Unachievable Region in Precision-Recall Space and Its Effect on Empirical Evaluation

Kendrick Boyd¹ Vítor Santos Costa² Jesse Davis³ David Page¹

¹University of Wisconsin – Madison

²University of Porto, Portugal

³KU Leuven, Belgium

June 28, 2012

Introduction

Unachievable Region

Precision-recall curves cannot go through the unachievable region.

Boyd et al. (ICML 2012)

Unachievable Region in PR Space

2

Introduction

Unachievable region varies with the data set.

Introduction

Unachievable region varies with the data set.

Boyd et al. (ICML 2012)

Unachievable Region in PR Space

Precision-Recall Analysis

$$Precision = \frac{TP}{TP + FP}$$
$$Recall = \frac{TP}{TP + FN}$$

$$Precision = \frac{TP}{TP + FP}$$
$$Recall = \frac{TP}{TP + FN}$$

Scores used in PR analysis

- Precision-recall (PR) curves
- Area under PR curve (AUCPR)
- *F*_β
- Mean average precision

• Precision has high variance at low recall

- Precision has high variance at low recall
- Can translate between PR curves and ROC curves

- Precision has high variance at low recall
- Can translate between PR curves and ROC curves

Class Skew

Proportion of positive examples in a data set.

- Precision has high variance at low recall
- Can translate between PR curves and ROC curves
- ROC curves independent of class skew
- PR curves sensitive to class skew

Class Skew

Proportion of positive examples in a data set.

Outline

Introduction

2 Unachievable Points

3 Unachievable Region

4 Discussion

- Downsampling
- Aggregation
- F1 Score

Conclusion

- 100 positive examples
- 200 negative examples
- Hold precision constant at 0.2

- 100 positive examples
- 200 negative examples
- Hold precision constant at 0.2

	Actual				
	Р	Ν			
Ρ	20	80			
Ν	80	120			
	100	200			
0.2 recall					

- 100 positive examples
- 200 negative examples
- Hold precision constant at 0.2

	Act	ual			Act	ual	
	Р	Ν			Р	Ν	
Ρ	20	80	-	Ρ	40	160	
Ν	80	120		Ν	60	40	
	100	200			100	200	
0.2 recall				0.4 recall			

- 100 positive examples
- 200 negative examples
- Hold precision constant at 0.2

	Actual			Actual			Actual	
	Р	Ν		P	Ν		Р	Ν
Ρ	20	80	Ρ	40	160	Ρ	60	240
Ν	80	120	Ν	60	40	Ν	40	-40
	100	200		100	200		100	200
0.2 recall		().4 rec	all	().6 rec	all	

Theorem

Precision (p) and recall (r) must satisfy

$$p \ge \frac{\pi r}{1 - \pi + \pi r}$$

where $\pi = \frac{pos}{pos+neg}$ is the class skew.

Outline

1 Introduction

2 Unachievable Points

O Unachievable Region

Discussion

- Downsampling
- Aggregation
- F1 Score

Conclusion

Unachievable Region

Example PR curves with $\pi = 0.33$.

Unachievable Region Sample PR Curve —— Random Guessing -----Minimum PR Curve ——

- Random Guessing: randomly assigned labels according to class skew
- Minimum PR Curve: worst possible ranking

Theorem

The area of the unachievable region in PR space and the minimum $\rm AUCPR$, for class skew π , is

$$\mathrm{AUCPR}_{\mathrm{MIN}} = 1 + rac{(1-\pi)\ln(1-\pi)}{\pi}$$

Minimum AUCPR

Theorem

The area of the unachievable region in PR space and the minimum $\rm AUCPR$, for class skew $\pi,$ is

$$\mathrm{AUCPR}_{\mathrm{MIN}} = 1 + \frac{(1-\pi)\ln(1-\pi)}{\pi}$$

Outline

Introduction

- 2 Unachievable Points
- 3 Unachievable Region

4 Discussion

- Downsampling
- Aggregation
- F1 Score

Conclusion

\bullet Unachievable region always included "for free" in AUCPR

- Unachievable region always included "for free" in AUCPR
- $\bullet~{\rm Range}$ of ${\rm AUCPR}$ scores is $[{\rm AUCPR}_{\rm MIN},1]$ and thus depends on skew

- \bullet Unachievable region always included "for free" in AUCPR
- $\bullet~{\rm Range}$ of ${\rm AUCPR}$ scores is $[{\rm AUCPR}_{\rm MIN},1]$ and thus depends on skew
- $\bullet~\mathrm{AUCPR}$ not comparable from different skews

Normalized area under precision-recall curve

$$\mathrm{AUCNPR} = rac{\mathrm{AUCPR} - \mathrm{AUCPR}_{\mathrm{MIN}}}{1 - \mathrm{AUCPR}_{\mathrm{MIN}}}$$

Pros

- Range of AUCNPR is [0,1] regardless of skew
- $\bullet\,$ With same skew, preserves ordering of AUCPR
- Cons
 - No good interpretation as an area in PR space
 - $\bullet~\mathrm{AUCNPR}$ of random guessing is not simple
 - Still sensitive to skew

• Often downsample positives and negatives differently

- Often downsample positives and negatives differently
- Changes unachievable region for PR analysis

- Often downsample positives and negatives differently
- Changes unachievable region for PR analysis

Cohort Study

Should preserve the true skew

- Often downsample positives and negatives differently
- Changes unachievable region for PR analysis

Cohort Study

Should preserve the true skew

Case-control Study

Artificially makes the ratio of negatives to positives 1:1, 2:1, etc.

Cohort Study

120:1 ratio ($\pi = 0.008$) AUCPR = 0.545 AUCPR_{MIN}= 0.004 AUCNPR = 0.543 1:1 ratio ($\pi = 0.5$) AUCPR = 0.965 AUCPR_{MIN} = 0.307 AUCNPR = 0.950 Sometimes want to combine results from problems with different skews

- Cross-validation folds
- Multiple tasks

Sometimes want to combine results from problems with different skews

- Cross-validation folds
- Multiple tasks

AUCNPR is a step in the right direction

- AUCNPR range is [0,1] for each fold/task
- Mean AUCNPR gives mean fraction of achievable area obtained
- But more work is needed!

F1 Score and Unachievable Region

F1 Contours -----

$$F1 = \frac{2pr}{p+r}$$

F1 Score and Unachievable Region

$$F1 = \frac{2pr}{p+r}$$

Outline

Introduction

- 2 Unachievable Points
- 3 Unachievable Region

4 Discussion

- Downsampling
- Aggregation
- F1 Score

5 Conclusion

• Awareness of the unachievable region is critical for precision-recall analysis

- Awareness of the unachievable region is critical for precision-recall analysis
- Shown how to compute this region from just the class skew

- Awareness of the unachievable region is critical for precision-recall analysis
- Shown how to compute this region from just the class skew
- Recommendation: Always show unachievable region in figures

- Awareness of the unachievable region is critical for precision-recall analysis
- Shown how to compute this region from just the class skew
- Recommendation: Always show unachievable region in figures
- AUCNPR: a first step towards scores that account for the unachievable region

Acknowledgments

- Elizabeth S. Burnside
- Jude Shavlik

- CIBM Training Program (NIH 5T15LM007359)
- NIGMS grant R01GM097618-01
- NLM grant R01LM011028-01
- NIEHS grant 4R01ES017400-03
- ERDF through the Programme COMPETE
- Portuguese Government through FCT
- Project HORUS ref. PTDC/EIA-EIA/100897/2008
- European Union Seventh Framework Programme FP7/2007-2013
- Research Fund K.U. Leuven (CREA/11/015 and OT/11/051)
- EU FP7 Marie Curie Farerr Integration Grant (#294068)
- FWO-Vlaanderen (G.0356.12)
- UW Carbone Cancer Center

Questions?

A few desirable properties for a modified F1 score, f',

$$f'(r,p) = 0$$
 if $p = rac{r\pi}{1-\pi+r\pi}$
 $f'(r_1,p) < f'(r_2,p)$ iff $r_1 < r_2$
 $f'(r,p_1) < f'(r,p_2)$ iff $p_1 < p_2$

A few desirable properties for a modified F1 score, f',

$$f'(r,p) = 0$$
 if $p = rac{r\pi}{1-\pi+r\pi}$
 $f'(r_1,p) < f'(r_2,p)$ iff $r_1 < r_2$
 $f'(r,p_1) < f'(r,p_2)$ iff $p_1 < p_2$

Impossible!

$$0 = f'(0,0) < f'(0,\pi) < f'(1,\pi) = 0$$

Relaxed properties for a modified F1 score, f',

$$f'(r, p) = 0$$
 if $p = \frac{r\pi}{1 - \pi + r\pi}$
 $f'(r_1, p) \le f'(r_2, p)$ iff $r_1 \le r_2$
 $f'(r, p_1) \le f'(r, p_2)$ iff $p_1 \le p_2$

Relaxed properties for a modified F1 score, f',

$$f'(r, p) = 0 \text{ if } p = rac{r\pi}{1 - \pi + r\pi}$$

 $f'(r_1, p) \le f'(r_2, p) \text{ iff } r_1 \le r_2$
 $f'(r, p_1) \le f'(r, p_2) \text{ iff } p_1 \le p_2$

One possible f'

$$f'(r,p) = \begin{cases} 0 & \text{if } p \leq \pi \\ rac{2(p-\pi)r}{p-\pi+(1-\pi)r} & \text{if } p > \pi \end{cases}$$

24

Proof of Unachievable Points Theorem

Theorem

Precision (p) and recall (r) must satisfy

$$p \ge \frac{\pi r}{1 - \pi + \pi r}$$

where $\pi = \frac{pos}{pos+neg}$ is the proportion of positive examples.

$$p = \frac{TP}{TP + FP}$$

$$\geq \frac{TP}{TP + (1 - \pi)n}$$

$$= \frac{r\pi n}{r\pi n + (1 - \pi)n}$$

$$= \frac{r\pi}{r\pi + (1 - \pi)}$$

Boyd et al. (ICML 2012)

Unachievable Region in PR Space

Proof of Minimum AUCPR Theorem

Theorem

The area of the unachievable region in PR space and the minimum AUCPR, for proportion of positives π , is

$$AUCPR_{MIN} = 1 + \frac{(1-\pi)\ln(1-\pi)}{\pi}$$

$$AUCPR_{MIN} = \int_0^1 \frac{r\pi}{1 - \pi + r\pi} dr$$

= $\frac{r\pi + (\pi - 1)\ln(\pi(r - 1) + 1)}{\pi} \Big|_{r=0}^{r=1}$
= $\frac{1}{\pi} (\pi + (\pi - 1)(\ln(1) - \ln(1 - \pi)))$
= $1 + \frac{(1 - \pi)\ln(1 - \pi)}{\pi}$

Boyd et al. (ICML 2012)

Proof of Minimum AP Theorem

Theorem

The minimum average precision, for pos and neg positive and negative examples, respectively, is

$$AP_{MIN} = \frac{1}{pos} \sum_{i=1}^{pos} \frac{i}{i + neg}$$

$$\begin{aligned} \Delta P_{\rm MIN} &= \frac{1}{pos} \sum_{i=1}^{pos} \frac{\frac{\pi i}{pos}}{1 - \pi + \frac{\pi i}{pos}} \\ &= \frac{1}{pos} \sum_{i=1}^{pos} \frac{\frac{posi}{(pos+neg)pos}}{1 + \frac{pos}{pos+neg}(\frac{i}{pos} - 1)} \\ &= \frac{1}{pos} \sum_{i=1}^{pos} \frac{\frac{i}{pos+neg}}{\frac{i+neg}{pos+neg}} = \frac{1}{pos} \sum_{i=1}^{pos} \frac{i}{i+neg} \end{aligned}$$

Boyd et al. (ICML 2012)

A