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The Problem

Disks Fail

• Disk failures are not stop-fail
• Bit rot (1/1014 bits according to ZFS paper)
• Misdirected writes
• Phantom writes
• IO subsystem failures

• Partial failures can cause the loss of subtrees of data, or
for files to become useless.

• Backups are expensive. Not a complete solution.
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Solutions?

Available Solutions?

• RAID
• Parity can recover from errors, but can’t detect them.
• i.e.: Doesn’t handle any partial failures.
• Expensive for home users.

• SCSI Data Integrity Extensions (DIF/DIX)
(extends sector size by 8 bytes for integrity data)

• Not widely available in consumer products.
• Can’t handle phantom writes or misdirected writes.

• FS Layer?
• Hard to do without full integration ...
• ZFS? Not available for Linux (ignoring FUSE port).
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Our Solution

Checksumming RAID

• Standard RAID provides parity to recover a single block
failure from a stripe.

• Extend RAID levels to include a checksum block in each
stripe to determine when to recover.

• Write checksums when writing a block.

• Read them back and verify them for a given data/parity
block upon read.

• If mismatch detected, issue a recovery from the remaining
good data/parity blocks.
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Integrity Analysis

• Checksums spread over multiple disks/blocks.

• Bit rot caught and repaired through checksum
verifications during read.

• Misdirected writes caught through checksum block
number and data block offsets.

• Phantom writes of data blocks caught through
checksums.

• Phantom writes of checksum blocks caught indirectly
through multiple checksum mismatches during rebuild.

• DIX/DIF still useful for detecting IO subsystem problems
at failure time.

Brian Kroth, Suli Yang Checksumming Software Raid



Intro
Design

Implementation
Results

Conclusions

Overview
Typical Processes
Caching

Outline

1 Intro
About the Authors
The Problem
Solutions?

2 Design
Our Solution
Analysis

3 Implementation
Overview
Typical Processes

Caching

4 Results
Test Setup
Correctness
Disk Count Performance
Single Disk Performance
Corruptions Performance

5 Conclusions
Issues
Questions?

Brian Kroth, Suli Yang Checksumming Software Raid



Intro
Design

Implementation
Results

Conclusions

Overview
Typical Processes
Caching

Implementation

Software

• Altered the Multi-Device (MD) Software RAID layer in
Linux 2.6.32.25 to make RAID4C and RAID5C.

• For calculating checksums we use the kernel’s built-in
CRC32 libraries. Fast, reliable, but some wasted space.

• All the parity and memory operations are done
asynchronously but checksum calculations are currently
synchronous.
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Typical Write

1 When writing to a data block, also calculate its checksum
and new parity.
Might need to read in the checksum block and possibly
some other blocks during this process (eg: RMW).

2 Then issue writes for the data block, parity block and the
checksum block.
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Typical Processes continued ...

Typical Read

1 When issuing a read to a data block, also issue read to its
corresponding checksum block.

2 Upon completion of reading the data block, wait for the
checksum block read to complete.

3 Calculate and verify the checksums of the checksum
block and the data block.
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Typical Processes continued ...

Data Block Recovery

1 Checksum mismatch detected (during a read).

2 Read all other blocks in that stripe.

3 Restore the corrupted from parity calculation.

Checksum Block Recovery

1 Checksum block corruption detected (during a read to a
checksum block).

2 Read all other blocks in that stripe.

3 Recalculate all the checksums of the blocks in that stripe
and restore checksum block content based on the
recalculation.
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Implementation continued ...

Cache Policy

• A fixed size stripe cache pool is used to speed up read.
So that if we read stuff from the same stripe later, the
checksum and parity block don’t need to be re-read from
disk.

• Partial writes are buffered for a while (amount of time
depend on memory pressure) in the hope that later write
requests would turn them into full stripe writes.
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Test Setup

Test Setup

• Debian VM with 2G RAM, 2CPUs, 1 system disk and 10
8G Virtual Disks

• ESX storage backed by a 14 disk 15K RAID50, which is
otherwise bored

• Single disk tests run on a Dell Optiplex 755 with 2GB
RAM, 3.0GHz Core2 Duo, and an extra 80GB Seagate.

• Compared original RAID 4/5 levels with our
checksumming RAID 4C/5C levels.
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Correctness

Correctness Test Description

1 Assembled a minimal 4 disk array for both RAID4C and
RAID5C.

2 Used dd to corrupt the first 750 pages of a device (eg:
sdb1) in the array.
For RAID4C it corrupted only data blocks.

For RAID5C it corrupted both data blocks and checksum blocks.

3 Read the first part of the array (eg: md0) to induce
checksum mismatch detection and correction.

4 Count the messages reported in dmesg.
[ 172.543364] raid5c: md0: checksum page checksum mismatch detected (sector 728 on sdb2).

[ 172.546539] raid5c: md0: checksum page checksum mismatch corrected (8 sectors at 728 on sdb2) .
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Correctness continued ...

Correctness Results

• RAID4C: We detected 750 corrupted data pages.

• RAID5C: We detected 494 corrupted data pages and 128
corrupted checksum pages.
The remaining 128 are the parity blocks that we won’t
have read in normal operation.

• Verified that the file we read back was properly corrected.
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Disk Count Performance

Disk Count Test Description

1 Assembled arrays of various numbers of disks using
software RAID levels 4, 5, 4C, 5C.

2 Ran two tests with RAID levels 4C and 5C with an entire
disk fully corrupted
(eg: dd if=/dev/urandom of=/dev/sdb1)

3 Performed 100 100MB sequential reads/writes on the
array.

4 Performed 50000 random 4K reads/writes on the array.

5 Averaged the results for each run into the following
graphs.
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Disk Count Conclusions

• Degraded arrays vary wildly and are much worse than
healthy ones, as expected.

• Read performance of non-degraded arrays converges as
the number of disks in the array increases.
The cost of checksums are amortized over increased
stripe size.

• Sequential read performance exhibits 50% overhead
compared to original RAID levels.

• Sequential write performance exhibits 100% overhead.
We think this is due to an extra read in our
implementation.
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Single Disk Performance

Single Disk Test Description

1 Split a single 80GB physical disk into 4 20G partitions
and assembled arrays out of them.

2 Ran tests on RAW disk, RAID5, and RAID5C.

3 Performed 100 100MB sequential reads/writes on the
array.

4 Performed 50000 random 4K reads/writes on the array.

5 Averaged the results for each run into the following
graphs.
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Single Disk Conclusions

• As expected, this naive approach to single disk RAID
results in excessive seeks which seriously degrades
performance.
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Corruptions Performance

Corruptions Test Description

1 Assembled a 5 disk array for both RAID4C and RAID5C.

2 Used dd to randomly corrupt increasing amounts of
sectors from a device (eg: sdb1) in the array.

3 Performed 100 100MB sequential reads/writes on the
array.

4 Performed 50000 random 4K reads/writes on the array.

5 Averaged the results for each run into the following
graphs.
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Corruptions Conclusions

• Sequential writes are largely unchanged due to the fact
that we can skip checksum verification entirely for full
stripe operations.

• In all other tests times predictably increase as the number
of corruptions increase since there’s a higher probability
of recovery work to do.
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Conclusions

• Corruptions in both data and checksum blocks are caught
and corrected.

• Performance overhead is within 50-100% in our naive
implementation.
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Conclusions continued ...

Future work

• Room for improvements
• Asynchronous checksum calculations.
• Skip checksum block reads during full stripe writes.
• More optimized checksum calculation (kernel loops over

array one byte at a time).
• More space efficient layout.
• Better single disk layout.
• Incomplete implementation support for growing,

reshaping, raid6, initialization, etc.
• Journal guided resync through LVM layers ...
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Conclusions continued ...

Crash Recovery

• Partial write crash recovery poses a problem.
Checksums/parity/data blocks may not be consistent.

• Really the only solution (short of COW) is to rebuild the
checksums/parity.

• We can reuse prior work on Journal Guided RAID
Resynchronization to have the journalled filesystem(s)
on top of the RAID to inform it which stripes should be
rebuilt.

• MD has also added support for an intent log which can
do the same thing, at worse performance.
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