy budget must be split amongst all the confusion
matrices, there is too much noise added at each point to be useful. This
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approach also does not improve with more data, as the privacy budget
must be spread across even more applications of Laplace noise with the
larger test set.

Though adding noise to each point individually is not practical, it ap-
pears a private version of the curves might still be possible because curves
from neighboring databases are quite similar, especially as N increases.
Some potential approaches include choosing a small number of “impor-
tant” points in the true curve to add noise to, restricting the outputted
curves to a parametric family like binormal ROC curves, using the expo-
nential mechanism to choose from some set of potential curves, or using
the propose-test-release framework of Dwork and Lei (2009).

Cross-Validation and Privacy

Another important topic regarding privacy of test sets is how differential
privacy applies to the commonly used evaluation technique of k-fold cross-
validation. In cross-validation, a data set is divided into k folds and several
iterations of training and testing are performed to obtain an estimate of
future performance. Open questions regarding private applications of
cross-validation include:

• When training and testing on the k folds, should the sequential com-
position of Theorem 2.5 be used? Or is the more generous parallel
composition from McSherry (2009) applicable?

• How should the folds be chosen? Should the folds be randomized
for every query or just once for each database?

• Can a non-private learning algorithm (in the form of code) be sub-
mitted and evaluated provided the only output is the result of a
differentially private evaluation method?
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• Are there additional query types or constructs that should be added
to a private database system to facilitate cross-validation?

6.2 Summary

In this dissertation, we investigated novel properties of PR space, assessed
methods for estimating AUCPR, and considered privacy preservation for
test data in support of the thesis: Not all methods of generating thresholdless
metrics are created equal, and potential pitfalls and benefits accrue based on which
methods are chosen.

In Chapter 3, we demonstrated the existence of the unachievable region
in PR space, proved theorems regarding its size and location, and discussed
the implications for machine learning practitioners. In particular, great
care must be taken when skew changes, because PR curves, AUCPR, AP,
and Fβ metrics intrinsically change with skew, regardless of the algorithm
or model being evaluated. Next, an empirical evaluation of methods for
estimating AUCPR and associated confidence intervals was performed
in Chapter 4. We showed that different estimators do exhibit different
behavior based on the score distributions and test set size. Therefore,
choosing a good estimator and confidence interval method for any given
problem is not simply a matter of blindly using a default choice. While we
provide recommendations on good all-around methods, it is important to
understand the properties of these methods and use those that best fit the
prior knowledge of a particular task.

Switching to privacy, in Chapter 5 we raised the issue of test set privacy
in addition to the privacy of training data. While a differentially private
learning algorithm may provide a model that may be published with a
small risk of disclosure, the same privacy concerns exist when evaluating
that model. We provide algorithms to create private AUCROC and AP
and prove their differential privacy, and we outline how to use standard
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differential privacy methods to privatize dichotomous model metrics.
In summary, evaluation methods are just as important as the learn-

ing algorithms we evaluate, and they should bear equal scrutiny and
investigation. This dissertation investigated PR analysis and differentially
private evaluation to expand the knowledge of thresholdless evaluation
and provided several avenues for future research in Section 6.1.
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list of notation

D

a data set or database.

Hn

nth harmonic number.

Beta(a,b)

beta distribution parametrized by shape parameters a and b.

Binomial(n,p)

binomial distribution for n trials with probability p of success.

Uniform(a,b)

uniform distribution on the range [a,b].

AUCPRMAX

maximum AUCPR, b − a when calculating AUCPR for recalls be-
tween a and b.

AUCPRMIN

minimum AUCPR, equivalent to the size of the unachievable region.

fn

number of false negatives in test set.

fp

number of false positives in test set.

APMIN

minimum AP as required by the unachievable region.
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θ

variable for AUCPR.

tn

number of true negatives in test set.

tp

number of true positives in test set.

c

decision threshold for labeling examples greater than c positive and
the rest negative.

d(D,D ′)

number of rows that differ between D and D ′.

D

set of all data sets with N examples or databases with N rows.

1[A]

indicator function for event A, 0 if A is false, 1 if A is true.

m

number of negative examples in test set.

N

total number of examples in test set.

n

number of positive examples in test set.
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N(µ,σ2)

normal distribution with mean µ and variance σ2.

p

precision on test set.

π

proportion of positive examples in test set, n
N

.

r

recall on test set.

X

random variable for outputs on negative examples.

xi

score or model output on the ith negative test example.

Y

random variable for outputs on positive examples.

yj

score or model output on the jth positive test example.

y(i)

ith order statistic of y, i.e., the ith largest value among the yi’s.

Z

random variable for outputs (all examples).
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list of acronyms

AP average precision.

AUCNPR normalized area under the PR curve.

AUCPR area under the PR curve.

AUCROC area under the ROC curve.

CI confidence interval.

FPR false positive rate.

IMDB internet movie database.

IR information retrieval.

LSM Learning using Structural Motifs.

MAP mean average precision.

PR precision-recall.

RMSE root-mean-square error.

ROC receiver operating characteristic.

SAYU Score-As-You-Use.

TPR true positive rate.

UW-CSE University of Washington Department of Computer Science and
Engineering.

WLOG without loss of generality.
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