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Abstract

With the recent development of pervasive sensing, lightweight, connected devices
are revolutionizing our lives and bring us to the era of the Internet-of-Things (IoT).
Specifically, connected sensors, e.g., cameras, LIDARs, motion sensors, installed
in a moving platform (e.g., mobile vehicle) can provide broad views of wide-area
environments quickly and efficiently. If many vehicles incorporate such sensing
systems, they together can be composed into a unique crowd-sourced platform,
they can gather fine-grained, diverse, and noisy information at city-scales. However,
multiple sensors can generate large amounts of data and it is hard to aggregate
in a centralized cloud-hosted location. We need some form of interim processing
platform to digest such data and avoid letting these devices constantly ping the
cloud. Compared to cloud computing platforms, edge computing platforms can
provide unique edge services with lower latency, greater responsiveness and more
efficient use of network bandwidth. To push computational and storage capabilities
even closer to end sensing devices, we consider a new edge computing paradigm
called the roaming edge, in which the edge nodes themselves are in motion, e.g.,
mounted in vehicles. The roaming edge extends the notion of edge computing to
provide local computing capabilities, without requiring offload computing tasks to
the cloud. These characteristics make roaming edge computing platforms suitable
for providing the first line of analytics support for vehicular sensing applications.

By loading computation tasks from cloud computing platforms to roaming edge
computing platforms and even connected devices, we can achieve greater efficiency

while accomplishing our desired goals. In order to understand how to leverage
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the roaming edge in developing vehicular sensing applications, the following ques-
tions need to be answered: (i) How should we leverage the advantages of edge
computing to accelerate and improve vehicular sensing applications? (ii) What
are good ways to manage data access and to control what data each stakeholder
in this ecosystem can access? (iii) What are good resource allocation strategies to
achieve a predefined goal, and what are the trade-offs between resource allocation
and system performance? Motivated by these questions, our research focuses on
exploring how to design and implement vehicular sensing applications that can
benefit from the roaming edge. Application in many domains can benefit from
edge computing paradigms, we focus on applications of intelligent transportation
systems in this dissertation. We start by designing and implementing a vehicle
tracking application to explore challenges of building applications leveraging the
roaming edge. Moreover, we explore the limitations of existing driving behavior
evaluation solutions and proposed a multi-modal and lightweight real-time sens-
ing system that leverages audio-visual cues to augment driving behavior analysis.
Finally, we develop a low cost Wi-Fi-based in-vehicle monitoring and tracking sys-
tem for transit and human mobility analytics. In each of these applications, the
complex task or problem can be break into simpler sub-problems such that static
edge compute nodes, roaming edge nodes and even connected in-range sensors
are able to contribute to the end goal.

Our work on smart transportation applications demonstrates the advantages of
roaming edge computing platforms for vehicular sensing applications requiring
intensive computation, low latency and high privacy. Furthermore, we discuss how
such an innovative structure can be applied to other applications that can improve
the quality of life. Ultimately, we summarize what are the common characteristics
for applications running at the roaming edge and how roaming edge computing

can help improve vehicular sensing applications.



Introduction

1.1 Overview

Connected devices and sensors are becoming increasingly popular: an estimated
50 billion connected devices will be sold by 2020 [1]. With the advancement of
pervasive sensing technologies, fruitful on-device sensors enable a wide range of
applications in transportation systems to improve transportation safety, mobility
and provide useful transportation analytics. Most city planners try to gather traffic
flow information using a set of static connected sensors (e.g., roadside cameras, and
road sensors) at the city-scale. For example, many intelligent parking services have
been built using static sensors that are installed under or above individual parking
spots to provide parking spot availability information. Public safety agencies lever-
age static security cameras across a city to search for and track people or objects of
interest. However, installing these static sensors across a large area incurs massive
deployment and maintenance efforts, and the coverage of these sensors is necessar-
ily limited. We envision that these connected sensors can be installed on a moving
platform to address the drawbacks of static sensors. More concretely, we focus on
vehicles — autonomous or otherwise — that can be equipped with a plethora of
sensors such as camera, LiDAR (light detection and ranging), RADAR and more.

These in-vehicle sensors can provide context information of its surrounding and a



large set of distributed sensors mounted on vehicles can provide new and unique
forms of information not available before.

Some of the sensors (e.g., camera, LIDAR) generate large amounts of data which
need to be processed in a timely manner to support applications with strict latency
requirements. Unfortunately, such data cannot be easily offloaded from vehicles to
the cloud with current network architectures. To overcome the shortage of current
technologies, a growing number of research studies have been done in the area of
edge computing [2, 3, 4, 5]. Edge computing services distribute computing and
storage resources closer to the connected devices. To bring computational and
storage capabilities even closer to where the data is being generated, we consider a
new edge computing paradigm called the roaming edge, in which the edge nodes
themselves are in motion, e.g., mounted in vehicles. With the help of roaming
edge nodes, various forms of data can be processed locally, without requiring
offload. These characteristics make roaming edge computing platforms suitable for
performing aggregate analysis without incurring transfer overheads. Further, once
a reasonable fraction of vehicles are equipped with these sensing platforms, they
can naturally become a crowd-sourced platform to gather, analyze, and organize
various forms of data at the city-scale and beyond.

In this dissertation, we try to understand the advantages of roaming edge
computing and how to leverage these advantages for a vehicular sensing framework
that could bring improvements to various applications in transportation systems.

We aim to answer the following questions:

(i) How should we leverage the advantages of edge computing to accelerate and improve
vehicular sensing applications?

(ii) What are good ways to manage data access and to control what data each stakeholder
in this ecosystem can access?

(iii) What are good resource allocation strategies to achieve a predefined goal, and what
are the trade-offs between resource allocation and system performance?
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Figure 1.1: Our work in this thesis. An edge-enhanced vehicular sensing framework
and its applications. We completed three applications leveraging the roaming edge
compute nodes. A vehicle tracking application, a driving behavior analytics appli-
cation and a transit and human mobility analytics application. Each application
can choose to leverage resources on roaming edge nodes, static edge nodes and
cloud-hosted services.

We have conducted research by developing three smart transportation applica-
tions to explore the answers to these questions. We envision that connected sensors
can be installed on a moving platform and leverage roaming edge computing plat-
forms to bring improvements to various applications in transportation systems. An
overview of our methodology is summarized in Figure 1.1. We designed an edge
computing based vehicular sensing and computing framework designed for smart
transportation applications. Each application can choose to leverage resources on
roaming edge nodes, which are general-purpose compute platforms mounted in
participating vehicles that interact with in-range sensors to perform local processing,
static edge nodes, that locally coordinate across a set of roaming edge nodes, and
cloud-hosted services for global coordination. For this thesis, we put a previously



developed edge computing platform called ParaDrop [5] in the vehicle and build
applications upon it. ParaDrop is an edge computing platform that provides com-
puting and storage resources allowing developers to flexibly create various kinds
of services. The ParaDrop platform supports multi-tenancy and a cloud-based
backend through which computations can be orchestrated across many ParaDrop
access points (AP). ParaDrop also provides APIs through which developers can
manage their services across different ParaDrop APs.

We first built a vehicle locating and tracking application that can find a target
vehicle over a wide area based on provided descriptions (e.g. an AMBER alert).
Then, we have been building a multi-modal and lightweight real-time sensing
system that leverages audio-visual cues to augment driving behavior analysis. The
application overcomes the limitations of existing Inertial Measurement Unit (IMU)-
based solutions and can provide fruitful contextual information for driver behavior
profiling. In addition, we implemented a low-cost WiFi-based in-vehicle monitoring
and tracking system that can passively observe mobile devices and provide various
analytics about people both within and outside these vehicles, leading to interesting
population insights at a city scale. City operators, law enforcement and other related
organizations can benefit from such applications to provide better services. Building
such applications is a great opportunity to understand how can applications benefit
from the proposed edge computing enhanced vehicular sensing framework and
explore how to distribute tasks such that static and roaming edge compute nodes can
collaborate more efficiently for superior performance. We also have the chance to
learn how to extract useful information from multiple resources and the complexity
to manage the distributed services. We now describe each of these applications in

more details in the following sections.



1.2 Edge Enhanced Vehicular Sensing Framework
and Its Application to Vehicle Tracking

City-scale monitoring requires large amount of high quality sensing data with
sufficient sensing coverage. It is a challenging problem as it uses static sensors to
meet sensing and monitoring goals. A static infrastructure is more challenging to
scale given such sensors need to be deployed at every location of interest in the
city. If many vehicles incorporate such connected sensors, they together can be
composed into a unique crowd-sourced platform, they can gather fine-grained,
diverse, and noisy information at city-scales. We believe there exist significant
opportunities to leverage many vehicles that ply daily city routes, e.g., transit buses,
garbage trucks, taxis, and more — and equip them with sensing infrastructure
to gather information at city-scale. However, multiple sensors can generate large
amounts of data and it is hard to aggregate in a centralized cloud-hosted location.
We start by exploring the design of a roaming edge that extends the notion of edge
computing to provide some general-purpose computing capabilities in such vehicles
to support diverse applications. A roaming edge node allows different sensors
and data sources in a vehicle to connect to it, and supports data processing for
necessary local analytics, for efficiency and privacy. By leveraging this roaming edge,
we present Cascade, a crowdsourcing based sensing and computing framework
designed for smart transportation applications. Cascade uses a two-stage edge
structure — a roaming edge in vehicles and the traditional static edge both of which
support different computing functions. Together, they allow various broad queries
to be formulated as subproblems for compute nodes with different capabilities thus
every compute node (including the ones in vehicles), can efficiently contribute
to the end goal. We illustrate an example approach to design a vehicle tracking
application with the Cascade two-stage structure. The vehicle tracking application
consists of three major components. A query source (such as a public safety agency)
issues the query, indicating the need to locate and track a vehicle — and provides
important features such as vehicle type, color, make, model, and license plate



information. Workers (roaming edge nodes) are participating vehicles that are
equipped with one or more cameras, optional motion sensors, and roaming edge
compute nodes installed in their vehicles. Managers (static edge nodes installed
at base stations, traffic lights, etc.) are responsible for coordinating the actions of
all the workers in a predefined service area. We evaluate system and application
performances over a large number of queries covering various scenarios (e.g.,
number and model of vehicles, the number of compute nodes, etc.) obtained
through real-world experiences. Experimental results, under our assumptions,
show that we can achieve an average identification accuracy of over 89% within
reasonable latency. Further, we also explore some good resource allocation and

task assignment strategies under different application scenes.

1.3 Augmented Driving Behavior Analytics

We now focus on augmenting driving behavior evaluation with multimodal sensor
fusion on roaming edge computing platforms. We explore the solution of better
evaluating a driver’s behavior with surrounding context information. The way
people drive vehicles has a great impact on traffic safety, fuel consumption, and
passenger experience. Many research and commercial efforts today have primarily
leveraged the IMU to characterize, profile, and understand how well people drive
their vehicles. However, we observe that such IMU data alone cannot always reveal
a driver’s context and therefore does not provide a comprehensive understanding
of a driver’s actions. For example, a hard brake could be due to an inattentive driver
suddenly realizing a vehicle ahead has already stopped (a bad driving action),
or it could be to avoid a pedestrian who suddenly came in front of the vehicle (a
good driving action). To find the missing context information, we believe that
to better understand driving behaviors one can effectively leverage audio- visual
cues, using a few vehicle-mounted cameras and microphones, to complement the
existing use of IMU sensors. For instance, such an audio-visual system can easily
discern whether a hard braking incident, as detected by an accelerometer, is the

result of inattentive driving (e.g., a distracted driver) or evidence of alertness (e.g.,



a driver avoids a deer).

The focus of this work has been to design a relatively low-cost audio-visual
infrastructure through which it is practical to gather such context information from
various sensors and to develop a comprehensive understanding of why a particular
driver may have taken different actions. Analyzing high resolution audio-visual
data is often delegated to very high-end GPU-enhanced compute clusters located
in different data centers. However, in our scenario, it is likely that the vehicles
equipped with audio-visual sensors can easily generate a high volume of data
rather quickly, which implies that the audio visual analytics should need to be
performed in real-time. Therefore, the challenge of this work is how to leverage the
roaming compute node to process audio and video in real-time inside the vehicle. In
particular, we build a system called DrivAid, that collects and analyzes visual and
audio signals in real time with computer vision techniques on a vehicle-based edge
computing platform, to complement the signals from traditional motion sensors.
To support efficient audio visual analytics in DrivAid, we put a GPU-enhanced
embedded computing platform with optimized deep learning inference engines
in the vehicle and deployed the analytics module on it. We also use smartphone
motion sensors to detect different driving events and only conduct further analysis
once an event is detected. Besides, with the in-vehicle setup, driver privacy is
preserved since the audio-visual data is mainly processed locally. We implement
DrivAid on a low-cost embedded computer with GPU and high-performance deep
learning inference support. In total, we have collected more than 1550 miles of
driving data from multiple vehicles to build and test our system. The evaluation
results show that DrivAid is able to process video streams from 4 cameras at a rate
of 10 frames per second. DrivAid can achieve an average of 90% event detection
accuracy and provide reasonable evaluation feedbacks to users in real time. With
the efficient design, for a single trip, only around 36% of audio-visual data needs to

be analyzed on average.



1.4 Transit and Human Mobility Analytics

In this work, we focus on how to enhance public transportation and observe hu-
man populations using vehicle mounted sensors and roaming edge computing
platforms. Public transit systems serve millions of users every year. An efficient
and high quality public transportation system can not only benefit passengers, but
also have a serious impact on city development. Hence, public transit has always
looked for mechanisms that allow them to improve their services for people in
terms of, say, what new routes or stops should be introduced, how do peak and off-
peak behaviors be handled, and much more. However, efficient ways of gathering
usage information such as popular origin-destination pairs and occupancy of the
vehicle, is currently lacking. As mobile devices have transformed crowd-sourced
data collection in a whole range of domains, we believe that transit systems and
city operators can also benefit significantly from it. To solve this problem, we pro-
pose Trellis — a low-cost Wi-Fi-based in-vehicle monitoring and tracking system
that can passively observe mobile devices and provide various analytics about
people both within and outside a vehicle which can lead to interesting population
insights at a city scale. Our system runs on a vehicle-based roaming edge com-
puting platform and is a complementary mechanism which allows operators to
collect various information, such as original-destination stations popular among
passengers, occupancy of vehicles, pedestrian activity trends, and more. A key
challenge is that how to distinguish passengers from pedestrians and determine
when a certain passenger gets on and off the vehicle. To solve this problem, Trellis,
takes advantage of these widely available mobile devices among passengers and
pedestrians to quickly gather various forms of usage information at a significantly
large (city) scale. Trellis makes this distinction by simply observing signal strength
trends of Wi-Fi devices at instants when a vehicle is in motion, this localization
problem becomes quite simple and can be solved fairly accurately. To conduct most
of our analytics, we develop simple but effective algorithms that determine which
device is actually inside (or outside) of a vehicle by leveraging some contextual

information.



We demonstrate how such a system may be used from three major perspec-
tives. First, we focus on passenger riding habits, i.e. what are the popular origin-
destination pairs and how do these origin-destination pairs vary for different sta-
tions, at different locations, and at different times of the day. Next we study patterns
of people on city streets. For example, urban planners often want to know how
busy their city streets are, and where hotspots are during different times of days
and periods of the year. Finally, we study the impact of weather on human mobility
outdoors. More specifically, we observe how inclement weather (snow and rain)
and outside temperature affects the number of people in the transit vehicles or
out on city streets. We have deployed Trellis on a vehicle-based edge computing
platform over a period of ten months, and have collected more than 30,000 miles of
travel data spanning multiple bus routes. By combining our techniques, with bus
schedule and weather information, we present a varied human mobility analysis
across multiple aspects — activity trends of passengers in transit systems; trends of
pedestrians on city streets; and how external factors, e.g., temperature and weather,
impact human outdoor activities. These observations demonstrate the usefulness

of Trellis in proposed settings.

1.5 Contributions

We built smart transportation applications to understand the advantages of using
edge computing paradigms for vehicular sensing applications. This dissertation
describes the design of edge computing enhanced vehicular sensing framework
and implementations of applications based on the proposed framework.

In this dissertation, we focus on three vehicular related applications, target ve-
hicle tracking, driving behavior analytics and transit and human mobility analytics.
These applications demonstrate how to can connected devices, static and roam edge
compute nodes cooperate with each other more efficiently, and how to achieve a
pre-defined goal with minimum resources. We also explore the advantages of edge

computing platforms on reducing network bandwidth usage, better responsiveness



10

and privacy protection. Specifically, our contributions of this dissertation are the
following:

1. We proposed a two-stage crowdsensing framework enhanced by edge comput-
ing platforms - Cascade, which improves the efficiency of the system by fully
leverage computing capabilities of both static and roaming compute nodes.
Cascade achieves a better efficiency by formulating subproblems for compute
nodes with different capabilities thus every compute node (including the
ones in vehicles), can efficiently contribute to the end goal. We designed and
implemented a vehicle locating and tracking application using Cascade, to
demonstrate how to break a complex problem into simpler sub-problems
such that both workers and managers are able to contribute to the end goal.
To demonstrate the system flexibility and improve application performance,
we developed a context-aware data encoding and streaming protocol, which
can improve streaming efficiency and reduce latency. We presented a feature
fusion model to demonstrate how to integrate extracted information from
different workers and achieve improved information accuracy. We collect
real-world driving data as well as publicly available data to evaluate appli-
cation performance under different settings. Experimental results verify the
effectiveness of the Cascade and give the idea of how to allocate computing
resources in this specific application.

2. We designed and implemented DrivAid, a real-time low-cost sensing and
analyzing system for driving behavior evaluation. We illustrated how such a
system could be built that leverages audio-visual cues to augment driving
behavior analysis based on IMU sensors in a holistic manner. DrivAidis a
lightweight, powerful system that can be easily deployed in regular vehicles
by adapting and integrating existing algorithms to let them run efficiently
in vehicular edge computing nodes. We evaluated our system with more
than 1500 miles” drive data. A prototype is deployed on a regular vehicle and
evaluated through test drives of around 50 miles in real world environments.

The evaluation results show that our system can process data in real time and
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provide a good understanding of each driving behavior. We believe such a

real-time sensing and analysis system can enable a wide range of applications.

3. We designed and implemented Trellis, a low-cost in-vehicle wireless mon-
itoring system that can track passenger movements and study pedestrian
behaviors to assist transit operators, and potentially city planners, with vari-
ous forms of human mobility analytics. We developed several simple heuristic
algorithms that can effectively separate passengers from pedestrians and iden-
tify where passengers get on or off a vehicle. To test the efficacy of our system,
we deployed Trellis on vehicle-based edge computing platforms over a period
of ten months and collected data from 3 bus routes. We evaluated how it can
be used to infer origin-destination pairs that are popular among passengers
over time and space. We demonstrate and quantify different impacts on hu-
man activities caused by different factors (e.g., weather and temperature). As
we continue to work with our local transit partners, we continue to evaluate
how such a system can be used to identify where to add new bus routes, or
when to add non-stop services between various stations throughout the city

at different times of the day and under different weather conditions.

1.6 Outline

The remaining of the thesis is organized as follows. In Chapter 2, we present
the roaming edge-assisted crowdsensing framework and its application to vehicle
locating and tracking. In Chapter 3, we propose DrivAid, a comprehensive driving
behavior evaluation system using audio and visual cues. In Chapter 4, we present
Trellis, a low-cost in-vehicle wireless monitoring system, explain how it can track
passenger and pedestrian movements to derive various forms of transit and human
analytics. We compare our work with existing solutions and discuss the related
work in Chapter 5. We conclude this dissertation and discuss further research

directions in Chapter 6.
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A Crowdsourced Sensing and
Computing Framework Leveraging the
Roaming Edge

2.1 Introduction

Intelligent Transportation Systems (ITS) are receiving increasing attention recently
as connected sensors enable innovative services to improve transportation safety,
mobility and provide useful transportation analytics. Most planners try to gather
city-scale traffic flow information using a set of static connected sensors (e.g., road-
side cameras, and road sensors). For example, parking is always a challenge in many
urban areas, which further leads to increased congestion, greater carbon emissions,
and driver frustration. To provide parking spot availability information, many
intelligent parking services have been built using static sensors that are installed
under or above individual parking spots. However, installing these static sensors
across a large area incurs massive deployment cost and effort, and the maintenance
costs are also significant. Moreover, those static sensors are mostly deployed at
fixed places and thus the coverage of these sensors is necessarily limited.

We envision that these connected sensors can be installed on a moving platform
to complement the drawbacks of static sensors. In particular, we focus on vehicles
— autonomous or otherwise — that can be equipped with a plethora of sensors
such as camera, LiDAR (light detection and ranging), RADAR and more. These

in-vehicle sensors can provide context information of its surrounding and once a
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reasonable fraction of vehicles are equipped with these sensing platforms, they
can naturally become a crowd-sourced platform to gather, analyze, and organize
various forms of data at the city scale and beyond. However, in-vehicle sensors can
easily generate a high volume of data rather quickly. For instance, a few cameras
or a LiDAR system can create hundreds of megabits of data every second. Such
data cannot be easily offloaded from vehicles to the cloud for further analysis, due
to lack of available network capacity from the vehicles. Thus this requires finding
an appropriate processing platform and designing efficient operation mechanisms
that can improve data management and analysis efficiencies.

To push computational and storage capabilities closer to end sensing devices,
we consider an edge computing paradigm called the roaming edge, in which the
edge nodes themselves are in motion, e.g., mounted in vehicles. Edge computing
platforms provide computational support closer to where the data is created, which
can be leveraged to provide greater data privacy, save network and computing
resources and makes applications more efficient and responsive. For instance, a
roaming edge node, installed in a vehicle may allow for local processing of dash
camera videos, without requiring offload. These characteristics make roaming
edge computing platforms suitable for providing the first line of analytics support.
At the same time, we emphasize that in our description, roaming edge nodes are
not being envisioned as the end device — they typically will allow end devices,
such as cameras, LiIDARs, and other sensors to connect (wirelessly) and provide a
general-purpose computing support where new services can be flexibly installed
and utilized. We believe that a distributed vehicular sensing approach could bring
improvements to various applications in transportation systems.

In this paper, we present Cascade, a crowdsourcing based vehicular sensing
and computing framework designed for smart transportation applications that
leverage the roaming edge. Cascade has a two-stage structure and consists of the
roaming edge nodes (in vehicles), referred to as workers, and static edge nodes,
referred to as managers, which interact with a centralized cloud-hosted service
(administrator) to manage broad queries being addressed to the system. Every

manager is responsible for one specific service area.
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Cascade can be used to pose and answer a large number of broad questions. For
instance, the camera sensors in all vehicles could be used to track how frequently
different traffic signals change from red to green in specific intersections and vice-
versa. They can be used to determine the change and prevalence of honking in
certain road segments. They can also be used to distributedly locate a vehicle sought
for public safety, e.g., due to an AMBER alert that has been raised. In each of these
examples, the task can be split among the various managers (static edge nodes),
which can coordinate results across a number of workers (roaming edge nodes) that
are collecting and continuously analyzing data from their local, in-range sensors.

With a reasonable number of distributed roaming edge nodes (workers), Cas-
cade is able to provide new and unique forms of transportation related information
that is not available before. Each roaming edge node in Cascade is a multi-tenant
resource (such as those provided by ParaDrop [5]) that allows new functionality
to be installed as a new third-party service. In the rest of this paper, we describe
Cascade as a specific application — a vehicle tracking application using the Cascade
framework to explore challenges of building applications leveraging the roaming
edge. We consider the following questions when building this vehicle tracking
application using Cascade. (i) What are good ways to manage data access and
to control what data each stakeholder in this ecosystem can access? (ii) What
are good resource allocation strategies to achieve a predefined goal, and what are
the trade-offs between resource allocation and system performance? (iii) How
should we fuse data from multiple sources and derive information with improved
accuracy? As shown in Figure 2.1, the admin, could be the police department
in this application, publishes a task asking the crowd tracking a specific vehicle.
Although the license plate is the best identifier for vehicle tracking, it is very hard
to correctly recognize it if the vehicle is not close enough. To improve tracking
efficiencies, we prepare different tasks for workers and managers such that they
can fully contribute to this task. Suppose we are tracking a white Honda CRV with
license plate VFX-434, a worker is only responsible for tracking white SUVs using
vehicle dash cameras and reports to its manager when necessary. The local static

manager conducts further analysis based information received from one or multiple
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workers. If the target vehicle is identified, the manager reports its findings to the
admin and asks workers to focus on tracking that vehicle. When a worker is about
to leave a service area and the task is still running, the manager updates the current
status with the manager in the adjacent service area (hand over in Figure 2.1). The
worker collaborates with both managers until the hand over process finishes.

In summary, our Cascade system consists of roaming edge (worker) nodes,
which are general-purpose compute platforms mounted in participating vehicles
that interact with in-range sensors to perform local processing, static edge (man-
ager) nodes, that locally coordinate across a set of workers, and a cloud-hosted
administration service for global coordination. To minimize data being uploaded
and maximize the usage of the roaming edge, Cascade breaks a complex problem
into simpler sub-problems such that both workers and managers are able to con-
tribute to the end goal. Given worker nodes have lesser computing capability, they
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are assigned some simpler computational tasks, and manager nodes aggregate
information from various local workers to obtain greater fidelity in results across a
set of workers.

In this work, we collect real-world driving data as well as publicly available
data to evaluate application performance under different settings. Experimental
results verify the effectiveness of the Cascade and give the idea of how to allocate
computing resources in this specific application. During the traffic peak hours
(many vehicles are on the road), a fleet of five roaming compute nodes in one
manager’s service area can have a relatively high chance to successfully track the
“suspect vehicle” with a reasonable latency. While during off-peak hours, three
workers are enough to provide a precise “suspect vehicle” location (no matter how
much the vehicles on the road look like the “suspect” one). On average, we can
achieve an overall identification accuracy of over 89% considering traffic conditions
change during the day.

Contributions: The contributions of this work can be summarized as follow:

e We propose Cascade, a two-stage vehicular crowdsensing framework en-
hanced by roaming edge computing, which can provide transportation related
analytics at the city scale.

e To demonstrate a concrete example, we implemented a vehicle tracking ap-
plication using Cascade, to explore how to overcome new challenges when

building applications leveraging the roaming edge.

e We conduct a series of benchmark studies using real-world driving data and
publicly available data to evaluate the application performance and demon-

strate the usefulness and effectiveness of Cascade.

e We explore the best resource allocation and task assignment strategies under
different application scenes based on experiment results.
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2.2 Motivation

City-scale monitoring is a challenging problem as it uses static sensors to meet
sensing and monitoring goals. A static infrastructure is more challenging to scale
given such sensors need to be deployed at every location of interest in the city. In
many applications, described below, we believe there exist significant interesting
opportunities through a second complementary approach — leverage many vehicles
that ply daily city routes, e.g., transit buses, garbage trucks, taxis, and more — and
equip them with sensing infrastructure. Of course, if each such vehicle were to
blindly upload all sensed data, it might be wasteful of available network capacity.
Instead, we consider a multi-stage structure that can be used to support real-time
(or offline) queries that can be posed of these diverse arrays of vehicles gathering
and contributing data to address such queries. We explain our approach by using
a few examples.

Tracking objects or people of interest: In many situations, public safety agen-
cies need to search for and track people or objects of interest. It is possible to
leverage static security cameras across a city for this purpose. But we note that
increasingly vehicles are getting equipped with cameras for incident response and
management, and if they can be re-purposed to create a city-scale sensing infrastruc-
ture, it can be a powerful tool for this highly time-critical query. Of course, if every
vehicle attempted to simply stream its own video, from multiple cameras, it will
overwhelm the available network capacity of any mobile infrastructure. Instead,
the proposed roaming edge, with compute nodes installed in each vehicle, can
provide the first stage of analytics, e.g., to match the vehicle color and type. Only if
a match is detected in this stage, is the video or images uploaded to the second stage
compute nodes, say at the static edge for license plate matches. This hierarchical
approach naturally leverages the diverse computational capabilities that are likely
available in different parts of the infrastructure.

Parking analytics: Parking is always a challenge in urban areas, and especially
during peak hours in busy downtown hotspots. It is common that vehicles some-
times spend a significant amount of time circling city blocks in order to find parking,
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which leads to increased congestion, greater carbon emissions, and driver frustra-
tion. Again, a similar infrastructure that leverages vehicle-mounted cameras to
report available parking spots could be of great interest. Since parking information
depends on recency, these queries may need to be addressed in near real-time.
The detection of an available parking spot, if done using camera images, requires
necessary processing, and again a multi-stage hierarchy might be useful to ascertain
the availability of such spots. An approach based on such mobile, vehicle-mounted
cameras (likely to be commonplace in vehicles) will significantly reduce the infras-
tructure costs needed for this application.

Traffic Analytics: City planners actively look for methods that can gather numer-

ous forms of transportation analytics at the city scale, e.g., where are the hotspots
right now that need congestion alleviation. While the city can be covered with vari-
ous traffic cameras everywhere, extensive deployment of such a static infrastructure
is expensive, and if the vehicle cameras can collaboratively share information, an
intriguing solution to the problem is possible. Again the proposed approach of our
work can be quite a handy solution to the problem.
Discussion on feasibility and other challenges: In the discussion of this proposed
model of vehicle-mounted sensors to create city-scale monitoring infrastructures,
we are definitely mindful of numerous challenges that will occur. First and foremost,
perhaps, is privacy concerns, an issue that is likely important to any monitoring
infrastructure. We believe that the use of a roaming edge, which processes raw data
at the source, is particularly amenable to implement various privacy preservation
mechanisms. It provides an opportunity to remove any private data at the source,
thereby making the rest of the system to provide certain levels of guarantees. We do
not focus on the privacy policies and mechanisms in this paper, but acknowledge
that this would need to be a key part of individual problems being addressed.

Second, is the common concern around why vehicles will expend their own
compute, power, and communication resources to serve an unrelated application.
This is a concern that plagues every crowd-sourced application, and we believe
an appropriate model can emerge if there is cost benefit to this approach. For
instance, if a city realizes that it is going to save significant costs by not installing a
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certain static infrastructure, they may be willing to provide some incentives to every
vehicle that is willing to contribute data. Minimally, a city can deploy such sensors
and roaming edge compute platforms on their own vehicles. Just installing such
capabilities in city transit buses, garbage trucks, and other city-owned vehicular
networks, might be sufficient to bootstrap a useful infrastructure with a greater
reach and higher agility than a static infrastructure.

Third, could be a concern around malicious actors that may attempt to misguide
the application in question. Of course, they can be addressed by the power of crowd-
sourcing where significant collusions are necessary to effect incorrect outcomes.
Further, it may be possible to require compute nodes to attest their results, so that
offenders in such settings may be easily identified. Finally, individual applications
may choose to only trust compute results from certified edge nodes among the
vehicles.

This paper is scoped to focus on the distributed compute infrastructure among
the static and the roaming edges, and how examples applications can be designed
to meet desired goals. Some of these above aspects are fairly significant and would

need careful consideration in future efforts.

2.3 System Design

In this section, we present the overview of Cascade, and introduce design choices

in detail.

Two-Stage Structure

As shown in Figure 2.1, Cascade proposes a two-stage structure that leverages the
concept of crowdsourcing to solve a problem by combining the efforts from a large
group of participants. As mentioned, a roaming compute edge node, in a vehicle, or
a worker, with limited computing capabilities are often assigned simpler compute
tasks. Similarly, a static edge compute node, or a manager, typically supports

more complex computing functions, and aggregates information from various local
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workers in its jurisdiction. Finally there exists a cloud-hosted administrator. Every
manager is assigned to a specific service area. When a worker moves to a new area,
it reports its current location to the administrator and the administrator assigns
the worker to the local manager in that area. Depending on the application, a
manager sets up a connection with one or more workers. The manager dynamically
determines when to start a new task and assign the task to one or more workers.
Connected workers follow instructions from the manager and upload collected
data collected to the manager when necessary. With data collected from multiple
workers, the manager conducts further data analysis and decide appropriate tasks
for execution. When a worker is about to leave a service area and the task is still
running, the manager updates the current status with the manager in the adjacent
service area (hand over in Figure 2.1). The worker collaborates with both managers
until the hand over process finishes.

As different types of end devices, e.g., cameras, LIDAR and connected sensors,
can be utilized to address a large number of broad queries, Cascade provides a
unified and easy to use programming interface to easily distribute and manage tasks
across edge nodes. A virtualized environment is created on each edge node based
on Docker [6] which allows application developers to select the programming
languages, libraries, and platforms based on requirements of static and roaming
edge nodes. To provide more flexibility, Cascade provides various APIs through
which developers can manage the resources (e.g., sensors, RAM, CPU, etc.) of the
edge node and monitor the running status of the application.

Edge Node Management: This type of APl is responsible for edge node man-
agement tasks. For example, a worker reports to the admin for its availability and a
nearby manager will be assigned to collaborate with that worker. When a worker is
about to leave a service area and move to a new area that is managed by another
manager. The worker works with both the old and the new managers during the
handover process. All these communications and management processes can be
done through API calls.

Data Transmission: Different types of sensors generate data at different rates

and various applications have different latency requirements. Cascade implements
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Figure 2.2: Service management module overview.

a pilot context-aware streaming protocols to accommodate various needs. Third
party developers can choose appropriate protocols through APIs. Besides, Cascade
allows end-users to easily add customized APIs to satisfy their extra needs.
Application Management: For each application, the admin needs to define
specific tasks for managers and workers based on their capabilities before starting
a new job. In Cascade, edge node executions and application level tasks are also
controlled through APIs. Developers can develop application specific APIs to help
them dynamically interact with their applications. Using vehicle tracking as an
example, the manager sends a query (e.g., finding a red SUV) to a worker by calling
an API. Workers send feedback to the manager through a call back function. The
manager conducts further analysis to find a license plate and other information

once receive the callback.

Service Management

Typically there are three modules of an edge node, data communication module,
task management module, and application module. The responsibilities of these
modules might vary for static and roaming edge nodes. Third party application
developers can create more modules based on their needs. Figure 2.2 shows an
overview of the service management modules at two stages. A worker’s processing

flow begins with the application pipeline defined at stage one and data flows over



22

the system to stage two until it reaches a decision at the stage two application layer.
In the application module, users can choose the data source, develop their own
algorithms to analyze data, and decide how to allocate tasks for stage one workers
and stage two managers thus every compute node with different capabilities can
efficiently contribute to the end goal. The task management module manages
tasks running on a compute edge. In stage one, the task management module only
needs to coordinate various tasks running on this single node. While in stage two,
other than tasks running within the compute node, the task management module
also needs to interact with other stage one compute nodes. The communication
module manages connections and handles network communications between static
and roaming compute nodes. To improve transmission efficiency, Cascade offers
different data encoding and transmission techniques for different types of raw
data. Application developers can choose appropriate techniques based on their
requirements. Details are discussed in Section 2.3 and 2.3.

Data Encoding

Different types of sensors generate data at different rates. For example, proprio-
ceptive sensors (motion sensors, GPS, etc.) generate few kilobytes raw data per
second, while exteroceptive sensors (cameras, LiDAR, etc.) generate few gigabytes
of data every second. We need a network with gigabit bandwidth to transmit such
amount of data in real time, which is not easy to be handled by today’s wireless
networks. In our system, we implement a proof of concept data encoding and

streaming protocol to reduce network bandwidth usages.

Proprioceptive Sensors

Proprioceptive sensors, like accelerometer, gyroscope, magnetic sensors, GPS and
so on, generate time series data at a pre-set rate. It usually includes a time stamp
and several bytes of sensory data. Hence, the size of the recorded data is relatively
small compared to exteroceptive sensors. For example, motion sensors and GPS

generate around 5 kilobytes of data every second if the sampling rates of motion
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sensors are set to 100Hz and that of GPS is set to 1Hz. Generated raw data can be
easily streamed through existing networks in real time. Hence, we stream such

data directly when needed.

Exteroceptive Sensors

Since proprioceptive sensors generate a small amount of data, we mainly focus on
exteroceptive sensors in this work. We use cameras as an example to demonstrate
how to compress and stream large data sets. Suppose the resolution of a video
frame is 960*720, the size of this frame is 3*960*720 bytes (around 2 megabytes). If
15 frames are streamed every second, we need a network with 200Mbps bandwidth.
Although it is possible to set up a network with 200Mbps bandwidth, such resources
would be precious and cannot be provided to the public. Various encoding tech-
niques have been developed to solve this issue, and we implement a context-aware
encoding technique to improve the streaming efficiency for our system.

Video Quality Typically there are three important factors that affect video qual-
ity, resolution, bitrate and encoding codec. To maintain the same video quality, a
higher resolution needs a higher bitrate and results in a larger file size. To evalu-
ate the frame quality, we use the Blind and Referenceless Image Spatial Quality
Evaluator (BRISQUE) and calculate a Mean Opinion Score (MOS) [7] to evaluate
the quality of the frame. The MOS score ranges from 1 to 5 with 1 represents the
worst quality and 5 indicates the best quality. Figure 2.3a shows how different
bitrates affect video quality. We encode a video using different bitrates (0.2mbps
to 2mbps) and calculate corresponding MOSs. The video quality is better when
the bitrate is higher under the same resolution. As the bitrate doubles, the video
quality improves on a linear scale.

Frame Encoding We choose the H.264/MPEG-4 video encoding standard [8] to
encode video frames. There are three types of frames in the H.264 standard, Intra-
coded frame (I-frame), Predicted frame (P-frame) and Bidirectionally predicted
picture (B-frame). The I-frame is a full frame that contains all the bits required
to construct that frame. And the P-frame has to be constructed by the decoder
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Figure 2.3: Frame quality and size under different settings.

based on previous frames since it is derived by encoding a motion vector for each
of the blocks from the previous frames. B-frame is generated using both previous
and next frames to achieve a better compression rate, so it is not suitable for live
streaming services. The sizes of I-frames and P-frames depends on the video
encoding bitrate and resolution. Figure 2.3b shows the distribution of I-frame and
P-frame sizes under various resolutions. We select three resolution and bitrate pairs,
640x480@1Mbps (480p), 960x720@2Mbps (720p) and 1280x960@4Mbps (960p) for
comparison. On average, the size of I-frame is 2-4 times larger than that of P-frame

under different resolutions.

Context-Aware Data Encoding

Encoding Parameter Other than frame resolution and bitrate, how frequently
the I-frame will be used would also affect the video quality a lot. The frequency
is defined as the I-frame interval and it is usually between 1-5s [9, 10]. A smaller
interval is selected when the video contains a lot of motions, which reduces the
chance of frame corruption. A larger interval is used for more static videos, where

it can maintain the image quality while reducing the bandwidth requirement. It
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is important to update the I-frame interval based on scene changes during the
encoding process. Cascade improves the overall video encoding efficiency by
understanding the surrounding context. The basic idea is to dynamically update
the I-frame interval when the context changes.

Context Sensing We monitor context changes in each frame using the YOLOv3
object detection model [11]. If the difference of detected object numbers between
two frames exceeds a threshold, we treat it as a context change. Moreover, motion
sensors are used to monitor context changes by sensing vehicle dynamics. To track
vehicle dynamics, we leverage motion sensors and the GPS to detect various driving
events. We use similar techniques mentioned in [12] for turns, lane changes, brake
detections. The context-aware encoding algorithm dynamically updates the I-frame
interval based on detected context changes. Besides, Cascade provides APIs for
users to change parameter settings to satisfy their needs.

Data Streaming Protocol

Most live streaming applications use User Datagram Protocol (UDP) with loss
rate estimation and forward error correction mechanisms by default and switches
to Transmission Control Protocol (TCP) if UDP traffic is blocked [9, 10]. In our
framework, we implement the streaming protocol using both TCP and UDP, and
conduct experiments to understand their performances. Note that we focus more

on system design and proof of concept instead of improving streaming protocols.

Streaming Using TCP

TCP is a connection-oriented, end-to-end reliable protocol that offers “guaranteed
delivery”. If TCP is used for live streaming, then the receiver needs to wait for
dropped packets before processing newer data. A socket buffer needs to be main-
tained on the sender side to keep track of the unacknowledged segments. In our
implementation, we use the socket buffer size to estimate the TCP transmission rate
and adjust the video encoding rate at the application layer. Based on the packet
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loss rate in the network, the protocol will reduce the transmission rate and the
application layer will reduce the video encoding rate.

Streaming Using UDP

In our UDP implementation, we add a forward error correction (FEC) algorithm
to compensate for errors caused by packet losses. The packet loss rate and band-
width are estimated on the receiver side. Estimation results are sent back using an
acknowledgment mechanism.

Forward Error Correction To detect and correct errors, the sender sends a redun-
dant error-correcting code along with the data frame. Each data frame is encoded
into n packets of length I. Among the n packets, the first k packets are the raw
data of the data frame, and the rest n-k packets are encoded as the redundant
error-correction part. Each byte of the encoded redundant packet is the linear com-
bination of the corresponding byte in the raw data packets. Therefore, the whole
data frame can be recovered if any k of n packets are received at the receiver side. It
is possible that each data frame has a different size, hence, k and n will be different
for each data frames. To encode and decode one data frame, the corresponding
packets should have the same length. We use a reference packet length to estimate
the k first, and then assign each packet with equal length (data frame size/k). With
this configuration, we need at most k bytes for the padding of the last packet. It
reduces the extra padding from O(I) to O(k) (k is usually much smaller than /).

Loss Rate and Bandwidth Estimation The number of n and k are determined
based on the loss rate when transmit data using UDP protocol. We estimate the
loss rate on the server side. We assign a unique identifier starting from 0 to keep
track of each frame and packet. For each frame, there are n numbers packets in
total, the raw data packets have indexes ranging from 1 to k-1. And the encoded
packets have indexes ranging from k to n-1. There is a buffer on the server side to
maintain the frame identifier as well as the packet identifier. The buffer only stores
packets of the current frame and if there are enough packets received to recover
the whole frame, any future encoded packets of the current frame will be dropped.
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Based on the received packets in the buffer we can have a sense of the loss rate and
further update n and k accordingly.

If the bitrate is too large, the bandwidth might not large enough to satisfy the
needs and the frame cannot be delivered to the server on time. Therefore, the
encoding algorithm needs to know the network bandwidth to decide the best
bitrate. In our setup, the bandwidth is also estimated on the server and update
with the sender when necessary. We estimate the bandwidth every ¢ seconds since
each frame is divided into n packets and they may arrive in batch, so the bandwidth
might be underestimated or overestimated if it is calculated based on received

packets of each frame.

2.4 Vehicle Tracking Application

To demonstrate how to use Cascade, we illustrate an example approach to design
a vehicle tracking application with our two-stage structure. We assume that the
query source releases a query to the system indicating the need to locate and track
a vehicle — and provides important features such as vehicle type, color, make,
model, and license plate information. Once issued, the application attempts to
locate and track such a vehicle. In our example, this vehicle tracking application
consists of three major components described in Figure 2.4. A query source (such
as a public safety agency) issues the query. Workers (roaming edge nodes) are
participating vehicles that are equipped with one or more cameras, optional motion
sensors, and roaming edge compute nodes installed in their vehicles. Managers
(static edge nodes installed at base stations, traffic signals, etc.) are responsible for
coordinating the actions of all the workers in a predefined service area. Figure 2.4
indicates the data flow from workers to the query source and interactions among
three components.

Workers in this system have two limitations compared to the managers. First,
any individual worker may have a limited field of view, especially to a license plate
of another vehicle. Second, the compute capabilities in the workers are also limited
compared to the managers. The latter, on the other hand, might be able to leverage
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Figure 2.4: Vehicle tracking application overview.

information from multiple workers in its service area to construct improved views.

With this in mind, we provide an example way to split computational tasks between

the workers and the managers, noting that other alternatives to this design are

definitely possible. Workers are tasked with identifying vehicles in camera range

that match the vehicle type and color described in the query. If a worker finds a

“reasonable” match!, it will send the corresponding data (video clips, bounding

boxes, etc.) to its manager for further analysis. The manager gathers information

from multiple such workers in its service area to then identify the license plate

and other information of the vehicle, from the query itself. The feature fusion

model combines features of suspect vehicles extracted from one or multiple sources,

and evaluates the similarity of suspect vehicles with the target vehicle. When the

similarity level exceeds a certain threshold, the manager notifies the query source

about its findings. The details of the process will be explained later in this section.

When a worker is available, it reports its availability and location information

'We refer to it as a suspect vehicle for the rest of the paper.
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to the query source. The query source assigns a manager to that worker and
notifies both the manager and the worker. The worker connects to the manager
and waits for the manager’s message to start working. Based on the current status,
the manager schedules tasks for each connected worker. When a worker is about
to leave the service area or it cannot keep tracking suspect vehicles, it notifies the
current manager and waits to be assigned to a new manager. The worker works

with both managers during the handover process.

Vehicle Detection

Object detection is a key objective of Cascade for both stages. The choice of a proper
detection model should balance the run-time efficiency and accuracy. Object de-
tection models are running on roaming edge compute nodes in stage one, while
more powerful computing devices can be used for object detection in stage two.
Therefore, we choose different models for different stages. In our example, for work-
ers, we choose TensorFlow Lite [13] that can be easily run on lightweight compute
nodes. TensorFlow Lite provides a pre-trained COCO SSD MobileNet model. To
improve the accuracy of the detection model, we make use of transfer learning —
take the weights of the pre-trained MobileNet model and train it with our own data,
fine-tuning the layers from the MobileNet model. We choose DetectNet [14] as the
object detection model in stage two since it can handle different input image sizes
while providing reliable accuracies. To support real-time detection, we optimize the
inference engine by using Nvidia TensorRT [15]. We prepare a large set of labeled
images using our own data and open datasets [16, 17] to train detection models.
Our models are able to detect five types of vehicles — sedan, SUV, minivan, truck
and bus.

Vehicle Re-Identification

Vehicle re-identification (RelD) aims at identifying the same vehicle across multiple
cameras. Most of the existing RelD solutions focus on finding the same vehicle

across multiple stationary cameras while our goal is to find the same vehicle across
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Figure 2.5: Vehicle re-identification.

moving cameras. We tackle this challenge in two steps. First, we locate as many
vehicles as possible in every frame. We perform single-camera tracking to match
vehicles across different frames. Next, we search for the same vehicles that appeared
in multiple cameras by comparing features extracted from various tracklets. Track-
lets with similar features are treated as the same vehicle. Figure 2.5 demonstrates a
vehicle found in videos recorded by multiple workers.

In the first step, we train a Deep Convolutional Neural Networks (GoogLeNet [18])
to extract features from the detected vehicles. Next, we use the trained Deep Convo-
lutional Neural Networks to generate a 2048-dimensional vector for each detected
vehicle. To match vehicles in a single camera, we maintain a small buffer that
can store a short period (e.g. 5 seconds) of the most recent video. Hungarian
Algorithm [19] is implemented to link detected vehicles in different frames to form
tracklets. The Hungarian Algorithm connects and relates detected vehicles based
on the differences between 2048-dimensional features. Given the fact that the same



31

(g~

£ HWR-0335 _
S R

s

< \

[ wwr'0335 [ HWR-0335

[ [
e =

Figure 2.6: Vehicle re-identification and License Plate Recognition.

vehicle would appear in nearby locations in two consecutive frames, we also treat
the location of the detected vehicle in each frame as a feature to improve match-
ing accuracy. In the second step, we use pairwise comparisons to match tracklets
detected from multiple cameras. In each pairwise comparison, we compute the
difference between two tracklets” feature vectors (detected by different workers).
If the difference between two tracklets is less than a threshold, these two tracklets
will be grouped as a single tracklet.

License Plate Recognition and Matching

License plate is the most important information in the vehicle tracking application
since it can uniquely identify the target vehicle. We implement our license plate
recognition model based on an existing automatic license plate recognition sys-
tem [20]. Most existing recognition models are trained using pictures taken at a
fixed location, so the license plate numbers are large and clear enough to see. How-
ever, it is very hard to correctly recognize the license plate if the vehicle is far away.

As shown in Figure 2.6, license plate recognition accuracies are highly impacted
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by the distance (Figure 2.6 (3), (6)) and angle (Figure 2.6 (2)). To improve the
accuracy, we trained the model using our own license plate dataset and existing
open license plate datasets [21]. Our dataset includes license plated captured from
different distances and angles (as shown in Figure 2.6). The license plate recogni-
tion module includes two neural networks, a license plate detection neural network
and an optical character recognition (OCR) neural network for character recogni-
tion. During the training process, the license plate neural network learns how to
“unwarp” the distorted license plate into a rectangular shape resembling a frontal
view during the training process. The OCR neural network is designed based on
the YOLO network to recognize each character from the unwrapped license plate.

Figure 2.6 shows license plates detected by different workers at different loca-
tions. Due to light conditions, camera angles and so on, the license plate recognition
model produces different results on the same vehicle across different frames. If the
result matches the provided query, the worker directly reports to the query source
about this finding (no need to perform feature fusion on the manager). If there
are several incorrect or missing characters, the worker keeps track of that vehicle
until it can be ruled out as a suspect. Therefore, the problem becomes the longest
common substring with k mismatch problem. We solve the substring matching
problem using approaches presented in [22, 23]. If a detected license plate has less

than k mismatches, we treat it as a target vehicle and send it to the query source.

Vehicle Feature Extraction

Vehicle Model and Make We implement a vehicle model and make classifier
based on Spectrico’s recognition model [24]. Spectrico’s classifier is based on
the MobileNet neural network architecture [25], which is known for smaller model
size and good detection accuracy. It is able to process input images in real time.
For instance, it takes 25 ms on Intel Core i5-7600 CPU and can be even faster with a
more powerful processing unit. Detected vehicles are cropped from the original
frame and resized to match the input requirements (224*224 pixels images) of the

recognition model. Padded square images will be sent to the classifier for inference.



Figure 2.7: Vehicle information extraction.

Example inference results can be found in Figure 2.7 and Table 2.1.

Vehicle color We pass each detected vehicle to a classifier for color identification.
The classifier is designed to classify 8 colors, including black, blue, gray, red, orange,
green, white, and yellow. Each vehicle is represented using the Red, Green, and
Blue (RGB) color histogram. We use the K nearest neighbors (KNN) algorithm to
classify colors based on the extracted RGB color histogram features. By applying a
KNN classifier on RGB color features, we would be able to preserve majority RGB
values and identify the dominant color of an object. We label the color of each
vehicle in our training data set. The training data set contains images of vehicles
taken under different light conditions. Figure 2.7 and Table 2.1 show examples of
detected vehicles with different colors.

Feature Fusion Model

When multiple workers capture the same vehicle, feature vectors generated from
the workers can be fused to create a new feature vector to represent that vehicle with
an improved confidence level. We implement the feature fusion model based on
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Table 2.1: Object Detection Results

| No. | Color | Make | Model |
1 | White | Mercedes-Benz | C-Class
2 | White Bus -
3 Grey Buick LeSabre
4 | White Chrysler 300c
5 | White Hyundai Solaris
6 | Yellow FIAT 500
7 | White Oldmobile Alero
8 Black Mazda CX-9

the Dempster-Shafer theory (DST) [26] [27]. We use a probability vector with the
size equals to the number of possible values of a feature, and each bit of the vector
representing the confidence level (or probability)? of each value. The value with
the highest confidence level is selected as the predicted value of a feature. Therefore,
pc(Al) denotes the probability of value j for feature i predicted by worker c. For
instance, there are eight possible values of the color feature, sequenced by black,
blue, gray, red, orange, green, white and yellow. p.(A;) is an 8-dimensional color
feature vector derived from worker c, consisting of {pc(A}), pc(A?),...,pc(A)}.
Thus p; (A}) represents the probability of a vehicle captured by worker 1 is classified
as black. In total, there are three features considered by the manager for feature
fusion, including vehicle color, make and model. According to the DST, the fused
probability of ith feature in value 7 is:

(A=) = Pi(ALT) pa(ATT) - pa(ALT) . pu(A]T) 21)

' Y pi(AD) - paAA]) - ps(A)) ... palA])

If one of the values is not discovered by workers, a small value (< 0.1) will be
assigned to the corresponding bit in the feature vector. Suppose two workers
provide two color feature vectors on the same vehicle {p; (A1), p2(A1)}. If we want

2Confidence level is equivalent to probability and we use them interchangeably in this paper.
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to know the fused probability of black, then p(A}~") can be calculated as follows:

PUAD - pa(AD)
T pilAD - pa(A]

j=1,...8
_ Pl(A%) 'PZ(A%)
p1(A]) - p2(A]) + ...+ p1(A}) - pa(AY)

p(A]T) =

Generally, the probability of feature value A} is determined by inputs from
multiple workers. The numerator of p(A!) can be treated as the shared belief across
multiple workers in A]. And the denominator of p(A!) is a measure of the amount
of conflict between the workers. When the conflict is extremely large, the fused
probability would be close to zero. While if there is no conflict, the denominator
of p(Al) is 1, thus the fused probability only depends on the numerator. The
denominator is between 1 to infinite and it can be used as the normalization factor.

Implementation

We implement a prototype of the vehicle tracking application to evaluate the feasi-
bility of our design. We use the camera and motion sensors as the sensing devices.
We develop an application for IMU sensors and GPS data collection as well as
video capture. The application detects different driving events and leverages the
TensorFlow Lite for vehicle detection. Based on detection results, the application
streams encoded data to the manager. The edge compute node at stage two is built
upon a previously developed edge computing platform called ParaDrop [5] and
its extension EdgeEye [28]. The ParaDrop platform is built based on Docker [6],
which provides an isolated environment allowing developers to flexibly create
various kinds of services. We use multiple GStreamer pipelines to run analysis
tasks and handle interactions among workers, managers and the query source. Two
pipelines are developed to receive and send data. We implement three GStreamer
elements for data analysis (vehicle information, license plate, and re-identification)

and create GStreamer pipelines to manage various tasks. The GStreamer elements
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Figure 2.8: Performance under different settings.

and pipelines were developed using C and C++. Neutral networks models are
trained using a desktop with Ubuntu 18.04 LTS. The desktop has an Intel i7-6700
CPU @ 3.40GHz, an Nvidia GeForce GTX 1060 6GB, and 24GB system RAM.

2.5 Evaluation

In this section, we evaluate our application and system. The first part evaluates

application performance, and the second part evaluates system performance.

Application Performance Evaluation
Methodology

We deploy our system in multiple vehicles and utilize video while driving simulta-
neously on the road in real-world conditions. We were only able to gather around 50
miles of driving data®. We conduct various experiments using observations derived
from collected real-world driving data and a publicly available data set [29]. We

$Unfortunately, our data collection plan is interrupted due to the on-going global pandemic.
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explore how different factors affect the target identification performance. We con-
trol four different parameters during the experiment process, they are numbers of
available workers and vehicles in each frame, frame quality and the similarity level
between the target vehicle and non-target vehicles. For each experiment run, we
first generate a query, such as white Mazda CX-9. Next, we generate a feature vector
for the target vehicle, which is the vehicle described in the query. A 28-dimensional
combined feature vector, which consists of an 8-dimensional color feature vector,
10-dimensional vehicle make and 10-dimensional vehicle model vectors, is used to
represent the target vehicle. Each dimension represents the confidence level of the
corresponding feature value. If a value is selected as the predicted value of a feature,
a confidence level greater than 0.5 will be assigned to the corresponding dimension.
Other values’ confidence levels will be assigned randomly (the summation of all the
confidence levels of a feature is 1). We also consider the effects of frame qualities
when generating vehicle feature vectors. Therefore, the generated feature vector’s
representative value could be partially inconsistent with the query, or the selected
value has a low confidence level (less than 0.5). Next, we generate feature vectors
for other vehicles on the road. We generate a random number to represent the
similarity level between non-target vehicles and the target vehicle. Based on the
similarity level, we change one or multiple feature values for non-target vehicles.
Lastly, we randomly generate two numbers (between 1 and 10), representing how
many non-target vehicles and available workers in this experiment run. Feature
vectors of the same vehicle provided by different workers will be fused by the DST
model to produce one feature vector representing the prediction of that vehicle.
We compute the distance between the fused feature vectors and the vector query
issued using three common distance metric — Euclidean Distance (L2 norm),
Manhattan Distance (L1 Norm) and Chebyshev Distance (L-infinity Norm). The
vehicle that has the smallest distance would be considered as the vehicle we want to
find. In total, we generate 20,000 experiment runs. If the target is successfully found,
we treat this run as a successful run. The prediction accuracy is counted using
the number of successful runs divided by the total number of runs. We evaluate

the application performances under different settings. Details are discussed in the
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Figure 2.9: Performance under different frame qualities.

following sections.

Overall Performance

We first study prediction accuracies when using different distance metrics and
results are shown in Figure 2.10. The number of vehicles is randomly selected
between 1 and 10 for each experiment scenario. The frame quality is set to good
and the similarity level is randomly selected (between 0 and 0.8). According to
the results, three distance metrics show similar performances, thus proving that
our experimental results are robust enough. We can achieve an average accuracy
of over 89%, which is reasonable given the fact that we randomly choose vehicle
numbers and similarity levels. The Euclidean distance metric shows a slightly better
overall performance, so we use this distance metric afterward. We next study how
different numbers of vehicles and workers affect prediction accuracies. As shown in
Figure 2.8b, when the number of workers is fixed, the prediction accuracy decreases
as the number of vehicles increases. It is hard to find out the target vehicle when
more and more non-target vehicles on the road. While the number of vehicles
is very larger (always happen in the traffic peak hours), five workers can have a
relatively high accuracy. Moreover, the prediction accuracy increases with more
available workers when the vehicle number is fixed.
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Figure 2.10: Vehicle tracking application overview.

In 20,000 experiment runs, we also consider the situation where the target has
not been captured by any workers in one service area. Specifically, we consider an
experiment run is a true positive if the target is captured and successfully found.
Similarly, we consider the experiment run is a true negative if the target is not
captured and no vehicle has been predicted as the target. In Figure 2.10, the x-
axis represents the percentage that the target vehicle has been captured (e.g., 80%
means 80% of 20,000 experiment runs have the target vehicle captured). Concluded
from figure 2.10, the accuracy would not change much if we set a reasonable
threshold as discussed before, which indicates our application is able to achieve a

good performance under different situations.

Comparison between Different Frame Quality

Aqqa et al conducted a detailed study evaluating the impact of video quality changes
on the detection performance of 4 state-of-the-art object detectors [30]. Evaluation
results show that as the quality decreases, the detection accuracy decreases. Based
on these findings, we conduct different frame qualities experiments by changing
predicted feature values or decreasing the confidence level of predicted features.
As shown in Figure 2.9a, when only one worker is recording, as the frame quality
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Figure 2.11: Performance under different similarities.

gets better, the prediction accuracy increases. The average accuracy is below 50%
when the quality is poor and increases to more than 65% when the quality is
good. Similarly, when there is a fixed number of vehicles on the road (we choose
5 in this case), as the frame quality gets better, the prediction accuracy increases
(Figure 2.9b). The average accuracy increases from below 40% to above 80% as the

frame quality gets better.

Comparison between Different Similarity

Besides frame quality, the similarity of non-target vehicles with the target vehicle
can also affect the application performance. To understand its impact, we change
similarity levels by controlling how much the non-target vehicle’s feature vector
is different from that of the target vehicle in different experiments. As shown in
Figure 2.11a, when only one worker is working, as the similarity gets larger, the
average prediction accuracy decreases from more than 95% to less than 40%. A
higher similarity means one or more non-target vehicles share more similar features
with the target vehicle, which makes the target vehicle harder to be found. We
achieve an average accuracy of 90% when the similarity level is less than 0.5. While
the accuracy drops sharply when similarity level changes from 0.6 to 0.8. Similarly,
when there is a fixed number of vehicles on the road (we choose 5 in this case), as
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Figure 2.12: Network parameter estimation accuracy.

the similarity gets larger, the prediction accuracy decreases (Figure 2.11b).

Network Parameter Estimation

We first evaluate how our streaming protocol performs under different network
conditions. We use the NetEm [31] to control loss rate, bandwidth and other
parameters of an indoor Wi-Fi network. In this experiment, we change bandwidth
over the Ethernet port of the server. A wireless router connects to the server
through a cable. Our network parameter estimation algorithm is implemented
on a customized Android app. The app streams a video via the wireless router
to the server*. We decrease the bandwidth constraints from 700kbps to 100kbps
and increase the loss rate from 1% to 10%. The Android app detects changes and
adapts to the changes accordingly. As shown in Figure 2.12a, we can see that the
app tries to find an optimal bitrate in the beginning and eventually decreases as
the bandwidth decreases. In Figure 2.12b, as the loss rate increases 1% every 100s,
our estimation protocol can keep track of the changes closely.

* In this experiment, we treat the Android phone as the roaming edge node and the server
serves as the static edge node.
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Data Streaming Services

Experiment Setup

We implement our context-aware streaming protocol on the Android platform.
The app compresses raw video frames (in YUV420 format) using the H.264 stan-
dard, send them along with motion sensor data to a remote server in real-time*. A
GStreamer pipeline is running on the server to decompress each video frame and
sending back the timestamp associated with the frame. We set up a UDP connec-
tion between the phone and the server to send encoded frames over both LTE and
Wi-Fi networks, and measure the round trip latency of the encoded video frames

transmission in both networks.

Real Time Streaming Latency

We conduct case studies with three resolutions of 640x480 (480p), 960x720 (720p),
and 1280x960 (960p), with bitrate 1Mbps, 2Mbps, and 4Mbps, respectively. The
I-frame interval is set to 1 second, and the frame rate is set to 10, so there will be
one I-frame every 10 frames. We set up a UDP server with a global IP address
in our lab served as the remote server when conducting measurements for both
networks. For the measurements under LTE network, we put the Android phone on
a vehicle dashboard and drive the vehicle for about 30 minutes to record measure-
ment results. The recorded trip data cover an area of 1.5 square miles. For Wi-Fi
connection measurements, we stream a pre-recorded video through an 802.11n
Wi-Fi access point using the Android app. The streaming location is located ap-
proximately 5 miles away from where the UDP server is located. The cumulative
distribution function (CDF) of round trip latencies under both networks are shown
in Figure 2.13a. The median latency under Wi-Fi network is around 50 ms while
that under LTE network is around 150ms. Since only one Wi-Fi access point is used
in this experiment, the difference in latency is mainly caused by the protocol over-
head, for instance, handoff, scheduling. Based on these results, we believe that our
proposed streaming service is good for most applications. With the development of
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Figure 2.13: Streaming performance evaluation.

5G networks and carefully designed city-wide Wi-Fi networks [32], the streaming

speed could enable more time-sensitive applications.

Real Time Streaming Quality

In this experiment, we evaluate the quality of received video transmitted under
different loss rates using UDP and TCP, with or without FEC. Videos are streamed
from an Android phone to a server. The server is set up on a laptop and connects
to a wireless router through an Ethernet cable. The phone connects to the same
router through Wi-Fi. Figure 2.13b shows that video encoding algorithms are very
sensitive to packet loss. When the loss rate is greater than 2%, most frames are
distorted if there are no error correction mechanisms involved. The reason is that if
one packet of an I-frame gets lost, the current I-frame’s quality and the qualities
of the following P-frames will all be affected. The frame decoder cannot recover
those frames correctly. Due to the missing packet of I-frame, errors will propagate
over the following P-frames. Our UDP with FEC protocol works well even when
the loss rate is above 5% (Figure 2.13b).
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Figure 2.14: Context-aware streaming evaluation.

Context-Aware Data Encoding

We evaluate the performance of the context-aware encoding algorithm in a lab
environment to avoid any other network interferences. An Android phone and a
laptop running a server connect to the same Wi-Fi network. Recorded raw driving
data includes different driving events and scenes are played on the Android phone.
Once the server receives the data, it converts it back and evaluates the quality.
The object number threshold controls how frequent the encoder produces an I-
frame. The algorithm chooses different I-frame intervals based on the number
of detected objects. A larger threshold produces fewer I-frames and a smaller
threshold produces fewer P-frames. As shown in Figure 2.14a, quality decreases
as the threshold increases. When the I-frame interval is relatively large, P-frames
suffer bad qualities if the scene changes frequently, so the overall quality goes down.
Next, we compare the context-aware encoding algorithm with the H.264 video
encoding standard using fixed I-frame intervals. Figure 2.14b shows that a smaller
I-frame interval leads to better quality, as more I-frames are sent to the server.
However, more I-frames mean more data needs to be transmitted. The context-
aware encoding method is able to decide when to send I-frame based on potential

frame changes, which lead to better overall performance and less bandwidth usage
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Table 2.2: System Processing Delay Breakdown

480p 720p 960p
Stage Object 35ms 38ms 42ms
Detector
One Color
e 12ms 13ms 15ms
Classifier
Communication
(Encoding, streaming, | 65-240ms | 75-260ms | 90-285ms
decoding)
RelD 35ms 45ms 50ms
Stage | License 'P.late 11ms 15ms 18ms
Two | Recognition
Vehicle 21ms 25ms 28ms
Feature
Feat}l re 10ms 10ms 10ms
Fusion
End to End 1.5-3.5s 2-4s 2.5-4.5s

than using other encoding methods.

End to End Latency

The overall end to end latency consists of latencies at different stages and the
streaming latency. Latencies of object detector, color classifier and context-aware
encoding are measured on mobile phones at stage one. At stage two, we measure
re-identification, license plate recognition, vehicle feature extraction and feature
fusion latencies. The data streaming latency is studied in Section 2.5. We record the
timestamps when a module is called and an output is derived to calculate latency.
The streaming latency is measured using timestamps embedded in packet headers.
Table 2.2 shows the latency of each module and the end to end latency. On average
it takes up to 4 seconds to identify the target vehicle. Vehicle reidentification is the
most time-consuming task since it has to compare tracklets one by one.

We believe that it is reasonable to have a less than 4 seconds delay for vehicle
tracking. Once a worker finds a suspect, it will keep tracking that suspect until
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cleared. Hence, we can know the current location of that vehicle as soon as it is
being identified as the target. The system processing delay can be improved from
multiple aspects, e.g., using more powerful machines, better networks (5G). We

leave these as future work.

2.6 Discussion

Hardware and Edge Computing Platform We used a previously developed edge
computing platform - ParaDrop, which is built on WiFi access points. There are
many other research efforts have been done on edge computing. For example,
Mobile Edge Computing (MEC) [33] is a popular concept in industries. Jetson TX2
is a low-cost, low power consumption embedded system with GPU capabilities,
which is suitable for complex computing at the edge. Integrating Cascade with
other platforms would benefit both developers and crowdsensing applications.

Data Collection and Transmission Our vehicle tracking application mainly
uses videos recorded using smartphones. Other cameras, like traffic cameras, can
also be involved as a worker in this application. It can record videos from a different
angle, which might be able to capture other important features of a vehicle. Cascade
is able to accommodate various types of sensors and we will continue extending
its capabilities. Further improvements can be made to improve data streaming
efficiency. With the emerging 5G technologies, crowdsensing applications could
have new paradigms for data transmission. Therefore, how crowdsensing can
benefit from 5G networks can be an interesting research direction.

Vehicle Tracking In this work, we train existing models using our own dataset
for vehicle information extraction. There are lots of improvements can be done on
vehicle information extraction. For example, vehicle model, make and color can be
respectively recognized using a single CNN model [34], and such information can
be further used in vehicle re-identification [35]. Our color detector can only work
with vehicles that have a single color. Therefore more work can be done to handle
vehicles with multiple colors. We leave these as future work.
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2.7 Conclusion

In this paper, we explore the feasibility of designing a two-stage crowdsensing
framework with the help of roaming edge computing platforms. We aim to gather
transportation related information at city-scale using crowd-sourced, distributed
roaming edge compute nodes and their in-range sensors. To this end, we present
Cascade, a roaming edge computing enhanced crowdsensing framework for smart
transportation applications. We implemented a vehicle tracking application based
on Cascade to explore and overcome challenges of building applications leveraging
the roaming edge. During the development process, we demonstrate how to fully
leverage resources at both static and roaming edge nodes to improve overall system
performances. We evaluated this application using real-world driving data as well
as publicly available data sets. The experiment results help us understand how to

develop the best resource allocation strategy to achieve given goals.
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DrivAid: Augmenting Driving
Analytics with Multi-Modal
Information

3.1 Introduction

Due to its many implications, monitoring and evaluating driver’s behavior has
always been a topic of great interest. Many commercial offerings (such as from
Cambridge Mobile Telematics [36]) and research efforts have built systems that
attempt to monitor and evaluate driving behaviors by analyzing information from
On-Board Diagnostic (OBD) ports as well as motion sensor data (either from
smartphones or other custom devices with Inertial Measurement Units (IMU)
sensors). With the proper analysis, the data from these motion sensors can provide
useful information about various activities within the drive itself, e.g., hard brakes,
sudden lane changes, or fast acceleration [37, 38, 39, 40].

While IMU sensors can provide accurate analytics on what happened during a
drive, e.g., hard brakes, sudden lane changes, etc., it should be apparent that such
data alone does not answer why the driver acted in that manner. In particular, data
from IMU sensors do not have sufficient contextual information to indicate whether
such an action by the driver was good or bad. As shown in Figure 3.1, a hard brake
could be due to driver distraction (a bad driving action), or it could be to avoid a
deer that suddenly jumped to the front of the vehicle (a good driving action).

Introducing DrivAid: We believe that to better understand driving behaviors
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Figure 3.1: Possible causes of a hard brake.

one can effectively leverage audio-visual cues, using a few vehicle-mounted cameras
and microphones, to complement the existing use of IMU sensors. In particular, we
build a low-cost and portable system called DrivAid that utilizes audio-visual sen-
sors in the vehicle, processes such data feed locally and provides useful evaluation
feedbacks to the driver both in real-time and offline.

Analyzing high resolution audio-visual data is often delegated to high-end
GPU-enhanced compute clusters located in data centers. However, in our scenario,
it is likely that the vehicles equipped with audio-visual sensors can easily generate
a high volume of data rather quickly making the offload process either slow or
expensive, or both. This implies that the audio-visual analytics should need to be
performed locally and in real-time — if the analytics is any slower, then the data
will continuously get backlogged and ultimately becoming stale at some point.

To address abovementioned challenges and support efficient audio-visual ana-
lytics, we experimented with in-vehicle GPU-enhanced computing platforms on
which we deployed the analytics module. Compared to cloud computing, edge
computing provides lower latency, greater responsiveness, and more efficient use
of network bandwidth. To avoid unnecessary resource-intensive image processing tasks
and reduce computing workload of the whole system, we use smartphone motion sensors to
detect different driving events and only conduct further analysis once an event is detected.
Figure 3.2 shows the workflow of DrivAid. DrivAid uses data from IMU and GPS
sensors to detect driving events. When an event is detected, DrivAid fetches video
and audio clips from the buffers to analyze. All the audio and video data are
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Figure 3.2: A high level overview of DrivAid.

processed locally in the vehicle to preserve privacy. By leveraging various sensor
data and implementing an analysis pipeline that leverages deep neural networks,
we are able to offer useful insights of driving events and generate analysis results
in real time. We believe the proposed architecture of DrivAid can be particularly
useful in analyzing driver behaviors, and could be an essential part of a driver
analytics subsystem.

Usefulness of DrivAid: The concept of using audio-visual cues in improved
situational awareness around vehicles is most famously used in autonomous ve-
hicle industries (along with a host of other sensors). However, unlike the high
resolution and very high accuracy needs of autonomous vehicles in making driving
decisions, the DrivAid system requires far lower resolution and accuracy, resulting
in a significantly lower cost. Today’s autonomous vehicles install high-end sensors
which aggregate a price of ~$100,000, while our system utilizes infrastructure with
an aggregate cost of less than $500. DrivAid delivers significant benefit for driving
analytics at a lower cost which could benefit a wide range of applications. First,
with proper incentives, insurance companies may ask their customers to install
extra hardware (e.g. camera) on their vehicle, and evaluate their driving skills
with a system like DrivAid. Such a camera-based system could offer more informa-
tion when an accident happens. Second, many fleet operators, e.g., public transit

systems, school buses, freight trucks, are often interested in understanding the
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behaviors of their drivers. DrivAid could identify unsafe habits and help fleet
managers educate their drivers to take appropriate actions. Third, if certain drivers
are known to be “experts,” then the annotated actions of such drivers could also
be used to provide useful inputs to the design of autonomous vehicles. Moreover,
with adjustments, DrivAid could be used to verify whether the autonomous vehicle

can handle unusual or rare traffic events.

3.2 System Overview

Design Consideration

In order to get a comprehensive understanding of a driver’s performance, a major
challenge is to acquire enough context information, e.g. driver’s actions, and the
surrounding traffic information. Current solutions, like XSense [41], V-Sense [37],
can accurately detect various normal and abnormal events using data collected from
motion sensors or OBD port, but fail to provide surrounding context information.
To find the missing information, DrivAid buffers the most recent 10 seconds audio
and video data from microphones and cameras for analysis. When an event of
interest happens, DrivAid analyzes the data with computer vision techniques to
get driving actions that cannot be detected by IMU and GPS sensors, including
turn signal usage, mirror checking, blind spot checking, and so on. By combining
information from various sources, DrivAid can provide more informative driver

analytics and offer deeper insights into each detected events.
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Figure 3.3: The detection of driving activities.
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Our Solution

Figure 3.2 shows a high-level overview of the DrivAid design. DrivAid uses three
types of sensors to collect data: i) IMU sensors and GPS of a phone, which can
be used to detect driving events; ii) the rear camera of a phone to capture traffic
ahead; iii) two cameras facing the blind spots on both sides, and one camera
facing the driver. Timestamped sensor data, audio, and video are analyzed on an
embedded computer deployed in the vehicle. We use an Android phone to record
data from the accelerometer, gyroscope, magnetometer and stream them to the
embedded computer for context analysis. Extracted context information is sent to
an activity evaluation module, through which the detected event will be evaluated
and categorized into different ratings.

IMU-based solutions can accurately detect various types of driving events with
low power consumption. On the other hand, audio and video data analysis with
deep neural networks are usually computationally expensive. Given the fact that a
driver should have minimal operations when driving straight or there is not too
much surrounding traffic. Hence, it is less important to monitor the driver during
the whole trip, we only need to focus on how well the driver performs when a
driving activity is detected. Following this principle, DrivAid uses motion sensors
to continuously monitor various driving events, and analyze corresponding audio
and video clips once an event is detected. Doing this can significantly reduce

computing workload and power consumption of the whole system.

3.3 Event Detection and Context Analysis

The DrivAid system detects three types of driving activities (turn, hard brake,
and lane change) with the sensors on the smartphone. Once a driving activity is
detected, DrivAid starts extracting context information from the video and audio
clips collected by the IP cameras. Data from different sensors are not synchronized
due to buffering (video and audio) and different system clocks on those devices.

We leverage the recorded turn signal sounds to synchronize the data from multiple
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devices. A pattern matching algorithms is used to find the time difference between

multiple signal traces.

Driving Event Detection

Coordinate Alignment

Smartphone-based mechanisms have been developed to detect various driving
behaviors [42, 40, 37]. For instance, the vehicle’s lateral dynamics can be obtained
from the gyroscope sensor in the smartphone when a phone is aligned with the
vehicle. DrivAid uses similar techniques as mentioned in [37, 41] for coordinate

alignment.

Turn and Lane Change Detection

We detect turning and lane change events by using the gyroscope sensor and
the GPS. Since the smartphone’s coordinates are aligned with that of the car, the
z-axis readings of the gyroscope sensor reflect lateral movements of the vehicle.
Figure 3.3(a) illustrates the detection of left and right turns as well as a left lane
change using the gyroscope sensor. Turning angles can be estimated by integrating
the angular speed over time. A positive turning angle refers to a left turn while a
negative turning angle represents a right turn. In addition to the gyroscope data,
we monitor the vehicle heading changes with GPS coordinates. The vehicle turning
events can be extracted by monitoring the changes in the traveling direction. This
method could be a complementary method for turning detection. In Figure 3.3(a),
the blue dots represent the traveling directions calculated from the GPS coordinates.
Different angles stand for different directions. For instance, 0 corresponds to East,
90 indicates North, 180 denotes West, -90 represents South. From the figure, we can
distinguish the turning events from the changes of direction angle. Using similar
techniques, we can detect lane change events using both device orientation changes
and direction angle changes. To differentiate between lane changes and driving on

curvy roads, we implemented the same technique proposed in V-Sense [37].
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Brake & Stop Detection

We use accelerometer readings as well as vehicle speed information to detect brakes
and stops. Figure 3.3(b) illustrates the detection of normal and hard brakes. Brake
events can be extracted from bumps in accelerometer readings and decreasing in
vehicle speed. A hard brake is defined as any condition when the vehicle decelerates
faster than 7 mph (Miles per hour) per second. Stop events can be inferred from
the vehicle speed.

Driver Behavior and Context Analysis

DrivAid analyzes the audio and video signal with signal processing and computer

vision techniques to get driver’s behaviors and also the context information.

Pedestrian

e
oz

Collision Zone

(c) Objects in blind spots. (d) Examples of head poses.

Figure 3.4: Extracting context information using vision-based techniques.
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Driver Behavior Analysis

The turn signal is a vital safety feature used to notify other drivers when making
turns or switching lanes. DrivAid detects turn signal usages by analyzing turn
signal sounds. We apply bandpass filters to filter out human speech as well as other
background noises. Then a pattern matching technique is used to identify turn
signals. Figure 3.3(c) shows examples of extracted turn signals from a camera’s
built-in microphone.

Drivers use mirrors to get a picture of their surrounding traffic, and check the
blind spots when they need to make a turn or change the lane. DrivAid detects a
driver’s head pose to infer the driver’s mirror and blind spot checking behaviors.
We classify head poses into six categories, they are left and right wing mirror
check, left and right blind spot check, rearview mirror check, and front view check.
Figure 3.4d shows six different head poses of a driver. In Figure 3.4d (1), the driver
is focusing on the front view. Figure 3.4d (2) and (5) show the driver is checking
left and right wing mirrors correspondingly. The driver is checking the rearview
mirror in Figure 3.4d (4). The driver is making left and right shoulder checks in
Figure 3.4d (3) and (6). These six scenarios can be distinguished by checking head
movements with respects to the yaw axis. The estimated rotation angles around
the yaw axis of Figure 3.4d (1), (2), (4), (5) are —3.34, —40.20, 18.21, 49.70. As
shown in Figure 3.4d (3) and (6), due to lack of facial features, it is hard to estimate
head pose when the driver is checking right and left blind spots. To solve this issue,
we track the rotation angle in a duration. If the angle keeps increasing and then
disappears, then the driver is doing a right blind spot check, and vice versa. To
calculate the head pose in 3D space, we need to know several locations of the face
(eyes, nose, mouth, etc.) in 2D space, and also the 3D coordinates of those facial
features in world coordinates. We assume the camera is calibrated so we are aware
of the intrinsic parameters of the camera. DrivAid uses Dlib’s facial landmark
detector [43] to extract key points on a face from the captured image. And the

solvePnP function of OpenCV [44] is used to get the head pose.



56

Table 3.1: Object Detection

| Vehicle & Person | Traffic Sign | Speed Limit |
Car Stop Sign 25 mph
Truck Red Traffic Light 30 mph
Pedestrian Yellow Traffic Light 40 mph
Biker Green Traffic Light 60 mph
Context Analysis

We analyze the audio and video signal to get the context of driving events. Object
detection is the backbone of DrivAid and the choice of a right detection model
should balance the run-time efficiency and accuracy. We choose DetectNet [14]
as the object detection model since it can deal with input image of varying sizes
and provide reliable accuracies. And it can be easily accelerated by the optimized
inference engine—Nvidia TensorRT [15].

Most intersections are controlled by traffic signs, and it is important to follow the
traffic rules at an intersection. DrivAid can detect a list of objects appeared in video
frames captured in the front view camera, with a special focus on common objects
at intersections. The front view object detection model could recognize vehicles,
pedestrians, traffic lights, stop signs and speed limits. We train a DetectNet model
using two public traffic image datasets [17, 16]. Figure 3.4a and 3.4b show the de-
tected objects at intersections with traffic lights and stop signs. We define a collision
zone (yellow shaded region shown in figures) in each front view frame, objects in
the collision zone will be considered as "threats" to the driver. In general, the area
of the collision zone is fixed when the vehicle travels under a speed threshold. The
size will increase if the vehicle travels faster than the speed threshold, the higher
vehicle speed, the larger the collision zone. The speed threshold and the size of
the collision zone are defined based on empirical experiments. If there is an object
exists in the collision zone, the driver might not have enough time to avoid hitting
that object. Note that traffic signs, such as stop signs, speed limits, will always be
considered by the evaluation module.

Any time before changing or merging lanes, a driver needs to check if there is
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any object in blind spots. DrivAid monitors three most common types of objects
that could appear in blind spot areas, they are vehicles (e.g. cars, trucks, etc.),
pedestrians and bikers. As shown in Figure 3.4c, a pedestrian, a truck and two
vehicles are detected in this frame. Similarly, we labeled a collision region to check
whether there is anything in the blind spot area. The driver can make a safe lane
change when the collision region is empty:.

As mentioned in the previous section, DrivAid can detect four types of speed
limits from the front view camera. DrivAid queries vehicle speeds from GPS
every second. Once a speed limit sign is detected from the video frame, it will be
compared with the speed from GPS. When risky events are detected, we check
whether those events are caused by speeding. Besides, we can also infer if the driver
has the speeding habit.

3.4 Driving Activity Evaluation

By combining the context information with the activity detection results with IMU
and GPS, we can infer whether the driver is doing right when events occur.

Data Fusion

It is always hard to reveal the whole picture on the road using information acquired
from a single sensor. Hence, DrivAid combines information acquired from multiple
sensors to develop a deeper understanding. For instance, once a turning or lane
change event is detected, the system will check if the driver follows correct rules
before making the turn or lane change, e.g., using turn signals, checking wing
mirror and blind spot, etc. If the detected turn or lane change is accompanied by a
turn signal and a blind spot check, then the driver behaved properly. Otherwise,
further analysis may be required to judge the rationality of the driver’s behavior.
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Comprehensive Driving Activity Evaluation

We implement a decision tree for driving behavior analysis. In this work, we mainly
focus on evaluating three types of driving activities: turn, lane change, and hard
brake. DrivAid caches the most recent 10 seconds of video and audio data. Once
an activity is detected, DrivAid extracts context information from the 10-second
data clips and use them to evaluate the driving activity. For each detected activity,
we take different factors into consideration. Figure 3.5 shows the workflow of the
analysis process. We use a decision tree to rate the driver’s performance during an
activity. Items in the red dashed boxes are the factors we take into consideration for
each event. These factors serve as the inputs of the decision tree. The outputs of the
decision tree are the classified categories of each event. For example, an aggressive
turn is confirmed if the driver is speeding when making the turn. A conservative
lane change is determined only when the maneuver duration is too long while the
other operations are well done. If a hard brake is caused by the sudden appearance
of a pedestrian, it will be classified as a reasonable one. To build the classification
decision tree, we start with listing out all the possible conditions and cases for each
event. Then, find out all the possible nodes, and choose the most important node as
the starting point. The classification decision tree eventually grows upon the start
node. Lastly, we make sure every possible condition can be covered by the tree.
Here are the details of key nodes for each event. For the turning event, Fy
represents the difference between vehicle speed and speed limit. F; checks the
smoothness when making the turn. F, and F; measure the level of the turn. Fy
and F5 are binary values showing whether the driver does mirror and blind spot
check, as well as the turn signal usage. For the hard brake event, Fy describes the
smoothness of the brake. F; to F4 are all binary values. Fy, F3, and F4 represent the
appearances of traffic signals, the vehicle in front collision region and pedestrians
correspondingly. F, describes whether the driver’s attention is distracted or not.
For lane change events, Fy and F; represent the front and rear vehicle distances
in the next lane. F3 describes how long does it take to finish the lane change. We
divide the distance into three categories, far, moderate, and close. F, and F, are
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Figure 3.5: The structure of decision tree evaluation model.

binary values which describe the usage of the turn signal and whether the driver

checks wing mirrors and blind spots.

3.5 System Implementation

Supporting real-time data processing is a big challenge for DrivAid. To achieve
this goal, we carefully choose the embedded computing platform and use the
device-specific inference engine to execute the trained neural networks. The core
component of DrivAid is the analysis module which runs in the Nvidia Jetson TX2
embedded computer. Jetson TX2 is an embedded system-on-module (SoM) with a
hex-core ARMv8 64-bit CPU complex and a 256-core Pascal GPU [45]. We install
JetPack 3.2 with L4T R28.2 on Jetson TX2. JetPack 3.2 bundles all the Jetson platform
software, including TensorRT 3.0, CUDA 9.0, GStreamer, OpenCV and so on.
We implement DrivAid using GStreamer framework [46] in C and C++. GStreamer

pipelines are used to manage each individual task, e.g., we create a pipeline for

head pose estimation, and use another pipeline to monitor turn signal usage. A
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GStreamer element is a procedure through which the audio-video stream is pro-
cessed. A GStreamer pipeline consists of a chain of elements. Audio-video streams
flow through the pipelines and are processed in a synchronized manner. To imple-
ment the context analysis module, we develop a GStreamer plugin including two
GStreamer elements for head pose estimation and object detection. The head pose
estimation element is implemented with Dlib. The object detection element loads
a specific pre-trained DetectNet model and uses the model to recognize objects
in input images. The object detection models are trained using the Nvidia Deep
Learning GPU Training System (DIGITS) [47]. DIGITS is a wrapper for multiple
deep learning frameworks including Caffe, Torch, and TensorFlow. We use Caffe
to train our detection model, and copy the trained model snapshot to Jetson for
inference applications. Our object detection models are trained on a Desktop with
a Nvidia GeForce GTX 1060 GPU. Before using the trained model on Jetson TX2 for
inference applications, we need to parse it and perform device-specific profiling
and optimizations for the target deployment GPU. We use the TensorRT to perform
such kind of optimization tasks.

In total, we have five pipelines to extract useful context information from audio
and visual sensors. Here is a list of the pipelines we used:
Pipeline 1: Detecting vehicles, people, traffic signs and speed limits from the front
view camera.
Pipeline 2 & 3: Detecting vehicles and people from left and right blind spot cameras.
Pipeline 4: Estimating head poses from the face camera.
Pipeline 5: Monitoring turn signal usage from audio streams. Pipeline 1 has two
branches running for object detection in front view. These two branches load the
Vehicle & Person and the Traffic Sign inference models correspondingly.

3.6 Evaluation

We deploy our hardware in vehicles and evaluate DrivAid under real-world condi-
tions. In this section, we provide the details of our experiment settings, detection

accuracies, and system resource consumption during the real-time process.
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Experiment Setup

We deploy the hardware in two vehicles (Honda CRV and Nissan Rogue) and test
DrivAid in real-world environments. We develop a custom Android application
that runs on a Google Nexus 5X for IMU and GPS sensor data collection as well as
video capturing in our prototype system. The data sampling rate is set to 10Hz for
motion sensors and 1Hz for GPS. The phone captures video from the rear camera
with a resolution of 640x480 @ 10 frames per second (FPS) 1 Mbps bitrate. The
sensor and video data are streamed to the Jetson TX2 using TCP protocol through
USB tethering service. We have three Logitech C920 video cameras capturing videos
from the left and right blind spots and the driver. The video stream settings are
the same as what we used for capturing video from the phone camera. Figure 3.6
shows the hardware components of DrivAid. Two cameras are mounted near wing
mirrors facing the right and left blind spots. One camera facing the driver is placed
on the dashboard behind the steering wheel. The phone is mounted on the center
dashboard. Since there is only one USB 3.0 port on Jetson TX2, we use a USB hub
to connect cameras and phone. The Jetson TX2 (maximum power consumption
is about 7.5 Watt) is powered by the cigarette lighter. In total, we have collected
around 1500 miles of data from multiple drivers'. Part of the data is collected by
our partner [48]. We use the data to train and validate our models.

To evaluate DrivAid, we randomly select 10% of the original data. We mainly
focus on analyzing the driving events and driver performance in urban areas since
drivers tend to face more complex scenarios in urban environments than those on
highways. To get the ground truth, we recruit three volunteers to find out all the
events from the recorded data. For each detected event, we ask volunteers to iden-
tify driver’s actions and surrounding traffic information from the corresponding
video clips. Three volunteers should reach a consistent decision for each event,
driver actions, and traffic information. For example, if volunteers recognize a lane
change event from sensor data. Then, they will watch the corresponding video clip
(captured from the front view camera) to double check this event. Further, they fig-

1We have received IRB approval for this research project.
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Figure 3.6: The hardware components of DrivAid.

ure out driver’s actions (e.g. mirror check, turn signal usage, etc.) and surrounding
traffic information (e.g. any vehicle in blind spot area, the distance of the vehicle in
front, etc.) from the video clips taken by all cameras. We created a separate thread
to record the performance data of the hardware, including CPU/GPU usage and

frequencies, as well as memory usage.

Driving Event Detection

In order to avoid unnecessary computation tasks, our system is designed to detect
various driving events mainly using smartphone motion sensors. DrivAid buffers
audio and video streams in the most recent 10 seconds, and only conducts evaluation
tasks once an event is detected.

First, we evaluate the detection accuracy of sensor-based algorithms. We use
smartphone motion sensors to detect four different driving actions, namely turn,
lane change, brake, and stop. Table 3.2 includes the detection accuracies of these
four driving events. Brake and stop are relatively easy to detect and the precision
and recall of these two events are 1 and around 0.99 correspondingly. The errors
are mainly caused by vibrations of the vehicle (e.g. uneven road surface) and GPS

signal lost (e.g. an underground parking lot). The precision and recall are more



Table 3.2: The Accuracy of Driving Event Detection.
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Event | #of TPs'| # of FPs'| # of GTs'| PR* | RC?]
Turn 113 7 125 0.94 | 0.90
Lane Change 67 27 82 0.71 | 0.80
Brake 306 0 311 1 ]098
Stop 89 0 90 1 1099
! The number of ground truth (GT), true and false positives
(TP, FP).

2 Precision (PR) and Recall (RC).

than 0.9 for turn detection, the misjudgments are mainly caused by unexpected
vibrations of the vehicle. We have a slightly lower precision and recall for lane
change detection. Some drivers tend to make gradual lane changes and it is relatively
hard to capture all of them using sensor data fusion techniques. Due to these
factors, we achieve a precision of 0.71 for lane change events. We implement pattern
recognition techniques for detecting these events. In order to make sure every
event can be detected successfully, we loosen the constraints of matching algorithm
when conducting the real-time evaluation. In other words, our system can detect
almost every event, but there exist more false positives. To be more specific, the
total number of detected events is 489, and around 3825 in seconds (a single event
lasts for 8 seconds on average). The total driving time is around 13650 seconds,
which means DrivAid only needs to analyze around 36% of the collected data (we

extract and evaluate 10-second video-audio clips for each event).

Head Pose Estimation

In this experiment, we recruited 5 volunteers to evaluate the head pose estimation
accuracy. As mentioned in Section 3.3, we define six states of head poses. Figure 3.7a
(a) to (e) shows how estimated head poses (measured in degrees) change over
time when the driver does right and left wing mirror check, right and left blind spot
check and rearview mirror check. When the driver focuses on the front view, the
estimated head pose is between £10. When the driver turns his head to the right,

the estimated head pose is a positive number and vice versa. We ask each volunteer
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Table 3.3: The Accuracy of Object Detection.

| Event [#0fTPs | #0f FPs | #0f GTs | PR | RC |

Vehicle 5075 1904 7555 | 0.72 | 0.67
Pedestrian 1207 473 1942 | 0.71 | 0.62
Traffic Light 440 168 748 0.72 | 0.59
Speed Limit 427 138 721 0.75 | 0.59
Stop Sign 370 126 644 0.74 | 0.57
Turn Signal 162 17 173 091 | 0.93
Head Pose 116 23 150 0.83 | 0.77

to sit in the vehicle, pretending he or she is driving it. Volunteers are asked to check
mirrors and blind spots based on our instruction every 10 seconds. Each round lasts
for five minutes. Table 3.3 shows the estimation accuracy. Our estimation module
can achieve a precision of 0.83 and a recall of 0.77. Most misjudgments happen on
rear mirror check since some people turn their heads very slightly when checking
the rearview mirror. We use mean average precision (mAP) to measure the accuracy
of object detectors. It is the average of the maximum precisions at different recall
values. Figure 3.7b reports the mAPs of Pipeline 4 running at different frame rates.
The higher the frame rate, the better the performance. With a higher frame rate, the
pipeline can capture more head pose changes, thus, the classification result would

be more accurate.

Front View & Blind Spot Monitoring

We prepared more than 1500 video frames from recorded videos in the real-world
environment and labeled every object appears in each frame. First, we test our
front view inference model by comparing the inference results with ground truth.
Table 3.3 reports the precision and recall of each object. We find the precision values
for the vehicle, pedestrian, traffic light and speed limit are more than 0.7. Based
on our observation, the light condition affects detection accuracy most. Although
we have used a relatively large data set for training, improvements can be made by
expanding image data set as well as changing the design of CNN. We leave this
for future work. Next, we replay the recorded videos on a desktop, the video is
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displayed on a screen monitor. We start the front view pipeline and let the camera
facing the screen. All the detected objects are plotted on the corresponding image
frame and saved as a PNG file to a local disk. The total video length is around 20
minutes and we test the pipeline with frame rates of 10 and 15. The mAPs for front
view pipeline (Pipeline 1) are shown in Figure 3.7b. We can see that the higher the
frame rate, the higher the mAP value.

We use the same DNN model as front view pipeline for blind spot monitoring
(Pipeline 2). Different from Pipeline 1, Pipeline 2 only uses the Vehicle & Person
inference model since traffic signs and speed limit signs are less likely to appear in

blind spot area. Therefore, we achieve a similar detection accuracy to Pipeline 1.
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Figure 3.7: System Usages.

Audio Monitoring

In this experiment, we extract the audios from recorded video streams to test the

turning signal detection pipeline. Table 3.3 summaries the detection accuracy. Both



66

the precision and recall are greater than 0.9. Most false positives and negatives
happen on uneven roads since real turn signal pulses may be buried under vehicle
vibration noises. Our detection algorithm works well in most cases and further
improvements can be done to remove unexpected noises. Figure 3.7c and Table 3.4
report the system usage details of the turning signal detection pipeline (Pipeline
5). Pipeline 5 consumes the least system resources compared to other pipelines.

System Resource Usage

In this experiment, we evaluate the overall performance of DrivAid. As mentioned
in previous sections, data from various sources, including phone, three webcams, a
microphone, are pushed to five pipelines. We test DrivAid under different frame
rate settings.

System Usage of a Single Pipeline: System usage of each pipeline is summa-
rized in Figure 3.7c and Table 3.4. We measure the CPU, GPU, and memory usage
when running each individual pipeline at 10 FPS. The main task of front view
pipeline (Pipe. 1) is to detect various objects, it has a very low CPU usage (less
than 5%) and a relatively high GPU usage (more than 30%). Table 3.4 shows the
memory usage is around 970 Mb for Pipe. 1. The blind spot monitoring pipeline
(Pipe. 2) consumes less resource than front view monitoring pipeline since it only
has one branch. Our head pose estimation pipeline mainly uses CPU for computing
and GStreamer uses a little GPU for video preparation. The memory usage is
around 100 Mb, which is much lower than object detection pipelines. Based on our
experiment result, a single pipeline can be run with the highest FPS of 30.

Overall System Usage: System usage details are summarized in Figure 3.7d
and Table 3.4. "D10H5" means the FPSs of object detection pipelines are set to 10
and 5 for head pose pipeline. From the results, we can see that the memory usages
improve a little bit compared to running a single object detection pipeline. GPU
is fully occupied by DrivAid at 15 FPS and CPU usage is around 20% at 10 FPS.
Based on evaluation results, DrivAid can support a max of 10 FPS for the head pose
pipeline and 15 FPS for object detection pipelines simultaneously. Currently, the



Table 3.4: The Memory Usages of Pipelines.

|

| Pipe. 1 | Pipe. 2 | Pipe. 4 | Pipe. 5 |
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Usage (Mb) | 972 964 138 9
D10H5 | D10H10 | D15H5 | D15H10
Usage (Mb) | 1102 1103 1105 1108

head pose pipeline is running on a single core of the hex-core CPU, which is why
the CPU is not fully occupied. Future improvements can be done to fully leverage
the hex-core CPU.

Overall Performance in Real World Environments

We deploy DrivAid on a real vehicle and drive the vehicle on roads for around
50 miles. We perform normal actions during test drives, including turns, lane
changes, brakes, and stops. There are two volunteers sitting in the vehicle and
rate every event happens during the drive. The volunteers should come up with a
consistent decision for each event. Their judgments serve as the ground truth. In
general, DrivAid can achieve an accuracy higher than 90% for context extraction,
and the outputs of decision tree analysis module are consistent with the ground
truth. Table 3.5 summarizes the details of lane change event analysis results. Due
to the space limit, we omit the analysis details of turn and hard brake. Figure 3.8(a)
illustrates how DrivAid develops a comprehensive understanding of a hard brake.
To evaluate this hard brake, DrivAid extracts useful context information from video
clips collected from front view, face view and blind spot cameras. For instance,
there is enough space between the two vehicles when the vehicle starts to decelerate
(Figure 3.8(b)), driver’s attention is distracted before the hard brake happens
(Figure 3.8(c)), and so on. Using these factors as inputs, the decision tree classifies
the hard brake into "Error" category, which is consistent with the ground truth.
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Table 3.5: The Accuracy of Lane Change Event.

| Event | TPs | FPs | GTs | PR | RC |
Front Vehicle Dist. | 25 9 31 | 0.74 | 0.71
Rear Vehicle Dist. 24 6 27 | 0.8 | 0.75
Turning Signal 31 2 34 1094 | 091
Maneuver Duration | 39 2 41 | 0.95 | 0.92
Head Pose 37 5 39 | 0.88 | 0.90

3.7 Discussion

Hardware Platform Selection: In order to support DNN-based video data analysis
in real-time, we have to choose a hardware platform with hardware accelerators
for deep learning inference. Low power consumption is another important factor
because we want to deploy the system in regular cars. Nvidia Jetson TX2 is a good
option for DrivAid because of its low power design and the integrated deep learning
inference engine. However, there are other options available in the industry. For
example, Intel’s Movidius Myriad 2 Vision Processing Unit [49] is a good option
we can try.

Deep Learning Models: Currently, DrivAid primary use object detection mod-
els based on DetectNet for context analysis. Many other deep learning models are
available for object detection tasks, such as YOLO and SSD. We choose DetectNet
because it is easy to be implemented and deployed in the current hardware platform.
We may switch to other models after we finish evaluation on those deep learning
models regarding both performance and accuracy. In addition, we may use other
models like image segmentation for the context analysis in the future work. To get
a more comprehensive understanding of the activity and context, we may also use
RNNs (Recurrent Neural Networks) to models to analysis driving behaviors in
the future work. DrivAid analyzes video frame one by one independently without
leveraging the similarity of the neighbor frames. One possible improvement of the
current implementation is combining the results of several neighbor frames.

Limitations: Current DrivAid prototype heavily depends on the audio and
video signals from cameras, it may not work well at night or dark environment.
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Figure 3.8: Detailed analysis of a hard brake.

3.8 Conclusion

This chapter introduces DrivAid, a multi-modal and light-weight real-time sensing
system that leverages audio-visual cues to augment driving behavior analysis. Our
system overcomes the limitations of existing IMU-based solutions and can provide
fruitful contextual information for driver behavior profiling. DrivAid leverages
mobile sensing and computer vision techniques to extract various context infor-
mation of the driver and the surrounding environments. Further driving behavior
evaluation is conducted using the extracted information. We build a prototype
of DrivAid on a low-cost embedded computer with deep learning inference ac-
celerator. The prototype is deployed to a regular vehicle and tested in real-world
environments. The evaluation results show that our system can process data in real
time and provide a good understanding of each driving behavior. We believe such

a real-time sensing and analysis system can enable a wide range of applications.
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A Vehicle-based Edge Computing
Platform for Transit and Human
Mobility Analytics

4.1 Introduction

A public transit system is an important part of public infrastructure provided by
local governments. According to the American Public Transportation Association’s
report [50], 10.6 billion public transportation trips were taken by Americans in
2015. An efficient and high quality public transportation system both benefits
passengers and also has a large impact on city development. Hence, public transit
operators have always looked for mechanisms that allow them to improve their
services regarding issues such as what new routes or stops should be introduced,
how peak and off-peak behaviors are handled, and much more.

Traditionally, these decisions are often based on limited surveys — metro transit
operators would recruit volunteers and ask them about their experiences and transit
preferences. However, just as mobile devices have transformed crowd-sourced data
collection in a whole range of domains, we believe that transit systems can also
benefit significantly from them. In this chapter, we advocate a fairly low-cost and
simple system through which a transit operator can gather significant user and
usage analytics about its operations at a scale never possible before.

Transit systems need to learn much about transit usage to evaluate current

transit routes/schedules, and to make decisions on adjustments [51]. Therefore,
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Figure 4.1: The on-board edge computing platform. The key challenge for Trellis
is to determine whether an individual is located inside the vehicle (passenger) or
outside of it (pedestrian). Based on the fact that pedestrians will eventually be out
of monitoring range, Trellis solves this problem by observing device signal strength
coupled with the vehicle’s speed of movement.

transit operators are actively seeking approaches that can answer questions such
as: What are the most popular stops at different times of the day? How long
do people at bus stops wait for the next vehicle? How occupied are different
vehicles at different times of the day? What do public mobility patterns look
like throughout a year, especially during hot summers and cold winters? Some
of these questions are significantly related to funding allocations— in particular,
operators sometimes receive government funds based on how many passenger-
miles they carry annually [52, 53, 54]. Transit operators use a number of low
tidelity methods to collect such information. However, existing solutions either
failed to answer this question or have been too expensive to be widely deployed.
For instance, most ticketing systems on metro buses can infer where passengers
get on a bus, but they do not record where/when passengers get off a bus. Some
public transit operators rely on expensive sensor systems to count the number of
passengers as they get on and off the bus. But these systems are not able to detect the

specific origin and destination of individual passengers. Camera-based solutions
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involve costly hardware and may generate privacy concerns when customers’ facial
identities are captured by the cameras. Even cameras are deployed, it is still very
challenging to track individual passengers [55, 56]. What’s more, pedestrian flows
could eventually affect traffic conditions [57, 58, 59, 60]; however, there is not
an effective method to estimate the number of pedestrians on the street. The
approaches above tend to provide incomplete data or data with fairly low fidelity.
In this chapter, we propose a low-cost, wireless-based mechanism to conduct spatial-
temporal public transit analytics and answer these unresolved questions.

The usage of edge computing platform: In-vehicle computing platforms are
becoming increasingly important as they enable advanced safety, efficiency, and
diverse services such as entertainment, navigation, and much more. Compared
to cloud computing platforms, such computing platforms in the vehicles provide
unique edge services with a lower latency, greater responsiveness, and more efficient
use of network bandwidth. These characteristics create such in-vehicle computing
platforms as unique locations in which edge computing can be effectively imple-
mented. For example, the massive amount of data generated by the sensors on a
self-driving vehicle needs to be processed in a timely manner. A vehicle-based edge
computing platform would be an ideal place to execute these kinds of computing
tasks. In our efforts, we use a previously developed edge computing platform —
ParaDrop [5] — as the platform of choice for deployment inside vehicles to flexibly
provide computing and storage resources, allowing developers to create various
kinds of services.

We use the ParaDrop platform as a computing platform in vehicles because
of its flexibility and its benefits in this environment. The ParaDrop platform, im-
plemented on low-end Wi-Fi Access Points (APs), supports multi-tenancy and
a cloud-based back-end through which computations can be orchestrated across
many such APs. ParaDrop also provides APIs through which developers can
manage their services across diverse ParaDrop APs. In this project, we installed
a ParaDrop AP into a public transit vehicle in order to focus on our desired prob-
lem — conducting transit analytics. Various kinds of analytics can be done on
this vehicle-based edge computing platform, such as video analysis and obstacle
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sensing. By loading computation tasks from the cloud to ParaDrop, our system
achieves greater traffic efficiency while accomplishing our desired goals. Using
ParaDrop, various relevant transit analytics can be quickly derived on-board and
sent back to transit operators without incurring high data requirements from the
vehicles. Additionally, it is easy to deploy and manage such applications in multiple
vehicles across a whole city using ParaDrop.

A first look at Trellis: Wi-Fi-enabled mobile devices have skyrocketed in most
parts of the world, and many reports point to their deep penetration among their
populations [61]. Our proposed system, Trellis, takes advantage of these widely
available mobile devices among passengers and pedestrians to quickly gather
various forms of usage information at a significantly large (city) scale. A Wi-Fi-
based monitoring system has been widely used in many related scenarios, such as
tracking human queues [62 ], estimating vehicle trajectories [63 ], and understanding
network performance [64]. Trellis uses this kind of mechanism in a similar but
much simpler way. As shown in Figure 4.1, our system uses a low-end Wi-Fi
monitoring unit mounted on the vehicle to distinguish passengers from pedestrians
and determine when a certain passenger gets on and off the vehicle. The approach
relies on the fact that many mobile devices typically have their Wi-Fi function turned
on, which makes them trackable by another Wi-Fi observer. Most analytics in Trellis
are based on the ability to distinguish between which individual is actually inside
the vehicle and which is actually outside. While one may be tempted to utilize any
one of a slew of Wi-Fi based localization techniques [65, 66, 67], the accuracy of
these systems are often not sufficient to distinguish between a passenger seated
inside the vehicle and a person who is just outside.

The approach in Trellis to make this distinction is fairly simple — when the
vehicle is in motion, the signal strength of a passenger’s Wi-Fi device as perceived
by a vehicle-mounted Wi-Fi observer is likely to be fairly stable; while the signal
strength of an outside pedestrian will vary in a predictable way before eventually
disappearing (Figure 4.2). Thus, by simply observing the signal strength trends of
Wi-Fi devices while a vehicle is in motion, this localization problem becomes quite
simple and can be solved fairly accurately. This basic observation forms the core of
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Figure 4.2: Different RSSI patterns between passenger and pedestrian.

many of our analytics presented in Trellis.

Obviously systems such as Trellis will not be able to count for passengers who
travel without mobile devices or those with their Wi-Fi function turned off, but our
observation shows that we can still track general trends in transit behavior quite
effectively !. We recommend our current version of Trellis be used to track relative
trends in transit systems, as opposed to using it for exact and absolute counts.

We believe that a simple and low-cost infrastructure such as Trellis mounted
on public transit vehicles can be effectively used to perform transit analytics as
well as answer questions regarding human mobility behavior studies. For the
purpose of this work, we demonstrate how such a system may be used from three
major perspectives. First, we focus on passenger riding habits, i.e. what are the
origin-destination pairs of the user population and how does the popularity of
these origin-destination pairs vary for different stations, at different locations, and
at different times of the day. Next we study patterns of people on city streets: For
example, how busy city streets are, and where hotspots are during different times
of day and periods of the year. A system such as Trellis can provide such insights.

Finally, we study the impact of weather on outdoor human mobility. Specifically, we

'Beginning with iOS 8, Apple introduced randomized MAC address techniques. This may lead
to miscounting, but the trends still hold. We will discuss this effect more in section 4.7.
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observe how inclement weather (snow and rain) and outside temperature affects
the number of people in transit vehicles or out on city streets.

In the end, Trellis provides an unique approach to collect transit information (in
addition to other kinds of information) in real-time and can potentially be combined
with other existing or complementary approaches. If a reasonable fraction of buses
are equipped with Trellis, they can naturally become a crowd-sourced platform to
gather and analyze various forms of transit usage analytics at a scale never possible
before. Overall, Trellis provides a new lens of human mobility at large scales. While
we provide some initial aspects one can learn from this system, we believe many

significant opportunities potentially exist.

4.2 Trellis System Design and Implementation

In this section, we discuss the overview, design, implementation and deployment

of the system.

System Overview

Trellis tracks people by tracking their Wi-Fi-enabled devices. It achieves this goal
in two steps. First, our system performs device detection tasks by capturing Wi-Fi
transmissions from each device. As long as its Wi-Fi function is turned on, a device
will send out probe request packages scanning for available access points. Our
system takes advantage of this feature to capture Wi-Fi enabled devices. The system
distinguishes devices by checking their MAC addresses. Once the system success-
fully detects a device, it will determine whether the device is inside or outside
a vehicle. Our system determines the position of the device by observing RSSI
coupled with the vehicle’s speed of movement. After these two steps, the system
records the device data into databases. All of these recorded information can be
made available to traffic control centers or other related orgnizations in real time,
and facilitate possible real-time responses and updates to various emerging situa-

tions. Furthermore, a distributed infrastructure for gathering and analyzing such
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transit usage data can provide widespread understanding of public transportation

services.

System Design

Our system uses a front-end monitoring module to collect Wi-Fi devices’ signals and
transit GPS information, and it uses a back-end processing module to reconstruct
transit schedules and human mobility patterns. The monitoring module performs
sniffing tasks and collects the data from mobile devices. The collected data will
be saved in a local database along with corresponding GPS location information.
Meanwhile, the sniffing module can send calculated passenger and pedestrian
numbers to a remote server in real-time through a cellular link, i.e., for the purpose
of real time monitoring. Although our system supports real-time communication,
we use a separated program to send the data from the databases to a remote back-
end server. The back-end server reconstructs public transit schedules and human
mobility patterns from the collected data. It further combines the data from multiple
transit sniffing system instances to provide a more complete view of the transit
schedules and human mobility patterns. On top of the abstraction and aggregation
modules, we construct an origin-destination matrix and pedestrian flow heat map

to analyze transit efficiency in spatial and temporal domains.

System Implementation

The Wi-Fi monitoring system is operated on the Ubuntu 14.04.1 64 bit distribution
(with Linux kernel version 3.19.0-28-generic), that runs on PC Engines APU plat-
form [68]. The APU platform is a mobile embedded platform that is equipped
with a 1GHz dual core CPU and 4G DDR3 DRAM. We conducted the sniffing
tasks by using a multi-thread program written in C/C++. One thread runs the
monitoring module to collect Wi-Fi packets from the specified wireless interfaces.
Another module checks the correctness of received packets by validating the Cyclic
Redundancy Check (CRC). The GPS module senses location changes and sends the
GPS location information to a third thread. Both packets and GPS data are stored in
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Figure 4.3: Bus routes with labeled bus stops. Route 80 (blue) map on the left,
Route 81 (red) & 82 (green) on the right. The map size is roughly 1.5 mile x 2 mile.
We segment the route for bus line 80 into seven disjoint regions for easy analysis.

SQLite database files. To protect public privacy, the private information included in
each packet, e.g. MAC addresses, are hashed before saving into databases. And the

real data is dropped immediately. The data analysis modules are written in Java.

System Deployment

We deploy our Wi-Fi monitoring system in two city buses. Those two buses have
been assigned to three bus routes that are illustrated in Figure 4.3. The bus routes
cover a large public university’s main campus area as well as a residential area that
accommodates graduate students and visiting scholars. The details of each route
are shown in Table 4.1. The two city buses are operated by one local bus company.
These two buses are usually scheduled to be on the road from 6am to 6pm on
route 80. Buses are also occasionally scheduled to operate during night hours on
route 81 and 82. Detailed statistical information about recorded data is summarized
in Table 4.2. We collected data from both buses for around 300 days for 12 hours
per day. In total, during these 300 days, two buses travel more than 32,000 miles.
Among the collected data traces, the two buses ran on route 80, 81 and 82 for 258,
23, and 24 days accordingly. More than 300,000 unique Wi-Fi devices were detected
by our system. By looking at the Organizationally Unique Identifier (OUI) [69] of
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Table 4.1: Route Statistics

| | Route 80 | Route 81 | Route 82 |

Trip Distance || 7 5, 5.65 5
(miles)
Trip Time 45! 30 30
(mins)
Service Span || 6am-3am | 6:30pm-3am | 6pm-3am
Total Station
Number 47 31 34
Frequency 7-502 30 30
(mins)

! The actual trip time ranges from 40 to 50 minutes
during different hours of a day.

2 The frequency will change during different hours of
a day, e.g. during rush hours, it will have a higher
frequency to satisfy high volume riding demands.

the MAC address (the first three octets), we are able to compare the distribution of

various vendors. As shown in Figure 4.4, Apple dominates all other vendors.

100000

Figure 4.4: Distribution of devices by vendors in log scale.

Starting from iPhone 5s and iOS 8, Apple introduces randomized MAC address
in probe requests under certain settings to protect user privacy. According to Zebra
Technologies” white paper [70], the MAC randomization can only be triggered

when both cellular data and location service are off, with Wi-Fi turned on but not
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Table 4.2: Collected Data Statistics

| | Route 80 | Route 81 | Route 82 |

Days 258 73 o7

Hours 3,225 126 65
Distance

Covered (miles) 31,510 1,425 510

connected. We also performed the same kind of experiments using iPhone 6 with
iOS 8 and Wireshark toolkit. And we have similar observations. According to a
recent study [71], iOS devices can be re-identified by checking sequence numbers
and timing information contained in the probe request packets. MAC random-
ization certainly overestimates the number of iPhone users, but it exposes limited

impacts on statistical transit analytics.

4.3 Our Approach to Track Individual

In this section, we describe how to reconstruct bus schedules and passenger riding
patterns.

Passenger and Pedestrian Tracking

Trellis keeps track of each individual by tracking their Wi-Fi enabled devices, and
it separates different devices based on the MAC addresses included in the Wi-Fi
packets. Figure 4.5 illustrates the architecture of Trellis. Trellis first determines the
type of the device based on received 802.11 packet type, that is, Trellis identifies that
the device is a Wi-Fi access point or a mobile device. If the device is a mobile device,
further analysis will be conducted. As discussed in previous sections, when the
vehicle is in motion, the signal strength of a passenger’s Wi-Fi device as observed by
a vehicle-mounted Wi-Fi observer should be fairly stable; while the signal strength of
an outside pedestrian will vary in a predictable way before eventually disappearing.

We developed two schemes to discern which device is inside the bus and which is
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Figure 4.5: Trellis architecture. The raw GPS and RSSI is processed together to iden-
tify passenger and pedestrian. Passenger and pedestrian are sent to corresponding
modules for further information extraction.

not. A feature driven scheme is a straight forward identification mechanism. We
set different thresholds on RSSI, distance and duration to determine who is inside
the bus. However, it is hard to select one set of thresholds that can work under
different scenarios. Hence, we extracted features from GPS and RSSI data, then
used a hierarchical clustering algorithm to distinguish passenger and pedestrian.
Some unpredictable factors certainly affect our system accuracy. For example,
some people may still use feature phones or have more than one smartphone; some
people will turn off their Wi-Fi function to save power. Under these circumstances,
our system will either overestimate or underestimate the total device number.
However, we are focusing on the statistical trends of human activities, not the exact
number of passengers and pedestrians. Our observation shows that we can still
quite effectively track general trends in transit behavior from a long-term view.

Next, we explain how Trellis gathers enough information for transit usage analysis.
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Passenger Detection

The most challenging task for passenger detection is to extract useful information
from collected data. First, the RSSI readings are highly fluctuating. Therefore,
we cannot use RSSI alone as the indicator to identify if one passenger is on the
bus. Second, the Wi-Fi signals are opportunistically received. The Wi-Fi signals’
transmitting frequencies are based on user activities, such as screen being on and

off. We have developed two schemes, a feature driven scheme and a clustering
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Figure 4.6: Illustration of two schemes and how to keep track of each passenger.

scheme to identify whether one subject is on the bus or not. Figure 4.6 provides an
overview of the two schemes.

Feature Driven Scheme: We use multiple RSSI readings observed at different
locations to determine the location of that subject. If there are consistent high RSSI
readings from a specific device after the bus has been traveling a certain distance
(or readings that appear for a certain period), this device is on the bus with high
probability. We will discuss how to find the RSSI threshold 8, distance threshold
Bon and duration threshold 0,,, in section 4.3.

Clustering Scheme: As shown in Figure 4.10, emission power of on-bus devices
varies greatly. Since the feature driven scheme uses a threshold-based algorithm, the
classification results may be affected by some bias factors. To resolve this potential
problem, we use a clustering algorithm to classify passenger and pedestrian. Here

is a list of features we used for a hierarchical clustering algorithm.
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Packet: Mean, Median, Standard deviation, Percentage of RSSI readings greater

. RSSI
than -70, Packet receiving rate, m

. Total Distance Total Distance T
GPS: o5 S onee, e ieeee, Average speed, Speed standard deviation

To eliminate potential bias, all features are normalized to values between 0 and 1.

Passenger Tracking

We divided the entire bus route into continuous road segments, and each road
segment is between two consecutive adjacent bus stations. Hence, each passen-
ger travels with a bus for at least one road segment. Ideally, we can observe an
increasing trend of RSSI values which would indicate that the passenger gets on
the bus. Then RSSI readings stay stable for a period of time and then decrease
when the passenger gets off the bus. Based on observation, RSSI & speed patterns
can be categorized into four types. Figure 4.8 demonstrates four possible types of
inference from RSSI & speed patterns.

Type 1: An ideal RSSI & speed pattern, the place and time that a passenger gets on
and off the bus can be clearly identified. (Figure 4.8a)

Type 2: Only boarding information can be inferred. (Figure 4.8b)

Type 3: Only leaving information can be inferred. (Figure 4.8¢)

Type 4: Neither boarding nor leaving information can be inferred. (Figure 4.8d)
Boarding and leaving information are hard to infer for patterns Type 2, 3, and 4. A
prediction method has been developed to handle imperfect cases. (Figure 4.8d)
Determine Pattern Type: We determine the type of RSSI & Speed pattern by check-
ing RSSI slopes with vehicle stop points (where vehicle speed is zero). First, we

calculate the slopes of RSSI values using equation 4.1.

ARSSI  RSSI;, — RSSI;
ATime N ti+1 — 1

Slope; = (4.1)
Ideally, the slope values should be positive at the beginning indicating the passenger
gets on the bus and the slope values should be negative at the end. RSSI slope values
are close to zero while the passenger is on the bus. Then, we extract vehicle stop

points based on vehicle speed. Combining vehicle stop and RSSI slope information,
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Figure 4.7: An example of how to determine Type 1 pattern from RSSI slopes and
vehicle stop information.

passenger boarding and leaving points can be inferred. Figure 4.7 shows an example
of RSSI slopes with vehicle stop points of Type 1 pattern. Slope values are positive
in the beginning and negative in the end. The vehicle stops when the peaks appear,
indicating the stations where the passengers get on and off the bus. Couple RSSI
patterns with vehicle speed of movement, passenger riding information can be
clearly inferred for this example. For Type 2 and 3 patterns, only positive or negative
RSSI slope values could be observed in the beginning period or at the end of the
trip correspondingly. All RSSI slope values are close to zero for Type 4 pattern.
Handling Type 1: For this scenario, the starting bus stop of the first road segment
is recognized as the location where the passenger gets on the bus. The ending bus
stop of the last road segment is recognized as the location where the passenger gets
off the bus.

Handling Type 2, 3 and 4: When the phone screen is off, the system will reduce
the frequency of sending out probe request packets to save power. Figure 4.10
illustrates the transmission rate for different brands of devices. Theoretically, the
device should send out a probe request every T seconds, which means we could
detect that device at least once every T seconds. It is possible that the passenger
could get on and off the bus during this T second period. This is why Trellis fails
to identify the boarding or leaving or both locations for Type 2, 3, and 4 scenarios.
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Figure 4.8: Four possible types of inference from RSSI and speed data patterns for
detected passenger.

To handle these scenarios, we developed a model to predict when the passenger
gets on or off the bus. First, based on frequencies of the received packets from that
specific device, we estimate T using equation 4.2.

T = I'f; *x Durationy (4.2)

where Duration; is the time difference between i-th and (i + 1)-th packets, and f;
is the appearance frequency of Duration,. To determine boarding time, we begin
by using the first half of the received packets to derive T, and vice versa. Second,
we explore all the places that the bus traveled during T seconds (looking ahead for
boarding station predictions, and looking behind for leaving station predictions).
The system chooses the bus stop where the bus stops before/after T seconds as the

boarding/leaving bus stop.
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Pedestrian Detection

Pedestrians can be detected anywhere along the bus route. Our pedestrian identifi-
cation algorithm first checks the total distance a bus traveled. If the travel distance is
less than a distance threshold {3, then it will check the RSSI readings. In contrast
to the passenger RSSI readings, a portion of « readings should be less than the
threshold 8,,. If an individual satisfies the above two conditions, it has a high
probability of being on the road. As shown in Figure 4.10 (left), the RSSI readings
from a device in a car tailgating the bus are much less than those from a passenger’s
device. Therefore, this device cannot be classified as a passenger device. What'’s
more, the total distance a given bus traveled should be much longer than (3,¢¢.
Thus, this device will be treated as a pedestrian device.

Parameter Selection

Figure 4.9 summarizes the cumulative distribution functions (CDF) of station to

station travel time and the distance of the three routes. Detailed information of each
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Figure 4.9: The CDF of station to station travel time (left) and distance (right).

route is acquired from the GTFS [72] data published by the local metro company.
From the figure we can see that 80% of the travel time between stations is more
than 50 seconds. More than 80% of travel distance between stations is longer than
150 meters. For a feature driven scheme, we set the distance threshold 3,,, as 200

meters, choose 100 meters for ¢, and assign 1 minute to 04.
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After we recognize one detected device is a passenger device, we can study the
Wi-Fi module emission power and compute packet transmission rates for different
devices of various vendors. The CDF of emission power of on-bus devices are
summarized in Figure 4.10 (left). To plot this CDF, we use RSSI readings observed
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Figure 4.10: The CDF of mobile device Wi-Fi signals” RSSI readings (left) and
transmission rate (right).

from on-bus devices. In this chapter, we show devices made by the four most
popular vendors. In general, the signal strength for on-bus devices are greater than
-65 for around 90% of time. In order to deal with the case of a car following the bus
for multiple stops, we collected some data by driving a car tailgating the bus. We
put an iPhone 6s Plus and a Nexus 5X in the car, and followed the bus at a close
but safe distance. We did this experiment twice, each time for around a half an
hour. The RSSI readings are shown in Figure 4.10 (left). The signal strengths from
a device in the car following the bus are between -90 to -65. Hence, both the feature
driven and the clustering scheme will not consider such a device to be a passenger
device. What’s more, with the speed and GPS information, our system could tell
this is not a pedestrian device (For normal people, it is very hard to run as fast
as a bus for a long distance). Therefore, we test the feature driven scheme with
don ranging from -70 to -60 db. The CDF of the Wi-Fi signal transmission rates is
shown in Figure 4.10 (right). Since the transmission rate is within 50 seconds for
90% of the time, this transmission resolution suggests that our individual tracking

algorithm has the ability to handle corner cases such as when a passenger is on the
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bus for only one road segment.

Transit Schedule Reconstruction

In order to perform public transit analytics, e.g., route design, scheduling, etc., we
track each bus on the route to record when it passes each stop. To reconstruct the
transit schedule from collected data, we build stop tables for each route. Each bus
stop in the table is labeled by an index, GPS location information and direction. All
the information is gathered from the published GTFS feeds. Based on the vehicle
driving direction as well as the location information, we can infer when the buses
pass each station. This module essentially establishes when the bus arrives at
each station and how long it stays there. This information is important for transit

operators to evaluate the on-time performance of each bus.

Origin-Destination Matrix

For most kinds of analyses in the field of traffic planning and analysis, there is a need
for origin-destination (OD) matrices, which specify the travel demands between the
origin and destination nodes in the network. Hence, we built an origin-destination
matrix, which essentially records how many passengers ride from one bus station
to another. We divide the 47 bus stations in route 80 into seven geographically
adjacent regions for easy analysis (as illustrated in Figure 4.3). Within each of
the seven regions, there are 11, 4, 6, 7, 7, 5 and 7 bus stations, respectively. Based
on this matrix, we can analyze passenger region-to-region movement patterns.
Additionally, we may add other dimensions to understand passenger behaviors, i.e.,
time domain and weather conditions, to analyze passenger riding patterns during

different periods of the day or under different weather conditions.

4.4 Passenger Activity Trends

In this section, we evaluate Trellis by demonstrating various transit usage analysis

results.



88

Tracking Bus Occupancy

Bus occupancy is an important factor for transit operators to make transit plans,
improve the transit efficiency and seek government funding. After reconstructing
the transit schedules and identifing passengers, we gathered enough information
to count passenger and record how many (essentially which) passengers get on
and off at each bus station. Traditional methods such as questionnaires and bus
driver counting could help transit operators understand riding patterns. However,
these methods require a lot of human labor work, and are time consuming.

Our system provides a low-cost approach to assist or even replace existing
counting methods. We evaluate the counting algorithms by comparing estimated
passenger numbers and ground truth. To get ground truth data, we recruited several
volunteers, and asked them to take the bus and count the number of passengers
getting on/off the bus at each bus stop. Volunteers counted the numbers and
recorded them using a customized Android application. We collect the ground
truth data in 20 trips on 20 different days. For each trip, each volunteer stayed on
the bus for around one hour. The aggregated ground truth data covers every hour
from 9am to 9pm, including weekdays and weekends. The ground truth data was
then synchronized with the data collected by the sniffing system based on time and
GPS location.
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Figure 4.11: Onboard passenger number ground truth and automatic passenger
counting results.

Based on our observation, Trellis can, on average, detect 65% of the total passen-

gers. Wang et al. reports that their system can discover around 40% of customers
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waiting in a queue [62]. Musa et al. claims that their system can detect a passing
smartphone 69% of the time if the Wi-Fi is turned on [63]. Consider the increasing
trend of smartphone penetration rates [73], we believe 65% is a fairly reasonable
discovery rate. Hence, Trellis scales the estimated passenger number by 1.5. We
summarize the calculated passenger numbers and the ground truth passenger
numbers in Figure 4.11. The x axis represents the number of bus stops counted
for that trip; the y axis shows the passenger number on the bus between two con-
secutive bus stops. Due to space limitations, we only show 10 trips in this figure.
Each red point represents the actual number of passengers on the bus at that bus
stop. The ground truth passenger numbers were counted at each station where
the bus stopped, after existing old passengers left the bus and new passengers got
on. The total passenger numbers stay the same between two consecutive stops.
Each blue point refers to the total number of passengers calculated by Trellis. The
estimated passenger number is the total number of passengers on the bus between
two consecutive bus stops. Figure 4.11 shows that the major estimation error is
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Figure 4.12: The CDFs of passenger number estimation error with different schemes.

caused by passenger bursts. The bursts usually occur when a large volume of
students finishes one class together, gets on the bus at one stop, then gets off the
bus at next stop together to take another class in a nearby building. Some students
may not turn on phone screen during this short trip, so we may lose track of them.

However, we still can see the rising and falling trends from estimated passenger
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numbers when bursts happened. Hence, the loss of tracking has little effects on
long term statistical analysis.

Figure 4.12 summaries the passenger number estimation errors of different
schemes. For the feature driven scheme, when the RSSI threshold 6., is set to
-65db, Trellis has the best performance. We tested with five clustering algorithms,
namely the Affinity Propagation, Mean Shift, Spectral Clustering, DBSCAN and
Agglomerative Clustering. Due to space limitations, we show the results of only
the best three algorithms in Figure 4.12. Agglomerative Clustering has the best
estimation performance. The passenger number estimation error is within 7 for
around 80% of the time.

Key Observations: Regarding the evaluation of passenger counting algorithms,
Trellis can discover 65% of total passengers. Passenger counting error is within 7
for 80% of the time.

Transit Riding Patterns

The ability to track each individual allows us to conduct transit statistical analysis.
For instance, we can study passenger riding behaviors and discover various types
of passenger riding patterns at different stops. As previouly noted, the bus route
covers a residential area and a main campus area, and our analysis shows that
passenger riding habits are periodic during weekdays among bus stops in different
regions. We summarize the average number of passengers getting on and off at
two specific bus stops located in two regions during each hour of one week in
Figure 4.13. The top graph shows the passenger riding patterns at a bus station
located in the residential area (region 1 in Figure 4.3) and the bottom graph is for
a bus station located in the main campus (region 5 in Figure 4.3). There are two
main observations generated from these two figures. First, same riding patterns
(including getting on and off) repeats from Monday to Friday, and changes during
weekends. Second, bus stops located in different regions have different riding
patterns. For instance, in the residential area, people are going out for work in the

morning and going back home in late afternoon. Hence, there are obvious riding
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Figure 4.13: Riding patterns of different bus stops in the residential area (top) and
the main campus (bottom).

peaks during those hours. Further, undergraduate students live on campus. They
travel between dormitories and campus buildings for different classes throughout
the day, so there are peaks in the number of passengers getting on and off the bus
throughout the day.

Key Observations: Regarding the study of passengers’ riding behaviors at stops
in a residential area as well as in the main campus area, at a residential bus station,
most people get on the bus in the morning and get off the bus in the evening whereas

in the main campus area, people get on and off the bus throughout the day.

Transit Scheduling Analytics

We build OD-matrices using passenger region-to-region movements data. Fig-
ure 4.14 shows two OD-matrices during morning hours (7am to 9am) and evening
hours (5pm to 7pm).

Suppose OD represents this OD-matrix and ODj; denotes each element in the
matrix (i represents the index of y axis and j represents the index of x axis). The
value of ODj;j refers to the total number of passengers getting on the bus at bus stops

located in region i and getting off at bus stops located at region j. Darkening colors
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Figure 4.14: Original-Destination matrices during morning hours (left), and
evening hours(right).

correlate to increases in passengers. As can be seen from Figure 4.14 (left), most
of the passengers travelling from region 1 are going to region 3 or region 6 during
morning hours. From this observation, we can provide suggestions to operators.
For example, extra direct buses connecting region 1 and 3 (or 6) can be added to
the route during morning hours, which could reduce the travel time for passengers
who want to go to region 3 or region 6 since the bus stops less frequently, while the
rest of passengers can have a better riding experience due to less passengers being
on the bus. During the evening rush hours, most of the passengers get on the bus
from different regions and are going back to region 1, which means passengers are
going back home.

Key Observations: By building OD-matrices for transit scheduling analysis
and evaluation it is dscernable that during morning hours, Regions 1 and 3 and
Regions 1 and 6 are the most popular origin-destination pairs. Most traffic goes to
Region 1 between 5pm and 7pm.

4.5 Pedestrian Activity Trends

Pedestrian activities are of great importance for both the design and evaluation

of public transit. Traditional transit evaluation approaches lack ways to gather
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pedestrian information. Our system brings the possibility of using human mobility

patterns to evaluate transit systems.

Pedestrian Activity Analysis

Pedestrian flows have been shown to be in close relationship with traffic flows
[74], i.e. pedestrian flow can reflect and affect traffic conditions. Detecting pedes-
trian activity could help transit operators have a better understanding of traffic
conditions.

Overview

Trellis conducts pedestrian detection concurrently with passenger tracking. As
opposed to passengers on the bus, pedestrians are far away from the Wi-Fi monitor.
Thus, the RSSI readings from a pedestrian device would be smaller than those of a
passenger. Based on this fact, Trellis identifies pedestrians by checking the RSSI
readings. Details of the detection algorithm are discussed in section 4.3. While
this simple mechanism can miscount some people in a nearby building, this is a
very limited negative effect. Based on our experiment results, the chance of such
a person being detected is limited, since the distance between the bus and the
building is long and the bus passes that building within seconds. To evaluate the
accuracy of the pedestrian detection algorithm, we conducted two different kinds of
experiments. First, we evaluated the detection accuracy by comparing the estimated
pedestrian number with ground truth data. Second, we conducted experiments
in an open field area, to study how people inside nearby buildings influence the
estimation accuracy. Along route 80, there is an open field area where there are no
buildings on both sides of the street. This area runs along a large lake, and it also
contains a marsh and a softball field. This area is shown in Figure 4.15 (right); the
bus route in this area is labeled in red. For the rest of route 80, buildings are located
on both sides of the street. To get ground truth data, we asked volunteers to take
the bus, and count the pedestrians on the street as the bus passed by. Figure 4.7

(left) shows the CDFs of the pedestrian number estimation error. In general, Trellis



94

performs better in the open field area. Around 80% of times, the estimation error is
within 7 people. The evaluation results show that Trellis performs well for most
cases and will not be affected heavily by people inside a nearby building. Again,
in this work, we focus on the general behavior of passengers and pedestrians, not

exact numbers.
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Figure 4.15: The CDF of pedestrian number estimation error.

Time Impacts

Figure 4.16 explains the daily average pedestrian number along route 80 during the
day and night. We used data collected from route 80 to plot these heat maps 2. The
top left part in each map represents the residential area while the bottom right part
is the main campus. University hospitals and medical schools are located in the
middle left. We can see major population centers appear differently throughout a
day.

During the daytime, high population density areas are mainly distributed in
the residential area, the hospital and some parts of the main campus. This is
because various kinds of activities happen in those areas, such as going to school
for classes and traveling between different campus areas. During the night hours,
the library area is the only active area. Students gather in the library to do homework

or participate in group studies. From the GTFS feeds, service frequency varies

ZRoute 81 and 82 only operate during night hours (6pm to 2am).
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Figure 4.16: A comparison of the daily average pedestrian number on the street
during daytime (10am-3pm) and night (9pm-11pm) hours.

from 7 minutes to 50 minutes during a day for route 80. During the morning and
evening rush hours, the frequency is 7 minutes. And after rush hours, the frequency
decreases from 7 to 14, and then to 25 minutes. Finally, the frequency shifts down
to 50 minutes at night. Transit operators carefully design this schedule to serve
public efficiently. Our pedestrian activity analysis observations follow and support
these facts. We believe Trellis is reliable to perform these transit analytics effectively
at a large scale.

Key Observations: By identifying pedestrian activity patterns during different
times of day, we can locate several popular areas during the daytime and see that

the library area is the only active area at night.

4.6 Impacts of External Factors

In this section, we discuss how external factors, such as weather and temperature,
impact human outdoor activities.

The weather data was collected using the Dark Sky Forecast API [75]. We re-
quested hourly weather data and stored those data in a database. The requested
weather data contains the following properties: icon (rain, clear, snow, etc.), pre-
cipitation intensity (inch/hr), precipitation probability, precipitation accumulation
(inches), temperature (Fahrenheit), wind speed (mph), humidity and visibility

(miles). Each hour’s weather information entry in the database is indexed by a
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time integer key, e.g. 201512251300 represents Dec. 25, 2015 at 13:00.

Overview

Trellis was deployed in a northern city in the US. The data was collected through a
mild summer and a severe winter. The temperature could be as high as 90 Fahrenheit
in the summer but as low as —10 Fahrenheit during the winter. Therefore, outdoor

temperature could be a key factor that affects human behaviors as well as traffic.
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Figure 4.17: The impacts of temperature on daily average pedestrian (left) and
passenger (right) number.

We built region-temperature matrices to show how would people react to differ-
ent outdoor temperatures. We counted passenger and pedestrian numbers region
by region, then, for each data entry, we queried the temperature at the time it was
detected. Finally, we built the region-temperature matrices shown in Figure 4.17.
The left one demonstrates pedestrian behaviors while the right one shows passenger
behaviors. For the left figure, each box in the color map is the average daily number
of pedestrians detected in that region at a certain temperature range, e.g. suppose
the matrix is RT, then RTS; indicates the average daily pedestrian number in region
1 within the temperature range of 45 to 55 Fahrenheit. Similarly, for the right figure,
each box in the color map is the average daily number of passengers that get on the
bus from the station in that region at a certain temperature range. Darkening colors
correlate to increases in the daily average number of people. As can be seen from
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these two figures, temperature affects both passengers and pedestrians in a similar
way. For each region, there is an increasing trend of numbers as the temperature
increases. When the temperature is 0 Fahrenheit (around —17 Celsius), we can
rarely see people outside. As the temperature increases, the number of people
increases, and reaches a maximum when temperature is around 70 Fahrenheit
(around 21 Celsius).

Key Observations: The results of this evaluation of temperature’s impacts on
human outdoor activities indicate a positive correlation between temperature and

human outdoor activities.

Quantitative Analysis

To have a numerical intuition of the weather and temperature impacts, we conducted
a quantitative analysis of these two factors based on the data we have. The figure
on the left side of Figure 4.18 shows the relationship between the temperature and
the number of people in region 7. We can see a positive correlation between the
temperature and the number of people, i.e. as the temperature increases, more
and more people are willing to go outside. To be more specific, when temperature
increases ten degrees, around 15% more pedestrians show up on the street, and
around 10% more passengers are present on the bus.
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Figure 4.18: Quantify temperature and weather impacts on human activities in
region 7.
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According to the Dark Sky Forecast API [75], we define weather conditions
based on precipitation intensity. If it is raining or snowing and the precipitation
intensity is greater than 0.35, we treat it as an inclement weather condition. If the
intensity is between 0.05 and 0.2, then we regard it as bad weather. Finally, we
identify good weather only when it is clear or sunny. We only tend to use these
three conditions as a showcase for quantifying weather impacts. The figure on the
right side of Figure 4.18 indicates there is a positive correlation between weather
conditions and the number of people. More people participate in more outdoor
activities as the weather improves.

Key Observations: Temperature and weather changes affect human outdoor
activities.

Impacts on On-Time Performance

Traffic conditions vary dramatically during different times of the day and are
affected by various factors. Under inclement weather conditions, especially when
weather is snowy or icy, drivers increase headway, decrease acceleration rates, and
reduce speeds, which collectively results in traffic congestion and schedule delay.

Providing an efficient public transportation system can essentially alleviate traffic

congestion.
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Figure 4.19: The comparison of on-time performance between different hours(left)
and weather conditions(right).
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In Figure 4.19, we summarize the on-time performance under different scenarios.
For this comparison, we focus on the data collected from route 80. The figure on the
left shows the difference between peak and off-peak hours. A negative value means
that the bus arrived earlier than the scheduled time while a positive value represents
how late the bus was. During rush hours, bus drivers need to reduce speeds and
brake frequently due to the high volume of vehicles on the road. What’s more,
passenger demands also increase. Hence, schedule delay is likely to happen during
rush hours. In the left figure, we can see the difference between two CDFs, which
shows a longer delay during rush hours. Compared to regular hours, early or late
arrivals happen more frequently during rush hours. During regular hours, the bus
may arrive early or late within a 3-minute interval. For worst case scenarios during
peak hours, passengers would experience an 8 minutes” wait, or the bus may arrive
7 minutes earlier than scheduled. One thing that needs to be mentioned is that
the transit schedule already takes traffic conditions into consideration, i.e., transit
operators schedule more buses on the road during rush hours. Hence, from the
CDFs we can see the difference is not that significant, which reflects the effectiveness
of current transit schedules. The right figure shows the CDFs of lateness under
inclement, bad and good weather conditions. When bad weather happens, traffic
slows down and drivers drive more carefully, which all may contribute to a schedule
delay. It is shown that as the weather worsens, the delay increases. Under inclement
weather conditions, the bus could have a 7 minutes delay for a worst case scenario.

Key Observations: Passengers experience a longer delay during rush hours or
when bad weather happens.

4.7 Discussion

In this section, we discuss the limitations of our system and propose other potential

applications.
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Limitations

These limitations expose challenges for our tasks, but they do not affect the practi-
cability of our system.

Tracking Accuracy

As has been previouly noted, passenger tracking and pedestrian detection accuracy
are limited by some unpredictable factors. For example, some passengers are still
using feature phones or their Wi-Fi function is turned off. For these cases, the
Trellis system is not able to detect the presence of the individual. Some passengers
may have multiple Wi-Fi enabled devices, e.g., a tablet and a smartphone. In this
case, Trellis may overestimate the number of passengers. Although we use distance
and RSSI thresholds to filter passengers and pedestrians, people driving a car
following or parallel to the bus may be detected and cause overestimation. Either
overestimated or underestimated device numbers will affect the system accuracy:.
However, since our goal focuses on the statistical trends of transit systems, such

impacts can be ignored from a long-term view.

iOS MAC Randomization

Apple introduced MAC randomization in iOS 8; the system uses fake MAC ad-
dresses in their probe request packets. It is hard for our system to identify this
fake MAC address. However, from our own observations, this feature requires
several prerequisites to be triggered. Various discussions and reports [76, 70] also
claim the similar findings. According to Freudiger’s work [71], iOS devices can be
re-identified by checking sequence numbers and timing information contained in
the probe request packets. Again, our work focuses on providing statistical analysis
on transit efficiency to assist public transit operators instead of tracking every single
passenger.
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Pedestrian Detection

Our system can detect pedestrians along the route, but it has no capability of
tracking each detected pedestrians. However, if we could deploy Trellis on more
buses in the city metro network, we might have the ability to track pedestrians by
building a communication network among buses. Therefore, several buses can track
a single pedestrian and rebuild the pedestrian movement pattern. Our pedestrian
detection algorithm may miscount some people in a nearby building along the
routes. According to our evaluation results, such counting errors have little affect

from a long-term view.

Smartphone Penetration

Another issue to note is the penetration of smartphones with built-in Wi-Fi through
the passenger community. While it is hard for us to measure the true distribution
of Wi-Fi devices within the passenger community, we can expect that older people
and babies are less likely to carry smartphones. However, smartphones with built-
in Wi-Fi are increasingly popular and accessible to larger populations. From a
long-term view, the riding demand and trend of the passenger community will
hold.

Tap-based Fare System

Tap-based fare systems are available all over the world [77]. Transit operators
employ two strategies to collect riders” payments. One way is to set a fixed price
for the whole route; the other way is to set the price based on the distance traveled.
For the first mechanism, passengers only need to "tap in" to the transit system at
their origin station. A distance-based pricing strategy requires passengers "tap in"
at their origin station and then "tap out" at their destination station. Tap-based
fare systems are more efficient than traditional conductors but cause customer
delay during peak hours [78]. More recently, Metro Transit riders are able to

pay transit fares using their smartphones [79]. Mobile applications have been
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developed for passengers to buy tickets online. Trellis could be part of such mobile
applications. When a passenger enters the station, Trellis could determine his/her
origin and destination, then calculate the price for each trip the passenger has taken.
In the meantime, Trellis could evaluate transit usage and send real time statistics
to transit operators. Since the whole process can be done automatically by the
mobile application, passengers do not need to physically "tap in" and "tap out",

thus minimizing queuing delays.

Other Applications

Currently, Trellis is deployed on two city buses, and it has been assigned to three
routes. As we continue to cooperate with the local metro transit, Trellis will run on
more buses and routes simultaneously, which will further extend its applications.
For instance, with data collected from several buses on different routes, we could
provide evaluation on transit interchange performance.

We mainly focus on providing transit analytics in this work, however, many
more applications could be developed given this rich data set. For example, it is
possible to predict the riding route of each individual passenger. Wi-Fi related
applications can also benefit from an accurate predication of a passenger’s presence
[80, 81, 82].

4.8 Conclusion

This chapter presents Trellis, a low-cost, vehicle-mounted wireless monitoring
system that can track passenger movements, detect pedestrian flows, and evaluate
how external factors impact human mobility, thereby providing useful analytics to
transit operators, and potentially urban planners. Trellis uses a passive approach
to gathering individual mobility data. The system uses RSSI readings coupled
with vehicle location information to distinguish passengers from pedestrians, and

it can monitor each detected individual. This capability gives us the flexibility
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for evaluating a public transportation system across a city in a very cost effective
manner.

In this work, we attempted to provide analytics of specific aspects of passengers
on transit vehicles and of human mobility as observed from these vehicles. With
ParaDrop, Trellis can be easily deployed and managed in vehicles at a large scale.
Various transit analytics can be derived on-board quickly. We believe this approach
of observing human populations at city scales has many more interesting and useful

applications. Such explorations will form a part of our future work.
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Related Work

In this chapter, we discuss various prior efforts and existing projects that are related
to the work presented in this thesis. We first discuss the related work on edge
computing enhanced crowdsensing frameworks and vehicle searching and tracking
applications. Then we discuss prior approaches for evaluating driving behaviors.

Finally, we discuss existing work on transit and human mobility analytics.

5.1 Edge Enhanced Crowdsensing Framework

Edge Computing enabled Crowdsensing Frameworks

Edge computing is a very popular research area recently, many researchers
have explored the combination of edge and cloud computing platforms [83, 84, 85].
ParaDrop [5] is an edge computing platform built with WiFi access points which
allows developers deploy services at the network’s extreme edge. Firework [86] is a
noval edge-cloud computing framework which facilitates distributed data process-
ing and sharing for Internet of Everything (IoE) applications. ENORM [87] pro-
poses an edge node resource management framework to address the resource man-
agement challenge between edge nodes and the cloud server. Fernando et al [88]
presents a work-sharing model which aims to load balance independent jobs among

heterogeneous mobile nodes. Cascade borrows the concept of crowdsourcing and
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applies it to the edge-cloud framework. It solves big problems using a divide-
and-conquer strategy. Sub-problems are simple enough to solved directly at edge
nodes. Cascade presents a novel way to solve complex problems using edge-cloud
framework.

Streaming and network latency

Existing cloud meeting applications, such as Skype, Hangouts, aim to provide
stable and reliable streaming solutions. Lots of research efforts have studied how
these applications handle different network conditions. Xu et al [89] evaluated the
performance of Google+, Skype, iChat under various simulated network conditions.
Li et al [90] conducted a measurement study of Skype over LTE networks and de-
mostrated the ineffeciencies of protocols. Another study, presented by Yu et al [10],
studied how different networks (mobile, wireless) affect video qualities of various
VoIP applications. Zhang et al [9] performed a detailed study to under Skype’s pro-
tocol. In the study, various packet loss rates, network bandwidth, and propagation
delay are simulated to learn how Skype adjusts its FEC redundancy, sending rate to
accommendate changes in networks. Applications using Cascade have similar data
streaming requirements as existing cloud meeting solutions. Different from existing
solotions and studies, the proposed context aware streaming method leverages
vehicle dynamics and context of surrounding environments to adjusts streaming

parameters.

5.2 Vehicle Tracking

Smart Transportation Applications Using edge computing for intellegent trans-
portation systems is a hot topic in both acadimia and industies. Li et al [91] extends
the Firework [86] framework and develops a city-wide vehicle tracking applica-
tion. Vigil [92] is a scalable, novel edge computing architecture for wireless video
surveillance system. The system leverage computing resources at the edge and
the cloud to achieve real-time tracking and suiveillance. DrivAid [12] puts edge
computing nodes into a vehicle and use that to evaluate driver performance in

real-time. ParkMaster [93] also leverages the edge computing instance inside a
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vehicle to help drivers find parking spaces in urban environments. To achieve
real-time processsing or other complexed tasks, most applications also require edge
nodes have certain amount of computing power [82, 94, 95]. Since big problems
are broke into simpler sub-problems, Cascade has less requirements (in terms of
computing power) for its edge nodes. In other words, Cascade tackles down the
hardware requirements for its edge nodes, which make it easy to be deployed.

Vehicle Dynamics

Sensing vehicle dynamics using various kinds of sensors have been a popular
topic in both industries and research communities [12, 96, 97]. V-Sense [37] senses
various vehicle maneuvers, such as lane-changes, turns, and driving on curvy roads
by only using non-vision sensors on the smartphone. OmniView [98] provides
a driver with a traffic map about the relative positions of surrounding vehicles.
To achieve this goal, the proposed system uses cameras of multiple collaborating
smartphones in the surrounding vehicles. CarSafe [42] leverages the front and back
cameras of a smartphone to detect dangerous driving conditions and behaviors.
The smartphone front-facing camera is used to detect the driver tiredness and
distraction while the rear-facing camera monitors the road conditions. Cruz et
al. [99] proposes an efficient algorithm that can localize vehicle positions in sur-
rounding environments. Chen et al. [100] proposes multi-view 3D neworks and a
sensory-fusion framework that processes data from Lidar and cameras for object
detection on the road. Our work levearages existing context sensing solutions and

develops a context aware encoding and streaming protocol.

5.3 Driving Behavior Analytics

Transportation-related analytics has been an active research area, such as transfer
feasibility at train station [101, 102], human mobility analytics [103], driving be-
havior analysis [104, 98, 105], and so on. Bigroad [104] leverages motion sensors
and phone cameras to collect road data at a large scale. Wang et al. [106] utilized
embedded sensors in smartphones, for sensing vehicle dynamics to determine

driver phone use. The motion sensors capture differences in centripetal acceleration
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due to vehicle dynamics. Yang et al. [107] addressed the same issue by leveraging
high frequency beeps from car speakers. Vision-based driver assistant have been a
popular topic in both industries and research communities. The on-board cameras
enable a wide range of safety applications that protect drivers and reduce accidents
in commercial vehicles [108]. With high quality camera built in, smartphones be-
come a sensor platform for researchers to explore next generation advanced driver
assistance systems. SideEye [109] is a smartphone based system to monitor the
blind spot on the driver side and alert the driver about the presence of a vehicle.
Dooley et al. [110] uses a single fisheye camera for detecting and tracking vehicles
in blind zones of a vehicle. Leveraging these technologies, insurance companies
have programs that offer discounts for drivers with good driving habits [111, 112].
Auditeur [113] is an energy efficient, mobile phone based acoustic event detection
system. It can notify users when a registered acoustic event happens.
PrivateHunt [114] presents a public transportation demand-supply model based
on large-scale urban transportation data. Basuet al. [115] explored the possibility of
teaching autonomous vehicles driving in different styles. Liuet al. [116] presents a
novel clustering approach that identifies hot spots of moving vehicles in urban areas.
DrivAid could be deployed on regular vehicles as well as public transportation
tools and help to collect fruitful context information for above-mentioned studies.
U-Net [117] is an efficient convolutional network designed for biomedical image
segmentation. Vivek Yadav from Udacity borrow the idea of U-Net and develop
a small U-Net for vehicle detection [118]. Chenet al. [100] propose multi-view
3D neworks and a sensory-fusion framework that processes data from Lidar and
cameras for object detection on the road. We plan to compare existing successful
deep learning network designs and make appropriate improvements to our cur-
rent model. We will also explore other methods to acquire meaningful context

information from surrounding environments.
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5.4 Transit and Human Mobility Analytics

The concept of using a wireless-based approach for transit analytics was first consid-
ered in a recent position paper [119]. However, the prior work did not consider the
broader opportunity of using this platform for analyzing pedestrians in city streets,
nor did it consider the ability to analyze human mobility across different external
factors, such as weather and changing temperatures, etc. More importantly, it did
not conduct a significant evaluation of these opportunities in practical settings.

Passenger Counting

Transit operators need to collect transit usage statistics either by manually count-
ing or using expensive sensor systems. They are required to submit usage infor-
mation to national transit database [120]. APC presents a passive, non-radiating
infra-red technology to detect and count people moving through a door or gate
[52]. The system has the ability to detect the number of passengers, but it needs
expensive hardware and is not able to track each individual that is riding between
each pair of stations. Chen et al. [56] use a video based algorithm to count pas-
senger numbers. Meanwhile, some Asian cities use a system that requires each
passenger to tapping IC card when gets on and gets off the bus [121, 122]. These
systems cannot count those passengers who are paying cash. More importantly,
tapping card may cause extra delays and queues at each bus station. Trellis does
not require any passenger operations.

Human Mobility Study

Many applications such as traffic engineering and urban planning need to
understand human mobility [123, 124]. Gonzalez et al. [125] demonstrated the
regularity of human trajectories by tracking user smartphone. Zhang et al. [126]
studied human mobility based on multiple data resources, e.g., cellphone and
transit data, to avoid biased judgment by single data resources. [127] infers human
mobility by using taxicab location traces. Our work did similar things and proposes
new applications by performing individual monitoring. However, we propose a
novel way to conduct public transit analytics by using Wi-Fi monitors on city buses,

which separate our work from existing ones.
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Human Tracking by Wi-Fi

Wang et al. proposed a system that can track human queue length based on re-
ceived Wi-Fi signal features and analyze the waiting time in the queue [62]. Depatla
et al. [128] estimate the total number of people in an area based on Wi-Fi device
power measurements. However, this technique requires customers’ smartphones
to become connected with APs and to generate network traffic. VTrack [129] uses
smartphone inertial sensors to estimate people’s trajectory, which is fundamentally
different from our approach. Musa et al. [63] deploys multiple monitors on the
road to estimating the trajectory of smartphone holders.

Traffic Monitoring Research work has been done on traffic monitoring using
instrumented probe vehicles to get sparse probe data [130, 131]. Herring ef al.
[132] use an HMM based probabilistic modeling framework to estimate arterial
travel time distributions using collected sparse probe data. Thiagarajan et al. [133]
proposed a smartphone based system that can shorten the expected waiting times.
The study uses smartphones” accelerometer sensors and GPS to determine user
position, and estimate traffic conditions. VTrack [129] also uses smartphones as
sensor platforms and presents an energy efficient algorithm to predict traffic delay.
It proposes an HMM based map matching scheme and travel time estimation model.
In contrast to Thiagarajan’s work, the VTrack method uses Wi-Fi data instead of
inertial data. Nericell [134] takes advantage of mobile phones” multiple sensor
readings and proposes a system that can monitoring road and traffic conditions. It
requires the smartphone to send various sensor data, which may not work on all
phones, and it is energy inefficient. In our study, we use a low-cost passive Wi-Fi
monitoring system to get sparse probe data, and we are focusing on the different
factors that can help improve transit efficiency.
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Summary and Future Work

6.1 Summary and Discussion

With the goals of understanding the benefits of connected devices and edge comput-
ing platforms for vehicular sensing applications, we have successfully developed
three smart transportation applications mentioned in Chapters 1, namely vehicle
searching, driving behavior analysis and transit and human analytics. We have
shown how to properly formulate tasks for different edge computing nodes and
aggregate information extracted from multiple sources to derive information with
improved accuracy. These applications demonstrate the usefulness of edge comput-
ing platforms as well as some challenges we need to face. As smart transportation
applications require a large amount of distributed sensors and devices, the com-
plexities of managing such distributed and heterogeneous resources and services
are the biggest challenges. Although edge computing helps preserve privacy, better
privacy protection is still an area that requires us to pay more attention to as the
system scales up.

Based on the experiences with these applications, the usage of edge computing
does not mean cloud computing will be eventually obsolete. Instead, we truly
believe edge and cloud computing will be complementary to each other. With

the development of edge computing infrastructure, the combination of edge and
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cloud computing can enable more powerful applications in the future. Developers
can leverage the strengths of a hybrid edge-cloud architecture to build useful

applications.

6.2 Future Work

We believe that this dissertation is successful in developing smart applications
for transportation systems. We now discuss potential future research directions.
We envision the future work can be done from three directions, exploring new
opportunities for edge computing, developing applications in related fields, and
improving the existing framework. Many research efforts have been done on edge
computing leveraging emerging technologies and hardwares. We have only focused
on vehicle-based edge computing for smart transportation applications in our
work, as technology evolves and more and more end device going mobile and
getting connected, many other services and applications can be benefited from edge
enhanced frameworks. Besides, when solving the problems mentioned in previous
chapters, we realized that most applications require similar modules to function.
We would like to build easy-to-use tools and APIs for developers and researchers
in this field such that applications using our framework can be easily designed and

implemented.

Exploring New Opportunities for Edge Computing

Roaming Edge on UAVs We explain the usage of vehicle-mounted roaming edge in
this dissertation. Besides vehicles, the unmanned aerial vehicle (UAV) technology
has continuously been evolving recently with exceptional growth. Many industries
are looking for opportunities to cut costs by implementing drone technology in their
applications or services. Similar to autonomous vehicles, UAVs are also equipped
with a set of sensors, such as cameras, LIDAR, GPS and so on. Hence, a crowd-
sourced sensing platform could be built with a reasonable amount of UAVs to
gather and analyze various forms of data at city scale. As drones could fly in the
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sky, they could provide information from a completely new dimension, which could
potentially bring new opportunities to many applications. Different from vehicles,
UAVs have even limited resources in terms of power, space, and so on. So there
are a lot of challenges we need to solve to build a sensing system using UAVs. For
example, data generated by cameras and LiDAR need to be processed in a timely
manner at the roaming edge on the UAV. Otherwise, the data will continuously get
backlogged when the drone is in the sky. Given the power and space limitations of
the drone, it is challenging to process such a large amount of data on the UAV. So a
good research direction is to explore what tasks are suitable to run on the UAV. In
order to gather and derive useful information over a large area or at city scale, it
usually requires a group of UAVs to collect and share data. Here are some issues
that need to be addressed to implement such a system, how to achieve a given
goal with limited resources, what are the best strategies to share data and other
information with others. We believe there are many opportunities that exist in this
field and it is worth exploring these possibilities.

Other Edge Computing Platforms In this dissertation, we choose a previously
developed edge computing platform - ParaDrop, which is built at the extreme
network edge, WiFi access points. There are many other research efforts that have
been done on edge computing. For example, lots of industry companies are very
interested in Mobile Edge Computing (MEC) [33]. Verizon and Amazon Web
Services are working together on the 5G Edge pilot. MEC provides computational
and storage resources in the access network, which is also being treated as a key
emerging technology for 5G networks [135]. It is definitely worth paying more
attention to it as 5G networks are just around the corner. Different from LTE
networks, 5G technology achieves significant improvements on network bandwidth
and latency, and also supports a higher number of connected devices than current
LTE networks. Therefore, there will be strong economic incentives for service
providers to host resources in the access network and provide edge computing
Infrastructure as a Service (IaaS). With the emerging 5G networks, it is an interesting
direction for us to explore how would edge computing applications benefit from
these technologies. For instance, how could latency sensitive applications, such



113

as AR and VR, benefit from 5G and edge computing? It is likely that we will
switch to 5G eventually, so how can we develop edge computing applications or
services that could work with both 4G and 5G seamlessly? What is the role of cloud
computing when 5G-based edge computing services are available? Do we still need
a central cloud for such services? Above are some next steps that naturally need to
be addressed for 5G and edge computing.

More Applications

We will continue to explore vehicle-based edge sensing applications for improving
transportation systems. What’s more, we also would like to leverage emerging
technologies such as 5G, UAVs and so on. Below are two directions we plan to work
on in the future.

Building a Pedestrian Collision Avoidance System for Bus Drivers According
to NHTSA’s report [136], on average a pedestrian was killed every 2 hours and
injured every 8 minutes in traffic crashes in 2014. Road traffic safety, especially
pedestrian safety, is still a challenge that requires more government attention.
Traditionally, a driver would sound the horn to alert pedestrians when the bus
would leave a bus stop or make a turn. However, this generates a lot of noise and can
be annoying at night. A pedestrian alert system can be developed for bus drivers
to help them locate pedestrians in blind spots. The idea is to use cameras installed
on the bus and bus stations to monitor pedestrians in blind spots and send out
alerts when necessary. Videos captured from different cameras can be analyzed on
either the edge compute node at bus stations (the static edge) or the edge compute
node on the bus (the roaming edge) Although camera-based methods are relatively
accurate in detecting objects, they might be restricted by the possible obstacles
that might arise in a pedestrian line-of-sight (LOS). To overcome these limitations,
we will place a Bluetooth beacon in each corner of the bus. These beacons will
broadcast messages periodically. To be protected, pedestrians should agree to
install an application on their mobile devices that will send location information to

a central server. Once there is a bus nearby, the application will start scanning the
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Bluetooth beacons. Based on the signal strength received from different beacons,
our system could estimate the relative location of the pedestrian. The combination
of cameras and proximity sensors overcomes the limitations of existing solutions
and improves the system performances.

Smart Transportation Applications using UAVs As mentioned in the previous
section, UAVs could provide insights from a new dimension and enable improve-
ments for various applications in transportation systems. They can continuously
overlook the city as they fly along the city streets, numerous forms of transportation
analytics questions can be easily answered. For example, to monitor parking spot
availability, many intelligent parking services have been built using static sensors
that are installed under or above individual parking spots. With the help of UAVs,
we can take a bird view picture of the parking spot and quickly locate empty spots
in the picture. Understanding how traffic flows at a large scale is an important
problem with which city planners and its traffic engineering team continuously
grapple. Most planners try to gather this information through a set of static sen-
sors (e.g., roadside cameras, and road sensors), which gives them a limited view.
Similarly, we can take pictures of roads from the top view using UAVs, which will
present a clearly view of the current situation without any blockage. There are many
further example applications that can benefit from the UAV-based edge sensing
framework. This great diversity will also bring some challenges for the roaming
edge on UAVs, such as it needs to be built as a multi-tenant resource, property
data access should be assigned to each involved stakeholder involved (e.g., traffic
engineers, city planners, car owners, law enforcement, etc.). Future work can be
done to explore the design of UAV-based edge sensing framework and understand

the unique advantages and problems of such a framework.

Improving the Edge-based Sensing Framework

In this dissertation, we proposed an edge enhanced vehicular sensing framework,
and we focused on exploring the use of edge computing and IoTl devices for smart
transportation applications. We plan to polish it to further improve its capabilities,
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e.g., building dedicated portable but powerful hardwares that can be easily de-
ployed in vehicular settings, developing easy-to-use tools and modules that allow
developers to use them by calling APIs. To be more specific, here are three aspects
that can be improved for future work.

Security The security of edge computing infrastructure is an important future
work. Unlike cloud computing, the resources of an edge computing platform
might not be controlled by the platform owner, and developers might have physical
access to the resources. What’s worse, edge computing devices can be stolen or
physically manipulated. More research is needed to figure out how to restrict
access to sensitive information and guarantee the correctness and reliability of edge
computing platforms.

Context Aware Communication Module The communication module is re-
sponsible for communication among the roaming edge, static edge and the cloud.
Our current design does not require communication between roaming edges, how-
ever, they might need to talk to each other in some application scenarios. How
to allow communication with devices at various locations could be a challenge to
latency-sensitive applications. An efficient context-aware communication protocols
with good encryption can be implemented to preserve privacy for applications. For
instance, the motion sensing video streaming protocol illustrated in Chapter 2.3.

Energy Consumption Monitor Energy consumption is an important factor for
edge computing applications, especially for IoT devices as they are usually small
in size and has limited space for the battery. Therefore, an energy consumption
monitor would help developers with battery management of their applications. In
general, there are two ways to monitor energy consumption, software-based and
hardware-based approaches. Software-based approach is easy to be implemented,
as it just constantly pull battery levels from the device. We would like to start with
this approach and prepare APIs for developers to check battery levels from multiple
devices at once. Next, we would like to design specific hardware for battery level
monitoring. The hardware is not designed for all types of connected devices that can
be used in every scenario, it works for some types of applications. For example, it
would be useful to design a hardware that can be hooked on smartphones for energy
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monitoring since a wide range of applications uses smartphones as a connected
sensor. We believe a battery usage monitor could help developers with application
development and users can also benefit from it as the application performance

improves.
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