Checksumming RAID

Brian Kroth
bpkroth@ cs.wisc.edu

Abstract

Storage systems exhibit silent data corruptions that go
unnoticed until too late, potenially resulting in whole
trees of lost data. To deal with this, we’ve integrated
a checksumming mechanism into Linux’s Multi-Device
Software RAID layer so that we are able to detect and
correct these silent data corruptions. The analysis of our
naive implementation shows that this can be done with a
reasonable performance overhead.

1 Introduction

Storage systems, perhaps more than other computer sys-
tem components, exhibit silent partial failures. These
failures can occur anywhere along the storage stack:
from the operating system arranging and scheduling re-
quests, to the device drivers, through the communication
channel, to the backing device medium itself and all of
its internal firmware and mechanical underpinnings. The
failures themselves can be partial or complete, tempro-
rary or permanent, and, despite some hardware support
for it, detected or not. They occur in the form of bit flips
along the path, bit rot on the medium over time, mis-
directed writes to the medium, and phantom writes that
never actually make it to the medium.

At the same time, though perhaps unwise, most software
in a system presumes a stop-failure environment in which
all the underlying components either completely work or
fail in their entirety. For example, if a region in memory
is damaged it is likely that either the program will crash,
or in the case of virtual memory, perhaps the machine
will crash. These particular problems are probably not
the end of the world though, since the program or the
machine can simply be restarted to restore a clean state.

However, when this happens in a storage component, the
resulting state can remain with the system across reboots.
The effect of this could be as simple as a corrupted block
within a file. In some cases, the application format can
deal with this, however in others it renders the file, in-
cluding the rest of its intact data, useless. It is also possi-
ble the corrupted block occurs in some metadata for the
filesystem living on top of the storage component, such

Suli Yang
suli@cs.wisc.edu

as a directory. In this case whole subtrees of data may be-
come inaccessible. The results of this can be anywhere
from lost data to an inoperable machine.

Given that the storing and processing of data is the pri-
mary purpose of most computers, and that the data peo-
ple store represents an investment in time and energy,
these failures and their ensuing loses can be very costly.
Thus, we propse a storage system that is not only capable
of detecting these silent corruptions, but also correcting
them before it’s too late. To that end, we’ve extended
the Software RAID layer in Linux’s Multi-Device driver,
which already includes some redundancy information to
be able to recover from some stop-failures scenarios, to
include an integrity checking component in the form of
checksums. Using this we show that our solution is capa-
ble of detecting and correcting single block corruptions
within a RAID stripe at a reasonable performance over-
head.

The remainder of this paper is structured as follows. In
Section [2] we’ll discuss some background and related
work. Section [3| will discuss our implementation details,
followed by our evaluation and results in Section 4} and
finally our conclusions in Section [5]

2 Background

In this section we review the problem of silent corrup-
tions and discuss a number of other approaches to deal-
ing with it.

2.1 The Problem

The issue of silent data corruption within storage sys-
tems and beyond has been well understood and stud-
ied. The IRON Filesystems paper [9]] presents a good
overview of the possible sources of corruption along the
storage stack. Studies at CERN in 2007 [5] and statistics
quoted by [4] showed that error rates occurred in only 1
in 1012 to 10! bits (8 to 12TB). However, other studies
[9] note that this rate will only increase as disks become
more complex and new technologies such as flash take
hold even as market pressures force the cost and quality

of these components downwards. Indeed, these statis-
tics already increase when we take into account the other
components in the system such as memory and I/O con-
trollers [?]. Given that this problem is well understood, it
is natural to ask what existing solutions there are, which
we now discuss.

2.2 RAID

One common technique used to deal with failures in stor-
age infrastructures is RAID [6]. RAID typically pro-
vides data redundancy to protect against drive failure by
replicating whole or calculated parity data to a separate
disk in the array. However, this mechanism only pro-
tects against whole disk failures since the parity block
isn’t usually read, or more importantly compared, when
a data block is read. Indeed, in a mostly read oriented
array, a silent data corruption could occur in a seldomly
read parity block resulting in the eventual restoration of
bad data. The integrity of a RAID system can be veri-
fied periodically by a "scrubbing" process. However, this
process can take a very long time, so is seldom done. In
contrast, our solution incorporates an active check of data
and parity block integrity at the time of each read or write
operation to the array. This allows us to detect and repair
individual active stripes much sooner. For idle data that
is not being actively read, it may still be wise to run pe-
riodic scrubbing processes in order to detect corruptions
before we can’t repair them. However, this process could
possibly be optimized to only examine the inactive data.

2.3 End to End Detection

Modern drives already provide some ECC capabilites to
detect individual sector failures. However, studies [?]
have shown that these don’t detect all errors. Other solu-
tions, such as Data Integrity Extension (DIX) [8]] attempt
to integrate integrity checks throughout the entire storage
stack — from the application through the OS down to the
actual device medium. These particular extensions oper-
ate by adding an extra 8 bytes to a typical on disk sector
to store integrity information that can be passed along
and verified by each component along the storage path
so that many write errors can be detected almost imme-
diately. Though OS support for these is improving [7]],
many consumer devices still lack it. Moreover, they are
an incomplete solution. By storing integrity data with
the data itself the system is not capable of detecting mis-
directed or phantom writes. Section [3.1.1] explains how
by spreading our checksum storage across multiple disks
we are able to handle these problems as well. However,
since we rely on a read event to detect corruptions we

believe that DIX is a complimentary addition to our so-
lution.

2.4 Filesystem Detection

Other, software based solutions such ZFS [10] also aim
to provide more complete OS awareness of integrity
checking. In ZFS, the device, volume, and filesys-
tems layers have been integrated to provide a well in-
tegrated checksumming storage infrastructure. However,
accomplishing this at such levels often requires signifi-
cant upheaval and is not universally applicable to other
filesystems. For example, we originally looked at adding
checksum support to Linux’s ext4 filesystem. E] Because
ext4 is an extent based journalling filesystem [3] and
ZFS is copy-on-write, providing complete and consistent
checksumming protection to both the file and meta data
would have required creating a new journalling mode and
significantly altering the on disk layout, allocation poli-
cies, page cache system, and more. In contrast our sys-
tem adds data integrity checks at a layer that can hope-
fully do something useful when a mismatch is detected
(e.g.: repair it) as opposed to simply kicking the error
back to the caller. Moreover, it does it in such a way that
no changes to the rest of the system are required, though
for performance and OS and application awareness some
may still be desirable.

3 Implementation

As stated previously, the goal of checksumming RAID is
to detect silent data corruption and recover from it using
the parity data present in typical RAID whenever pos-
sible. To achieve this, we have modified the Software
RAID layer of Linux’s Multi-Device (MD) driver to add
two new RAID levels: RAID4C and RAIDSC (C for
checksumming). This new checksuming RAID system
operates by computing a checksum whenever a block is
written to the device and storing that checksum in its cor-
responding checksum block. When a block is read, its in-
tegrity is checked by calculating a checksum for the data
received and then comparing it to the stored checksum.
If the checksums do not match, we start a recovery pro-
cess to restore the corrupted data by invoking the typical
RAID4/RAIDS failed stripe recovery process. That is,
we read in the remaining data and parity blocks, verify-
ing their checksums as well, and XOR them to recover
the corrupted data block.

Text4 has support for checksumming journal transactions, but that
protection does not extend to the final on disk locations.

hecksum Block

hecksum Header (blkno.y

e b Mo Bock

hecksum for Block 3

_hecksum for Parity Blk

hecksum for Csum BIK

Figure 1: Our Checksumming RAID Layout. We have added another block to a typical RAID stripe to hold checksum data.
The checksum block has a header which includes the block number, followed by a number of checksum entries indexed by

the disk number, including one for itself.

3.1 Checksumming RAID Layout

MD’s RAID implementation organizes stripes and their
respective operations in PAGE_SIZE (4K in our case)
units from each disk. Among various choices of where
and how to store checksums, we chose to store check-
sums for each stripe in a dedicated checksum block.
So, in addition to the typical RAID layout (several data
blocks plus a parity block), we added a checksum block
for each stripe.

A typical checksumming RAID stripe layout is shown
in Figure m Within the checksum block, all the check-
sums for the data blocks and parity block are stored con-
tiguously, indexed by their corresponding disk’s position
in the stripe. We also store some header information,
such as the block number and the checksum for check-
sum block, to help detect corruption within the checksum
block itself.

3.1.1 Layout Analysis

With this layout, bit rot and phantom writes to data
blocks are caught and repaired through checksum veri-
fications during read. Misdirected writes can be caught
and repaired through a combination of the checksum
block number and disk index. Phantom writes of the
checksum block are caught indirectly. Such a situation
will manifest itself in the form of a checksum mismatch
of a data block, upon which a recovery will be initiated.
However, the recovery will find at least two checksum
mismatches (one for the data and the parity, though po-
tentially of the blocks don’t match their checksums) and
can at this point choose to either rebuild the checksum
block from the available data, or return an error to the
caller. In effect, this treatment is no different from parity
recovery processes for typical RAID systems.

3.2 Computing the Checksum

To compute checksums, we use the kernel’s built-in
CRC32 libraries. It’s very fast to compute, and recent
processors even have dedicated instructions for it. It also
provides very reliable protection over our 4K block size
[1]. Since MD limits arrays to a maximum of 27 mem-
bers, we have extra space reserved for each checksum
entry. With this we could potentially use more complex
checksum, such as SHA-512 at the expense of extra com-
putational resources since we have plenty of space in
our checksum block, but we felt that CRC32 was good
enough.

3.3 Typical Operation Processes

To better illustrate how this checksumming mechanism
works, we trace the typical path of reading, writing, and
recovery operations in some detail in the following sec-
tions.

3.3.1 Typical Write Process

As discussed in Section [3.4] write operations in MD are
buffered in memory until they must be force to disk.
Once that happens, when writing to a data block, as in
typical RAID, we must calculate the new parity for that
stripe. However, in checksumming RAID we also calcu-
late its checksum, the checksum of the new parity, and
the checksum of the new checksum block which will
hold all the preceding checksums. This may involve
some reads to get the checksum block and other block(s)
for the parity calculation. ﬂ Once we have the appro-
priate data and have made the necessary calculations we

2In the case of minimal RAID array members, MD avoids read-
write-modify operations (RWM), and instead reconstruction writes are
performed by reading the other data from the remaining data disk block
in the stripe.

issue write requests through the generic block layer for
the affected data, parity, and checksum blocks back to
their corresponding array members.

3.3.2 Typical Read Process

When issuing a read to a data block, we want to ver-
ify its integrity, so we hook the I/O completion functions
to make sure we’ve fetched the corresponding checksum
block as well. Upon completion of checksum block read,
we compare the block number, calculate its checksum
and compare with its stored value. Similarly, upon com-
pletion of the data block read we calculate its checks
compare it with the checksum stored in the valid check-
sum block. For each, if the two checksum agree, we
finish read successfully; if they don’t agree, we start a
recovery process.

3.3.3 Data Block Corruption Recovery

As in typical RAID, when recovering a block from par-
ity we need to read in the remaining blocks in the stripe.
However, in checksumming RAID we also verify the in-
tegrity of each of these blocks by computing and com-
paring their checksums. Once we have successfully re-
stored the corrupted block content, we rewrite it to disk
and then retry the failed read operation. If the reread
fails, we assume there has been a more pervasive storage
system failure and return an error to the caller.

3.3.4 Checksum Block Corruption Recovery

The checksum block itself can also be corrupted in the
same ways that any other block can. To detect this, we
store a checksum over the checksum block itself, which
is calculated by zeroing out the corresponding checksum
entry and block number. Unfortunately, since the par-
ity block only provides redundancy information for the
data blocks in a stripe, we have no recourse other than to
rebuild the checksum block from the rest of the data in
the stripe. To do this, we read in the remaining blocks
in the stripe, recalculate their checksums, recalculate the
checksum of the checksum block, write it back to disk
and reread it. As in the data block corruption recovery
case, if the reread fails, we return an error to the caller.

3.4 Cache Policy

MD uses a fixed size pool of stripe buffers to act as a
cache for future reads. We made use of this to alleviate
the cost of doing extra I/O to the checksum block when
multiple blocks from the same stripe are being accessed.

Similarly, the stripe pool is used to buffer partial writes
for a whileE] in the hope that future write requests result
in the ability to perform full stripe writes, thus saving the
cost of extra parity and checksum block reads.

A possible improvement on this simple mechanism
would be to add some way of preferentially keeping
checksum blocks cached for a longer period in order to
try and avoid the extra I/O cost to read them later on.
However, this would have added significant complexity
to our initial implementation so we postpone it for future
work.

3.5 Changes to Linux’s Software RAID Driver

Most of the functionalities we are seeking are already
provided in the Linux’s Software RAID driver code. We
changed the driver and its corresponding userspace util-
ities so that it could recognize RAID4C and RAIDSC
levels, and issue read/write to checksum blocks when
appropriate while operating on these levels. To do this
we hooked into the generic block layer’s I/O completion
functions to issue the appropriate actions (e.g.: calculate,
store, verify, recover). In general, it is a modest modifi-
cation to the original driver; about 2000 lines of code are
added in total.

It’s worth noting that our implementation is a relative
naive one and there is plenty of space for optimization.
For example, the checksum calculation could be done
asynchronously, like most XOR and memory copy oper-
ations are already done in the current RAID code. Also,
for now we have an unnecessary read of checksum block
when doing full stripe write, which should be removed
to improve performance.

3.6 Crash Recovery

One issue we have not discussed is what to do during
crash recovery. If the system crashes during a write, upon
reboot we may have a partial write somewhere within
the array. In standard RAIDS this could mean a stripe
whose parity block doesn’t match its data blocks. In our
checksumming RAIDSC it can also mean a checksum
block whose contents don’t represent the data blocks it
protects. If we were to encounter such a situation in
steady state we would potentially see this as a data block
checksum mismatch and issue a recovery operation from
non matching parity blocks, thus potentially leading to
semantically corrupted data. Thus our only recourse is
to rebuild the checksum block contents for those partial
write stripes at recovery time.

3The exact amount of time depends upon memory pressure, timers,
etc.

However, without more information we don’t know what
stripes need to be repaired and a full RAID resync oper-
ation can take days. Since standard RAIDS has to deal
with this situation as well MD supports a write intent log
which can be used to keep track of which portions of
the array were recently being modified. At restore time,
the log can used to inform the resync layer which stripes
should be examined. The intent log however can add a
significant overhead.

Previous work [2] has been done to make use of the jour-
nalled filesystem that typically sits on top of the RAID
device to inform it which stripe regions should be exam-
ined. By reusing the journals write ahead logging, the
overhead of typical operations is kept to a modest and
reasonable amount.

Today logical volume managers are also commonly
placed on top of RAID devices as well. Thus, we propose
extending the Journal Guided techniques so that they can
be passed through the necessary layers to the underlying
storage device to let them deal with if and how to re-
cover, however our current implementation does not ad-
dress this.

4 Evaluation

In this section we present an evaluation of our implemen-
tation. In particular, in Section [d.3| we present results on
its correctness by verifying that it in fact catches and cor-
rects errors we introduce. Section 4. 1] presents an analy-
sis of its overheads which we use to help develop a model
to explain results in Sections [.5] and [.6] which discuss
the effects of disk layout within the array.

4.1 Overheads

Since our layout stores checksums in a separate block,
our implementation must issue and wait on extra I/O op-
erations and perform several checksum calculation oper-
ations. For example, a cold cache random read operation
needs to perform one extra read operation to the check-
sum block, when compared to typical RAIDS. How-
ever, for this same random read it requires, two check-
sum calculations: one for the data block, and one for
the checksum block itself. On the other hand a ran-
dom read-modify-write requires two extra I/Os, a read
and write to the checksum block, and six checksum
calculations: verifying the checksum block, verifying
the old parity, verifying the old data, computing the

4 In our implementation there was a bug which caused an extra read
and checksum calculation call, beyond those presented in the tables, to
the checksum block even though full stripe writes can just overwrite it.

new parity, computing the new data, and computing the
new checksum block checksums. For each operation
(random/sequential read/write), we summarized the per-
stripe checksum calculations and extra I/O operations in-
curred by our checksumming implementation in Table 1]
and Table2]respectively. We expect that the extra I/0 op-
erations will dominate the cost of computing checksums
in most operations.

4.2 Test Setup

We begin by first explaining the details of our test setup.
Due to a lack of physical resources, a number of tests
were developed and conducted in a virtual environment.
Our VM was given 2GB RAM, 2 CPUs, and installed
with Debian and a 2.6.32.25 kernel To act as our MD ar-
ray members the VM was alloted 10 8GB virtual virtual
disks backed by a relatively powerful, but mostly idle, 14
15K RPM disk RAID50 SAN. Since there are a handful
of layers in between the VM and the SAN (e.g.: iSCSI,
caching, buffer, etc.), the numbers we present should not
be treated as absolute timings to be comparable with real
arrays. For this reason we also focus our attention on
sequential access patterns. However, since the changes
we made largely effect the kernel interactions, and we’re
comparing apples to apples, so to speak, we feel that the
relative comparisons made in each test are still valid. For
completeness, we also conducted a test on a physical ma-
chine with an 3 GHz E8400 Core2Duo, 2GB RAM, and
a single extra 80GB disk.

4.3 Correctness

In order to verify the correctness of our implementa-
tion, we assembled a minimal four disk array for both
RAID4C and RAIDSC and used the dd command to
write random data to the first 750 data block in a disk
in our array. For RAID4C this setup corrupts 750 data
blocks. For RAIDSC this setup corrupts 494 data blocks,
128 parity blocks and 128 checksum blocks. We then
read the first part of the array to induce corruption detec-
tion and correction. Finally we examine the dmesg out-
put to make sure that each block that had a mismatch
detected message had a corresponding mismatch
corrected message and counted the results.

For RAID4C we successfully detected and recovered all
the 750 corruptions. For RAID5C we detected and re-
covered the 494 corrupted data blocks and 128 corrupted
checksum blocks. The remaining 128 parity block cor-
ruptions are not detected because the data blocks they
protect were not corrupted, so they are not read in nor-
mal operations. In both cases we also verify that the data

Checksum Calculations Full Stripe (Sequential) | Single Block (Random)
Read N—-1 2

Write NP —
Read-Modify-Write — 6
Reconstruction Write — 5

Data Block Recovery — N-—1
Checksum Block Recovery — N

Table 1: A table depicting the number of checksum calculations required to perform various operations. N is meant to
represent the number of disks in the array.

Extra IOPS Full Stripe (Sequential) | Single Block (Random)
Read 1 1

Write 1B —
Read-Modify-Write — 2
Reconstruction Write — 14

Data Block Recovery — 1

Table 2: A table depicting the number of extra IO operations required for checksumming RAID to perform various operations

as compared to standard RAID. N is meant to represent the number of disks in the array.

RAID Level Multiple Corruptions (5 discs) - 100M Sequential Read
3500

3000

2500

2000

1500

1000

Average Time (msecs)

500 RAIDAC
o RAIDSC -

10000

10 100 1000

Corruptions

100000

Figure 2: We varied the number of corruptions in the
array to show its impact on sequential read performance
due to the extra recovery processes.

we were returned matches our expectations, which indi-
cates that our implementation is correct.

4.4 Effects of Increasing Corruptions

As the number of corruptions in an array increases we
expect that the performance of the array decreases as it
spends more time performing recovery operations. To
confirm this we injected various numbers of corruptions
to random locations of one disk and observe the time
taken to perform 100M sequential read and writes to ran-
dom locations within the array. The results are shown
in Figure 2| and Figure [3| As expected we can see that
sequential read performance degrades exponentially as

RAID Level Multiple Corruptions (5 discs) - 100M Sequential Write
4000

3500
3000 [
2500
2000
1500

1000

Average Time (msecs)

500 RAID4C - .
0 RAIDSC - —

10000

10 100 1000

Corruptions

100000

Figure 3: The number of corruptions in an array does
not effect full stripe sequential writes since the checksum
block never has to be consulted so no corruptions are de-
tected and no recovery processes are necessary.

the number of corruptions exponentially increases since
we are performing increasing numbers of recovery op-
erations. Sequential write performance however is un-
affected by the frequency of corruptions it encounters.
This makes sense since for full stripe writes, we can sim-
ply overwrite the checksum block with the new check-
sum information rather than perform any read operations
which would have induced a recovery.

4.5 Effects of Disk Counts

As noted in Table 2| our implementation incurs extra I/O
operations for some stripe operations. Therefore, we

RAID Level Disk Counts - 100M Sequential Read

1400
1200
g 1000
g
800
F
= 600
g
g 400
RAIDS
200 RAID5C - 1
0 RAI‘DSC Null N
5 6 7 8 9 10
Array Disks
Figure 4: We varied the number of virtual disks in our
test array to show that the cost of extra IO and checksum
calculations in amortized with larger stripes.
RAID Level Disk Counts - 100M Sequential Write
3000 -
RAID5
L RAID5C -
2500 T RAID5C Null -~
N
g 2000 [
\g ..
& 1500
[
on
= 1000
3]
>
<
500
0
5 6 7 8 9 10

Array Disks

Figure 5: We varied the number of virtual disks in our
test array to show that the cost of extra IO and checksum
calculations in amortized with larger stripes.

wanted to evaluate how increasing the stripe size in the
array affects the performance of checksumming RAID.
We expected that the cost of these extra operations for
sequential access patterns is amortized over larger stripe
sizes due to more checksum operations being serviced
from cache rather than disk. To do this we assembled
arrays of increasing disk numbers. For each array size
we evaluated sequential read and write performance of
standard RAID levels 4 and 5, compared with our check-
summing RAID levels 4C and 5C by reading and writing
100M of data 100 times. To distinguish the overhead in-
curred by checksum calculations from the extra I/O op-
erations to the checksum blocks, we also conducted a
series of experiments using a null checksum operation
which simply returned a constant value when calculating,
storing, and comparing checksums. For fair comparisons
the results, shown in Figure] and Figure [} of standard
RAID levels are shifted over one so that we are compar-

ing a similar number of data disks in the arrays. For leg-
ibility we have also excluded the RAID4 and RAID4C
comparisons from these graphs.

In general we can note that our basic expectations that in-
creased stripe size improves performance holds true. For
sequential reads we see a decrease of 1300 ms to 1100 ms
and writes decrease from 3000 ms to 2000 ms. We could
also see that the overhead of our checksum mechanism is
within S0However further analysis of these graphs holds
some confusing results.

For instance, the performance of RAIDS does not de-
crease much as the number of disks in the array in-
creases, though it should since there should be more
bandwidth available from the array in total. This seems
to indicate that we are hitting some caching or read
ahead level that is causing the results to bottleneck on
something else in the system besides 10. However, our
checksumming RAID levels should be hitting the same
plateau, but we see more variation in their results. We
therefore conclude that the difference we see is the result
of our extra read operations.

We also note that while the overall overhead of check-
summing RAID in both cases appears to be split between
50% waiting for the extra read operation to compute and
50% for the actual checksum calculation, the computa-
tion portion of this overhead appears to remain relatively
constant regardless of the number of disks in the array.
This doesn’t seem to make sense since for a 5 disk array
we have 32000 checksum operations to perform while a
10 disk array has some 42000. This would also seem
to indicate that our implementation is bottlenecked by
something else such as the number of memory operations
it performs.

Finally, the overall timings and overhead difference be-
tween reads and writes is substantial — over 100% in
the 5 disk case. This would seem to indicate significant
caching happening within the SAN.

4.6 Single Disk Tests

Since data integrity is also of value to home users who
cannot always afford a complex multi disk RAID system,
we also evaluated a checksumming RAID setup assem-
bled on a single physical disk split into 4 equal partitions.
Using the predictions in Table[Z] we can see from Figure[6]
closely follows this behavior. The standard RAIDS setup
has 3 data disks, thus a write results in a read-modify-
write operation: 4 I/Os to read in the old data, old par-
ity, and write out the new data and parity. Accordingly,
we see that the time taken to issue a random write to
the RAIDS is about 4 times that of the raw device. The
RAIDSC on the other hand only has two data disks, so

Single Disk RAID Levels - 4K Random Write
40 T

35
30
25
20
15
10
| -
0

RAW

Average Time (msecs)

RAID5
RAID Level

RAID5C

Figure 6: We constructed various RAID levels over a sin-
gle disk split into 4 equal sized partitions to show how our
results match the overhead models predicted in Tables[I]

and [g}

MD performs a reconstruction write instead: 5 I/Os to
read the old checksums, old data, and write the new data,
new parity, and new checksums. The results for this test
show that is about 5 times that of the raw device — 1 more
than the RAIDS layer, just as Table [2] predicted.

Though these results better match our predicted over-
heads, clearly this naive layout has some severe draw-
backs on a single disk. It causes the spindle to make long
seeks across the whole disk to read and write data in the
same stripe. A better approach to do this on a single disk
would be define a new RAIDC level that arranges stripes
contiguously on disk. We postpone further discussion of
this technique for future work.

5 Conclusions

We have added checksumming RAID levels to Linux’s
Software RAID driver to provide the user the capability
to detect and repair silent data corruptions. RAID4/5C
works by checksumming the data written to disk and ver-
ifying the checksum when reading data from disk.

Our experiments has shown that the checksums help to
validate data, find silent data corruptions and repair them,
though with some performance cost. The performance
overhead of adding checksum mechanism is within 50%-
100% compared to the stock RAID level in our naive im-
plementation, which we feel is acceptable under lots of
scenarios. Even so, we have identified a number of areas
for improvement in the previous sections of our paper
including asynchronous checksum calculations, contigu-
ous single disk layouts, and journal guided restoration.

Acknowledgments

Our thanks to Professor Remzi Arpaci-Dusseau for his
input and guidance in our efforts and to the many others
that put up with us during the process.

References
[1] J. Becker. Block-based error detec-
tion and correction for ocfs2. http:

//oss.oracle.com/osswiki/OCFS2/
DesignDocs/BlockErrorDetection

[2] T. Denchy, A. Arpaci-Dusseau, and R. Arpaci-
Dusseau. Journal-guided resynchronization for
software RAID. In Proceedings of the 4th confer-
ence on USENIX Conference on File and Storage
Technologies-Volume 4, page 7. USENIX Associa-
tion, 2005.

[3] A. Mathur, M. Cao, S. Bhattacharya, A. Dilger,
A. Tomas, and L. Vivier. The new ext4 filesystem:
current status and future plans. In Ottawa Linux
Symposium, 2007.

[4] B. Moore. Zfs - The Last Word In File systems,
2007.

[5] B. Panzer-Steindel.
Group, 2007.

Data Integrity, CERN IT

[6] D. Patterson, G. Gibson, and R. Katz. A case for
redundant arrays of inexpensive disks (RAID). In
Proceedings of the 1988 ACM SIGMOD interna-

tional conference on Management of data, pages
109-116. ACM, 1988.

[71 M. K. Peterson. Block/scsi data integrity support.
http://lwn.net/Articles/280023!

[8] M. K. Peterson. I/O Controller Data Integrity Ex-
tensions, 2009.

[9] V. Prabhakaran, L. Bairavasundaram, N. Agrawal,
H. Gunawi, A. Arpaci-Dusseau, and R. Arpaci-
Dusseau. IRON file systems. In Proceedings of
the twentieth ACM symposium on Operating sys-
tems principles, pages 206-220. ACM, 2005.

[10] Yupu Zhang, Abhishek Rajimwale, Andrea C.
Arpaci-Dusseau, Remzi H. Arpaci-Dusseau. End-
to-end Data Integrity for File Systems: A ZFS Case
Study. In To Appear in the Proceedings of the
8th Conference on File and Storage Technologies
(FAST ’10), San Jose, California, February 2010.

http://oss.oracle.com/osswiki/OCFS2/DesignDocs/BlockErrorDetection
http://oss.oracle.com/osswiki/OCFS2/DesignDocs/BlockErrorDetection
http://oss.oracle.com/osswiki/OCFS2/DesignDocs/BlockErrorDetection
http://lwn.net/Articles/280023

	Introduction
	Background
	The Problem
	RAID
	End to End Detection
	Filesystem Detection

	Implementation
	Checksumming RAID Layout
	Layout Analysis

	Computing the Checksum
	Typical Operation Processes
	Typical Write Process
	Typical Read Process
	Data Block Corruption Recovery
	Checksum Block Corruption Recovery

	Cache Policy
	Changes to Linux's Software RAID Driver
	Crash Recovery

	Evaluation
	Overheads
	Test Setup
	Correctness
	Effects of Increasing Corruptions
	Effects of Disk Counts
	Single Disk Tests

	Conclusions

