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ABSTRACT
Deep learning with Deep Neural Networks (DNNs) can achieve
much higher accuracy on many computer vision tasks than classic
machine learning algorithms. Because of the high demand for both
computation and storage resources, DNNs are often deployed in
the cloud. Unfortunately, executing deep learning inference in the
cloud, especially for real-time video analysis, often incurs high
bandwidth consumption, high latency, reliability issues, and privacy
concerns. Moving the DNNs close to the data source with an edge
computing paradigm is a good approach to address those problems.
The lack of an open source framework with a high-level API also
complicates the deployment of deep learning-enabled service at the
Internet edge. This paper presents EdgeEye, an edge-computing
framework for real-time intelligent video analytics applications.
EdgeEye provides a high-level, task-specific API for developers so
that they can focus solely on application logic. EdgeEye does so
by enabling developers to transform models trained with popular
deep learning frameworks to deployable components with minimal
effort. It leverages the optimized inference engines from industry
to achieve the optimized inference performance and efficiency.
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1 INTRODUCTION
Deep learning with Deep Neural Networks (DNNs) is a hot topic
in both academia and industry. It is widely used in different areas,
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such as speech recognition, language translation, image recogni-
tion, and recommendation. DNN-based approaches have achieved
big improvement in accuracy over traditional machine learning
algorithms on computer vision tasks. They even beat humans at
the image recognition task [12]. In this paper, we present our work
on building a real-time intelligent video analytics framework based
on deep learning for services deployed at the Internet edge.

Nowadays, camera sensors are cheap and can be included in
many devices. But the high computation and storage requirements
of DNNs hinder their usefulness for local video processing applica-
tions in these low-cost devices. For example, the GoogLeNet model
for image classification is larger than 20MB and requires about
1.5 billion multiply-add operations per inference per image [26].
At 500MB, the VGG16 model is even larger [25]. It is infeasible to
deploy current DNNs into many devices with low-cost, low-power
processors.

A commonly used approach to using deep learning in low-cost
devices is offloading the tasks to the cloud. Deep learning has two
parts: training and inference. Cloud computing fits the require-
ments of deep learning training very well because the training
process requires a large amount of data and high throughput com-
puting. However, the inference process, which is used in intelli-
gent video analytics, requires low latency that cloud computing,
in many cases, cannot provide. Also, continuously uploading high-
bandwidth video data to cloud servers wastes network resources.
If many people are uploading video data simultaneously, Internet
congestion could occur. Moreover, if the network connection is
interrupted, the services relying on cloud computing will be down.
Finally, the data used in inference is generally more sensitive than
the training data. Based on these observations, we believe cloud
computing is not appropriate for live video analysis. It is ideal to
analyze the live video stream locally if possible.

Edge computing is proposed to solve those problems in cloud
computing. By deploying shared resources at the Internet edge and
pushing computation close to the data sources, edge computing can
benefit many applications requiring low latency and high privacy.
We propose an edge service framework for real-time intelligent
video analytics — EdgeEye. We name the framework EdgeEye be-
cause it is like the eyes of third-party edge services and devices.
It helps them to see and understand the ambient environment
through the video signal. When compared with cloud computing
solutions, EdgeEye uses significantly less bandwidth because the
system does not need to upload high bandwidth video to the cloud
continuously. It also further reduces the total computation resource
consumption because there is no need to encrypt the video when
the analysis happens locally.

ParaDrop [15] is used in our work to manage the edge services
using the EdgeEye API. ParaDrop is an edge computing platform
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Figure 1: Overview of the EdgeEye deployment in a home
environment. All the devices are on the same home network
and can connect to each other directly. Two edge services
and the robot can offload real-time video analysis tasks to
the EdgeEye server using the EdgeEye API and get results
with low latency.

built withWiFi access points. It provides an API to manage the edge
nodes as well as edge services running in the edge nodes. We can
also use other edge computing platforms like resin.io [23] for the
same purpose. The EdgeEye API provides a high level abstraction
to hide the details of diverse machine learning frameworks like
Caffe [14], TensorFlow [1], Torch [8], and MXNet [7]. The API cov-
ers different use cases, e.g., object detection, face verification, and
activity detection. We implement the API with WebSocket protocol
for low latency. EdgeEye uses a modular and extensible design,
and we build the system with an open-source media framework —
GStreamer [11]. We can easily reuse many open-source plugins of
GStreamer to build complex pipelines.

Current research efforts on deep learning for computer vision
focus more on training than inference. The inference performance
will not be optimal if we directly use the deep learning frameworks
to execute a DNN. Chip vendors like Intel [13] and Nvidia [20]
provide optimized inference engines for CPUs and GPUs. Edge-
Eye leverages those implementations to implement highly efficient
inference services.

Figure 1 gives a high-level overview of the EdgeEye in a home
environment. Two example edge services are deployed on the
ParaDrop access point (AP). The EdgeEye server has powerful CPU
and GPU to analyze live video streams in real-time. The IP cameras
in this figure can be standalone wireless cameras or cameras of
other devices, e.g., baby monitors. Figure 1 also shows a robot with
a camera. With EdgeEye’s capability of real-time video analytics,
the robot can see and understand the environment and then make
decisions accordingly. The cost to build the robot will be reduced
because it does not need to have a high-performance processor. The
edge services and the robot use the EdgeEye API to manage video
analysis sessions with given video sources. They specify parameters
and deep learning models to be used by the analysis session. And
the analysis results will be sent back to them in real-time.

Contributions: i) We propose an edge service framework for
real-time video analytics applications — EdgeEye, which provides a
high-level abstraction of some important video analysis functions
based on DNNs. Applications can easily offload the live video ana-
lytics tasks to the EdgeEye server using its API, instead of using
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Figure 2: An overview of the EdgeEye software architecture.
We extensively use open source components to build Edge-
Eye. The different colors indicate the different sources of the
modules.

deep learning framework specific APIs. ii) We build a prototype
of EdgeEye with Caffe and Nvidia’s TensorRT. Our preliminary
evaluations indicate that EdgeEye provides higher inference perfor-
mance than using the deep learning frameworks directly. iii) This
paper presents an example application built with EdgeEye to show
the capabilities of the framework.

2 SYSTEM DESIGN
Usually, developers build deep learning applications with various
open source deep learning frameworks, e.g., Caffe, TensorFlow,
and MXNet. These frameworks provide a wide variety of APIs
and language bindings. We believe that providing uniform task-
specific interfaces will simplify developers’ work. Computer vision
related tasks always include some supportive tasks, such as image
input/output, decoding, image rescaling, and format conversion.
Application frameworks need to provide such primitives with op-
timized performance, so that developers need not integrate and
optimize other third-party libraries for these supportive tasks.

2.1 EdgeEye Architecture
Figure 2 gives a high level overview of the EdgeEye framework.
EdgeEye needs to be installed on a machine with high-performance
CPU and GPU to guarantee real-time processing. It adopts the
GStreamer framework to manage the video analysis pipeline and
reuses open source elements to handle some supportive tasks, such
as format conversion and rescaling. The EdgeEye elements are
implemented based on the inference engines from chip vendors
for the best possible performance and efficiency. Along with the
GStreamer pipeline architecture, EdgeEye provides a WebSocket
API based on JSON-RPC and also element proxies to control Edge-
Eye elements through the API. EdgeEye also provides an HTTP API
to manage deep learning models used by EdgeEye elements. The
model repository integrates the model optimizers, which profile
the deep learning models from deep learning frameworks, such as
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Figure 3: An object detection pipeline including the Detect-
Net element.

Caffe and TensorFlow, and generate the deployable files that the
inference engines can load and execute directly.

2.2 DNN Model Management
Deep learning models store the structure, weights, and biases of
DNNs. These models are often tens or even hundreds of megabytes
in size. Different deep learning frameworks store them in different
formats. For example, a deep learning model built with Caffe has
a *.prototxt file and a *.caffemodel file, while the same model built
with TensorFlow has one *.pb file. The model management module
manages the models used by the EdgeEye GStreamer elements.
When applications upload a new model to the model repository,
the optimizer will profile the model and generate the optimized
deployable model file for the corresponding EdgeEye element.

2.3 Video Analysis Pipeline
We use the GStreamer media framework to implement the video
analysis pipeline. A pipeline is a chain of elements. Every element
besides the source element processes video data received from the
element before it. It then either forwards the processed data to the
next element in the pipeline or discards the data. The pipeline and
plugin mechanisms available in GStreamer simplify the creation of
complex media processing pipelines. Figure 3 shows an example
pipeline to detect objects with DetectNet neural network. The non-
DetectNet elements are from the GStreamer community and handle
data reading, parsing, and decoding. The DetectNet element (inside
the dashed box) executes deep learning models in the Nvidia GPU
inference engine using the TensorRT library [20].

2.4 EdgeEye Element Design
EdgeEye elements are model and inference engine specific, i.e., we
have SSD-INTEL, SSD-NVIDIA, YOLO-INTEL, and YOLO-NVIDIA
elements for SSD (Single Shotmulti-boxDetector) [16] and YOLO [22]
DNNs running on the Intel and Nvidia inference engines. Edge-
Eye hides the difference of these DNN models in network struc-
ture and input/output format. Based on the message mechanism
of GStreamer, EdgeEye exposes the functionality through a task-
specific interface, so that developers can get the video analysis
functionality with minimal effort. Developers need to specify the
model files (network structure, weights, and biases) to load into
the inference engine, as well as specify other model-specific input
and output parameters. The output of the DNN model can either
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Figure 4: Internal of the DetectNet element.

be embedded in the video stream (overlay), or sent to pipeline man-
ager through messages. These messages can then be forwarded to
applications through the JSON-RPC interface.

DetectNet is an example DNN architecture in the Nvidia Deep
Learning GPU Training System (DIGITS) [19]. Its data represen-
tation is inspired by YOLO. DetectNet uses GoogLeNet internally
with some modifications. Similar to YOLO, it overlays an image
with a regular grid. The grid has spacing slightly smaller than
the smallest object we wish to detect, and the DNN generates in-
formation for every grid square. The method to generate output
bounding boxes and class labels is totally different from YOLO. As
shown in Figure 4, we have to execute the post-processing steps
including bounding box clustering to generate the final result. More
detailed information is available in [17]. Figure 4 also shows the
buffer management in the element implementation. We use Nvidia
CUDA mapped memory feature to simplify the memory movement
between CPU and GPU. The DetectNet element uses TensorRT to
control the GPU Inference engine, such as initialize the inference
engine, create inference runtime, load the serialized model, create
inference execution context, and execute the inference engine.

The hardest parts of an element implementation are in the buffer
management and post-processing, both of which are on the CPU
side. If TensorRT supports all the layers of a DNN model, we can
easily load the serialized model and create the execution context.
Unfortunately, TensorRT does not support some layers, e.g., Leaky
ReLU, which is used in YOLO. We use the TensorRT plugin API to
implement those unsupported layers ourselves.

All EdgeEye elements share a similar structure. Aided by the
GStreamer plugin architecture, we can easily integrate DNNs into
GStreamer pipelines for different tasks by developing EdgeEye
elements for them.

2.5 EdgeEye API
Through the JSON-RPC based API, applications can control both
the pipeline and the individual EdgeEye elements. The API is task-
specific. For example, the interface for object detection requires an
input parameter to specify the DNN model used by the EdgeEye
element, and the output is the detection results including bound-
ing boxes and confidence level of the detection. The interface is
independent of the underlying implementation of EdgeEye ele-
ments. Application developers does not need to care about the
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Figure 5: An example service powered by EdgeEye.

deep learning framework (Caffe, TensorFlow, etc.) and model (De-
tectNet, YOLO, SSD, etc.) used to implement the object detection
function. EdgeEye provides a Javascript wrapper for those inter-
faces. Javascript is widely used to develop IoT applications, even for
resource-constrained devices [5, 24]. The following code snippet
shows how to use the Javascript wrapper to configure a DetectNet
element to detect dogs. We ignore the code to load the deep learn-
ing model file and construct the pipeline. The application creates a
DetectNet element instance through the handle of the pipeline. If
succeeds, it sets an event handler to receive detection results.

pipeline.create('DetectNet', {
model: dogDetectorModel

}).then(element => {
element.on('objectDetected', event => {
// work with the detection result
// (event.boundingBoxes, event.confidence)

});
});

2.6 Work with EdgeEye
We can leverage EdgeEye from either edge services or standalone
devices. This paper only discusses edge services. Figure 5 illustrates
the steps to develop an EdgeEye powered edge service. First, we
need to design and train the deep learning model with the deep
learning framework we choose. Next, as usual, we develop the edge
service logic with Javascript. The Javascript code will be combined
with the trained deep learning model and other assets to build a
deployable edge service. In the deployment phase, users install the
service into the edge computing platform, which uses the Edge-
Eye API to upload the model to the EdgeEye server and starts the
execution of the deep learning inference engine.

3 IMPLEMENTATION
We have prototyped the EdgeEye on a desktop with Ubuntu 16.04
LTS. The desktop has an Intel i7-6700 CPU @ 3.40GHz, a Nvidia
GeForce GTX 1060 6GB, and 24GB system RAM. We installed Ten-
sorRT 3.0.4 and CUDA 9.0 on the desktop.

We used Kurento [9] to implement the GStreamer pipeline man-
agement and JSON-RPC interface. Kurento is an open source We-
bRTC [4] media server. It provides the tools to generate the stubs
on both server and client side for the JSON-RPC based API. Al-
though its main goal is to support WebRTC related features and it

Table 1: Inference Speed Test Results

Configuration Mean FPS
1. EdgeEye (video: 1280x720) 55
2. EdgeEye (video: 640x360) 76
3. Caffe (GPU, CUDA 9.0) 54
4. Caffe (CPU, w/o optimization) 0.49
5. Caffe (CPU, w/ optimization) 8.6

provides many unrelated features for EdgeEye, its modular design
can be reused to implement an edge computing framework. We use
Node.js to implement the model repository and the HTTP interface.

We have implemented the DetectNet element for object detection
with C/C++ based on TensorRT and CUDA and are working on the
SSD and YOLO elements. The current prototype only uses Nvidia’s
GPU inference engine, but we will develop elements using Intel’s
inference engines as well.We also plan to develop elements for other
purposes, such as semantic segmentation and activity detection.

TensorRT provides several optimizations for the GPU inference
engine including layer & tensor fusion, FP16 and INT8 precision
calibration, and kernel auto-tuning. These optimizations improve
the inference performance significantly. Therefore, by leveraging
these optimizations in TensorRT, EdgeEye can achieve higher in-
ference performance than Caffe with the same DNN model. We
evaluated the performance of the DetectNet element with a dog
detector model. The FP16 optimization of the TensorRT model opti-
mizer was enabled in the test, and we used two video files with the
same content (dogs), encoding (H.264) and length (2 minutes, 29.97
frames per second), but different resolutions (1280x720 and 640x360
respectively). We ran each test 10 times and averaged the results.
For comparison purpose, we also tested Caffe (20180403-snapshot
from Github [6]) with the same DNN model to get the average for-
ward pass time. The forward pass time is the time taken for a batch
of data to flow from the input layer of the network to the output
layer of the network. Based on the average forward pass time, we
calculated the FPS (Frames Per Second) values for Caffe framework.
These values are the theoretical upper bound performance we can
achieve with Caffe, because we omit overheads related to video
decoding, buffer movement, and video scaling in the test. Three
Caffe configurations were used in the test: i) the master branch of
Caffe executing with GPU, ii) the master branch of Caffe executing
without GPU and no optimization for CPU, iii) the Intel branch of
Caffe executing with optimizations for Intel CPUs. We used batch
size = 1 for all the tests because we want low latency.

Table 1 shows the results. We can see EdgeEye gets the highest
FPS because of the optimizations in TensorRT, even though it needs
to do a lot of extra work. In conclusion, GPU acceleration is very
important to get high-performance inference, and the optimized
inference engine (TensorRT) can further boost the performance. In-
ference accuracy data is not provided here because we use Nvidia’s
optimizer for TensorRT directly. Nvidia claims their GPUs can de-
liver massive performance improvements with the near-zero loss
in accuracy [21].
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4 EXAMPLE APPLICATION
In this section, we introduce the design and implementation of an
EdgeEye powered application — home monitor. Home monitor is
built for the ParaDrop platform. It can also be deployed in other
edge computing platforms with minor modifications.

As shown in Figure 6, the application has three major compo-
nents: an edge service deployed in a ParaDrop AP, a cloud server,
and a mobile app.

The edge service uses the EdgeEye API to orchestrate the video
analysis tasks and receive analysis results. The video stream is
received from an IP camera with RTSP protocol support. The edge
service also connects to the cloud server for WebRTC signaling.
With the WebRTC support, users can define rules that edge service
follows to set up a P2P connection to the mobile app and stream
real-time video as well as analysis results to users with minimum
latency.

The most important responsibility of the cloud server is WebRTC
signaling. Other responsibilities include account management and
rules management.

We develop the mobile app with the React-native framework.
With the mobile app, we can receive real-time notification from the
edge service, and view the real-time video stream from cameras
remotely. Users can also specify some rules about the detection
results.

The home monitor application currently only supports object
detection. With other EdgeEye elements, we can easily support
more use cases. For example, we can develop a face verification
element to support a smart lock application. With EdgeEye frame-
work, video streams do not need to leave the home network for
analysis. This approach saves bandwidth, provides reliable and low
latency service, and also enables high privacy protection.

5 DISCUSSION
Chip vendors, IP vendors, tech giants, and startups are building and
shipping specialized processors for deep learning applications [27].
Some companies are also building products equipped with these
kinds of specialized processors. For example, at the AWS re:Invent
global summit 2017, Amazon announced DeepLens, a deep learning
enabled wireless video camera for developers [2]. Google Clips
is another wireless smart camera with machine learning enabled
[10]. The advance in specialized processors can help EdgeEye to

improve its performance. Unlike Amazon DeepLens and Google
Clips, EdgeEye’s resources are shared by multiple smart devices. In
addition, EdgeEye’s flexibility and multi-tenancy enable developers
to try new algorithms easily at the edge.

The development of EdgeEye is still ongoing. Current work
focuses on Convolutional Neural Networks (CNNs). We plan to sup-
port activities analysis in video streams through Recurrent Neural
Networks (RNNs).

For now, we only work on computer vision applications in the
smart home scenario, but EdgeEye’s architecture is also useful for
other scenarios, such as city deployment and workplaces.

6 RELATEDWORK
Using edge computing for live video analytics is a hot research
topic. Ananthanarayanan et al. discuss the performance require-
ments of a wide range of video analytics applications, such as traffic,
self-driving and smart cars, personal digital assistants, surveillance,
and security. They conclude that a geographically distributed archi-
tecture of public clouds and edges is the only feasible approach to
meeting the strict real-time requirements of large-scale live video
analytics [3]. Zhang et al. introduce VideoStorm, a video analytics
system that processes thousands of video analytics queries on live
video streams over large clusters [28]. Zhang et al. present Vigil,
a real-time distributed wireless surveillance system that leverages
edge computing to support real-time tracking and surveillance [29].
Not targeting any specific application, EdgeEye is a generic edge
computing framework for real-time video analytics. Its goals are
usability, flexibility, and high efficiency.

Many research efforts on DNNs primarily focus on improving the
training speed and inference accuracy.While application developers
care more about inference speed and easy to use interfaces. Zhao et
al. propose a system called Zoo [30] to migrate this gap. They build
Zoo based on a numerical computing system written in OCaml
language. EdgeEye shares the similar goal with Zoo, but we build
the system based on available work from industry and open source
community.

Nvidia provides an inference framework - DeepStream SDK [18].
DeepStream simplifies the development of video analytics applica-
tions on Nvidia platforms by providing TensorRT, hardware video
codecs, and other related primitives into an optimized API. EdgeEye
provides a higher level abstraction of the inference engine than
DeepStream. In addition, it provides necessary functions for edge
service development and deployment.

7 CONCLUSION
In this paper, we present EdgeEye, a flexible, extensible and efficient
edge computing framework to develop real-time video analytics
applications. EdgeEye has a modular design based on GStreamer
media framework, and it provides tools to deploy and execute DNN
models in an easy and efficient way. By providing a high-level API,
EdgeEye simplifies the development and deployment of deep learn-
ing based video analytics applications. We discuss the motivations
to design such a framework, and introduce its implementation. We
also present an example application built with the EdgeEye frame-
work to show its capability and extensibility. EdgeEye is an ongoing
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work, we are working on more elements for different computer
vision tasks based on different inference engines.
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