
Intro
Design

Implementation
Results

Conclusions

Checksumming Software Raid

Brian Kroth, Suli Yang

2010-12-11

Brian Kroth, Suli Yang Checksumming Software Raid

Intro
Design

Implementation
Results

Conclusions

Outline

1 Intro
About the Authors
The Problem
Solutions?

2 Design
Our Solution
Analysis

3 Implementation
Overview
Typical Processes

Caching

4 Results
Test Setup
Correctness
Disk Count Performance
Single Disk Performance
Corruptions Performance

5 Conclusions
Issues
Questions?

Brian Kroth, Suli Yang Checksumming Software Raid

Intro
Design

Implementation
Results

Conclusions

About the Authors
The Problem
Solutions?

Outline

1 Intro
About the Authors
The Problem
Solutions?

2 Design
Our Solution
Analysis

3 Implementation
Overview
Typical Processes

Caching

4 Results
Test Setup
Correctness
Disk Count Performance
Single Disk Performance
Corruptions Performance

5 Conclusions
Issues
Questions?

Brian Kroth, Suli Yang Checksumming Software Raid

Intro
Design

Implementation
Results

Conclusions

About the Authors
The Problem
Solutions?

Who’s that?

Brian Kroth

• Graduated with a
Bachelors of Science in
Math and CS from
UW-Madison in 2007.

• Currently a Unix Systems
Administrator for College
of Engineering.

• Pursuing a Masters degree
in Computer Science from
UW-Madison.

Suli Yang

• Graduate student at
UW-Madison

• Working on Master’s
degree in Computer
Science and Physics

• Bachelors of Science in
Physics from Peking
University

Brian Kroth, Suli Yang Checksumming Software Raid

Intro
Design

Implementation
Results

Conclusions

About the Authors
The Problem
Solutions?

The Problem

Disks Fail

• Disk failures are not stop-fail
• Bit rot (1/1014 bits according to ZFS paper)
• Misdirected writes
• Phantom writes
• IO subsystem failures

• Partial failures can cause the loss of subtrees of data, or
for files to become useless.

• Backups are expensive. Not a complete solution.

Brian Kroth, Suli Yang Checksumming Software Raid

Intro
Design

Implementation
Results

Conclusions

About the Authors
The Problem
Solutions?

Solutions?

Available Solutions?

• RAID
• Parity can recover from errors, but can’t detect them.
• i.e.: Doesn’t handle any partial failures.
• Expensive for home users.

• SCSI Data Integrity Extensions (DIF/DIX)
(extends sector size by 8 bytes for integrity data)

• Not widely available in consumer products.
• Can’t handle phantom writes or misdirected writes.

• FS Layer?
• Hard to do without full integration ...
• ZFS? Not available for Linux (ignoring FUSE port).

Brian Kroth, Suli Yang Checksumming Software Raid

Intro
Design

Implementation
Results

Conclusions

Our Solution
Analysis

Outline

1 Intro
About the Authors
The Problem
Solutions?

2 Design
Our Solution
Analysis

3 Implementation
Overview
Typical Processes

Caching

4 Results
Test Setup
Correctness
Disk Count Performance
Single Disk Performance
Corruptions Performance

5 Conclusions
Issues
Questions?

Brian Kroth, Suli Yang Checksumming Software Raid

Intro
Design

Implementation
Results

Conclusions

Our Solution
Analysis

Our Solution

Checksumming RAID

• Standard RAID provides parity to recover a single block
failure from a stripe.

• Extend RAID levels to include a checksum block in each
stripe to determine when to recover.

• Write checksums when writing a block.

• Read them back and verify them for a given data/parity
block upon read.

• If mismatch detected, issue a recovery from the remaining
good data/parity blocks.

Brian Kroth, Suli Yang Checksumming Software Raid

Intro
Design

Implementation
Results

Conclusions

Our Solution
Analysis

Checksumming RAID Layout

Brian Kroth, Suli Yang Checksumming Software Raid

Intro
Design

Implementation
Results

Conclusions

Our Solution
Analysis

Design Analysis

Integrity Analysis

• Checksums spread over multiple disks/blocks.

• Bit rot caught and repaired through checksum
verifications during read.

• Misdirected writes caught through checksum block
number and data block offsets.

• Phantom writes of data blocks caught through
checksums.

• Phantom writes of checksum blocks caught indirectly
through multiple checksum mismatches during rebuild.

• DIX/DIF still useful for detecting IO subsystem problems
at failure time.

Brian Kroth, Suli Yang Checksumming Software Raid

Intro
Design

Implementation
Results

Conclusions

Overview
Typical Processes
Caching

Outline

1 Intro
About the Authors
The Problem
Solutions?

2 Design
Our Solution
Analysis

3 Implementation
Overview
Typical Processes

Caching

4 Results
Test Setup
Correctness
Disk Count Performance
Single Disk Performance
Corruptions Performance

5 Conclusions
Issues
Questions?

Brian Kroth, Suli Yang Checksumming Software Raid

Intro
Design

Implementation
Results

Conclusions

Overview
Typical Processes
Caching

Implementation

Software

• Altered the Multi-Device (MD) Software RAID layer in
Linux 2.6.32.25 to make RAID4C and RAID5C.

• For calculating checksums we use the kernel’s built-in
CRC32 libraries. Fast, reliable, but some wasted space.

• All the parity and memory operations are done
asynchronously but checksum calculations are currently
synchronous.

Brian Kroth, Suli Yang Checksumming Software Raid

Intro
Design

Implementation
Results

Conclusions

Overview
Typical Processes
Caching

Typical Processes

Typical Write

1 When writing to a data block, also calculate its checksum
and new parity.
Might need to read in the checksum block and possibly
some other blocks during this process (eg: RMW).

2 Then issue writes for the data block, parity block and the
checksum block.

Brian Kroth, Suli Yang Checksumming Software Raid

Intro
Design

Implementation
Results

Conclusions

Overview
Typical Processes
Caching

Typical Processes continued ...

Typical Read

1 When issuing a read to a data block, also issue read to its
corresponding checksum block.

2 Upon completion of reading the data block, wait for the
checksum block read to complete.

3 Calculate and verify the checksums of the checksum
block and the data block.

Brian Kroth, Suli Yang Checksumming Software Raid

Intro
Design

Implementation
Results

Conclusions

Overview
Typical Processes
Caching

Typical Processes continued ...

Data Block Recovery

1 Checksum mismatch detected (during a read).

2 Read all other blocks in that stripe.

3 Restore the corrupted from parity calculation.

Checksum Block Recovery

1 Checksum block corruption detected (during a read to a
checksum block).

2 Read all other blocks in that stripe.

3 Recalculate all the checksums of the blocks in that stripe
and restore checksum block content based on the
recalculation.

Brian Kroth, Suli Yang Checksumming Software Raid

Intro
Design

Implementation
Results

Conclusions

Overview
Typical Processes
Caching

Implementation continued ...

Cache Policy

• A fixed size stripe cache pool is used to speed up read.
So that if we read stuff from the same stripe later, the
checksum and parity block don’t need to be re-read from
disk.

• Partial writes are buffered for a while (amount of time
depend on memory pressure) in the hope that later write
requests would turn them into full stripe writes.

Brian Kroth, Suli Yang Checksumming Software Raid

Intro
Design

Implementation
Results

Conclusions

Test Setup
Correctness
Disk Count Performance
Single Disk Performance
Corruptions Performance

Outline

1 Intro
About the Authors
The Problem
Solutions?

2 Design
Our Solution
Analysis

3 Implementation
Overview
Typical Processes

Caching

4 Results
Test Setup
Correctness
Disk Count Performance
Single Disk Performance
Corruptions Performance

5 Conclusions
Issues
Questions?

Brian Kroth, Suli Yang Checksumming Software Raid

Intro
Design

Implementation
Results

Conclusions

Test Setup
Correctness
Disk Count Performance
Single Disk Performance
Corruptions Performance

Test Setup

Test Setup

• Debian VM with 2G RAM, 2CPUs, 1 system disk and 10
8G Virtual Disks

• ESX storage backed by a 14 disk 15K RAID50, which is
otherwise bored

• Single disk tests run on a Dell Optiplex 755 with 2GB
RAM, 3.0GHz Core2 Duo, and an extra 80GB Seagate.

• Compared original RAID 4/5 levels with our
checksumming RAID 4C/5C levels.

Brian Kroth, Suli Yang Checksumming Software Raid

Intro
Design

Implementation
Results

Conclusions

Test Setup
Correctness
Disk Count Performance
Single Disk Performance
Corruptions Performance

Correctness

Correctness Test Description

1 Assembled a minimal 4 disk array for both RAID4C and
RAID5C.

2 Used dd to corrupt the first 750 pages of a device (eg:
sdb1) in the array.
For RAID4C it corrupted only data blocks.

For RAID5C it corrupted both data blocks and checksum blocks.

3 Read the first part of the array (eg: md0) to induce
checksum mismatch detection and correction.

4 Count the messages reported in dmesg.
[172.543364] raid5c: md0: checksum page checksum mismatch detected (sector 728 on sdb2).

[172.546539] raid5c: md0: checksum page checksum mismatch corrected (8 sectors at 728 on sdb2) .
Brian Kroth, Suli Yang Checksumming Software Raid

Intro
Design

Implementation
Results

Conclusions

Test Setup
Correctness
Disk Count Performance
Single Disk Performance
Corruptions Performance

Correctness continued ...

Correctness Results

• RAID4C: We detected 750 corrupted data pages.

• RAID5C: We detected 494 corrupted data pages and 128
corrupted checksum pages.
The remaining 128 are the parity blocks that we won’t
have read in normal operation.

• Verified that the file we read back was properly corrected.

Brian Kroth, Suli Yang Checksumming Software Raid

Intro
Design

Implementation
Results

Conclusions

Test Setup
Correctness
Disk Count Performance
Single Disk Performance
Corruptions Performance

Disk Count Performance

Disk Count Test Description

1 Assembled arrays of various numbers of disks using
software RAID levels 4, 5, 4C, 5C.

2 Ran two tests with RAID levels 4C and 5C with an entire
disk fully corrupted
(eg: dd if=/dev/urandom of=/dev/sdb1)

3 Performed 100 100MB sequential reads/writes on the
array.

4 Performed 50000 random 4K reads/writes on the array.

5 Averaged the results for each run into the following
graphs.

Brian Kroth, Suli Yang Checksumming Software Raid

Intro
Design

Implementation
Results

Conclusions

Test Setup
Correctness
Disk Count Performance
Single Disk Performance
Corruptions Performance

Disk Count Random Read Performance

 0

 2

 4

 6

 8

 10

 12

 5 6 7 8 9 10

A
ve

ra
ge

 T
im

e
(m

se
cs

)

Array Disks

RAID Level Disk Counts - 4K Random Read

RAID4

RAID5

RAID4C

RAID5C

RAID4C Null

RAID5C Null

Brian Kroth, Suli Yang Checksumming Software Raid

Intro
Design

Implementation
Results

Conclusions

Test Setup
Correctness
Disk Count Performance
Single Disk Performance
Corruptions Performance

Disk Count Random Write Performance

 0

 5

 10

 15

 20

 25

 5 6 7 8 9 10

A
ve

ra
ge

 T
im

e
(m

se
cs

)

Array Disks

RAID Level Disk Counts - 4K Random Write

RAID4

RAID5

RAID4C

RAID5C

RAID4C Null

RAID5C Null

Brian Kroth, Suli Yang Checksumming Software Raid

Intro
Design

Implementation
Results

Conclusions

Test Setup
Correctness
Disk Count Performance
Single Disk Performance
Corruptions Performance

Disk Count Sequential Read Performance

 0

 200

 400

 600

 800

 1000

 1200

 1400

 5 6 7 8 9 10

A
ve

ra
ge

 T
im

e
(m

se
cs

)

Array Disks

RAID Level Disk Counts - 100M Sequential Read

RAID4

RAID5

RAID4C

RAID5C

RAID4C Null

RAID5C Null

Brian Kroth, Suli Yang Checksumming Software Raid

Intro
Design

Implementation
Results

Conclusions

Test Setup
Correctness
Disk Count Performance
Single Disk Performance
Corruptions Performance

Disk Count Sequential Write Performance

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 5 6 7 8 9 10

A
ve

ra
ge

 T
im

e
(m

se
cs

)

Array Disks

RAID Level Disk Counts - 100M Sequential Write

RAID4

RAID5

RAID4C

RAID5C

RAID4C Null

RAID5C Null

Brian Kroth, Suli Yang Checksumming Software Raid

Intro
Design

Implementation
Results

Conclusions

Test Setup
Correctness
Disk Count Performance
Single Disk Performance
Corruptions Performance

Disk Count Conclusions

Disk Count Conclusions

• Degraded arrays vary wildly and are much worse than
healthy ones, as expected.

• Read performance of non-degraded arrays converges as
the number of disks in the array increases.
The cost of checksums are amortized over increased
stripe size.

• Sequential read performance exhibits 50% overhead
compared to original RAID levels.

• Sequential write performance exhibits 100% overhead.
We think this is due to an extra read in our
implementation.

Brian Kroth, Suli Yang Checksumming Software Raid

Intro
Design

Implementation
Results

Conclusions

Test Setup
Correctness
Disk Count Performance
Single Disk Performance
Corruptions Performance

Single Disk Performance

Single Disk Test Description

1 Split a single 80GB physical disk into 4 20G partitions
and assembled arrays out of them.

2 Ran tests on RAW disk, RAID5, and RAID5C.

3 Performed 100 100MB sequential reads/writes on the
array.

4 Performed 50000 random 4K reads/writes on the array.

5 Averaged the results for each run into the following
graphs.

Brian Kroth, Suli Yang Checksumming Software Raid

Intro
Design

Implementation
Results

Conclusions

Test Setup
Correctness
Disk Count Performance
Single Disk Performance
Corruptions Performance

Single Disk Random Read Performance

 0

 2

 4

 6

 8

 10

 12

 14

 16

RAW RAID5 RAID5C

A
ve

ra
ge

 T
im

e
(m

se
cs

)

RAID Level

Single Disk RAID Levels - 4K Random Read

Brian Kroth, Suli Yang Checksumming Software Raid

Intro
Design

Implementation
Results

Conclusions

Test Setup
Correctness
Disk Count Performance
Single Disk Performance
Corruptions Performance

Single Disk Random Write Performance

 0

 5

 10

 15

 20

 25

 30

 35

 40

RAW RAID5 RAID5C

A
ve

ra
ge

 T
im

e
(m

se
cs

)

RAID Level

Single Disk RAID Levels - 4K Random Write

Brian Kroth, Suli Yang Checksumming Software Raid

Intro
Design

Implementation
Results

Conclusions

Test Setup
Correctness
Disk Count Performance
Single Disk Performance
Corruptions Performance

Single Disk Sequential Read Performance

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

RAW RAID5 RAID5C

A
ve

ra
ge

 T
im

e
(m

se
cs

)

RAID Level

Single Disk RAID Levels - 100M Sequential Read

Brian Kroth, Suli Yang Checksumming Software Raid

Intro
Design

Implementation
Results

Conclusions

Test Setup
Correctness
Disk Count Performance
Single Disk Performance
Corruptions Performance

Single Disk Sequential Write Performance

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

RAW RAID5 RAID5C

A
ve

ra
ge

 T
im

e
(m

se
cs

)

RAID Level

Single Disk RAID Levels - 100M Sequential Write

Brian Kroth, Suli Yang Checksumming Software Raid

Intro
Design

Implementation
Results

Conclusions

Test Setup
Correctness
Disk Count Performance
Single Disk Performance
Corruptions Performance

Single Disk Conclusions

Single Disk Conclusions

• As expected, this naive approach to single disk RAID
results in excessive seeks which seriously degrades
performance.

Brian Kroth, Suli Yang Checksumming Software Raid

Intro
Design

Implementation
Results

Conclusions

Test Setup
Correctness
Disk Count Performance
Single Disk Performance
Corruptions Performance

Corruptions Performance

Corruptions Test Description

1 Assembled a 5 disk array for both RAID4C and RAID5C.

2 Used dd to randomly corrupt increasing amounts of
sectors from a device (eg: sdb1) in the array.

3 Performed 100 100MB sequential reads/writes on the
array.

4 Performed 50000 random 4K reads/writes on the array.

5 Averaged the results for each run into the following
graphs.

Brian Kroth, Suli Yang Checksumming Software Raid

Intro
Design

Implementation
Results

Conclusions

Test Setup
Correctness
Disk Count Performance
Single Disk Performance
Corruptions Performance

Corruptions Random Read Performance

 0

 2

 4

 6

 8

 10

 12

 10 100 1000 10000 100000

A
ve

ra
ge

 T
im

e
(m

se
cs

)

Corruptions

RAID Level Multiple Corruptions (5 discs) - 4K Random Read

RAID4C

RAID5C

Brian Kroth, Suli Yang Checksumming Software Raid

Intro
Design

Implementation
Results

Conclusions

Test Setup
Correctness
Disk Count Performance
Single Disk Performance
Corruptions Performance

Corruptions Sequential Read Performance

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 10 100 1000 10000 100000

A
ve

ra
ge

 T
im

e
(m

se
cs

)

Corruptions

RAID Level Multiple Corruptions (5 discs) - 100M Sequential Read

RAID4C

RAID5C

Brian Kroth, Suli Yang Checksumming Software Raid

Intro
Design

Implementation
Results

Conclusions

Test Setup
Correctness
Disk Count Performance
Single Disk Performance
Corruptions Performance

Corruptions Sequential Write Performance

 0

 500

 1000

 1500

 2000

 2500

 3000

 10 100 1000 10000 100000

A
ve

ra
ge

 T
im

e
(m

se
cs

)

Corruptions

RAID Level Multiple Corruptions (5 discs) - 100M Sequential Write

RAID4C

RAID5C

Brian Kroth, Suli Yang Checksumming Software Raid

Intro
Design

Implementation
Results

Conclusions

Test Setup
Correctness
Disk Count Performance
Single Disk Performance
Corruptions Performance

Corruptions Conclusions

Corruptions Conclusions

• Sequential writes are largely unchanged due to the fact
that we can skip checksum verification entirely for full
stripe operations.

• In all other tests times predictably increase as the number
of corruptions increase since there’s a higher probability
of recovery work to do.

Brian Kroth, Suli Yang Checksumming Software Raid

Intro
Design

Implementation
Results

Conclusions

Issues
Questions?

Outline

1 Intro
About the Authors
The Problem
Solutions?

2 Design
Our Solution
Analysis

3 Implementation
Overview
Typical Processes

Caching

4 Results
Test Setup
Correctness
Disk Count Performance
Single Disk Performance
Corruptions Performance

5 Conclusions
Issues
Questions?

Brian Kroth, Suli Yang Checksumming Software Raid

Intro
Design

Implementation
Results

Conclusions

Issues
Questions?

Conclusions

Conclusions

• Corruptions in both data and checksum blocks are caught
and corrected.

• Performance overhead is within 50-100% in our naive
implementation.

Brian Kroth, Suli Yang Checksumming Software Raid

Intro
Design

Implementation
Results

Conclusions

Issues
Questions?

Conclusions continued ...

Future work

• Room for improvements
• Asynchronous checksum calculations.
• Skip checksum block reads during full stripe writes.
• More optimized checksum calculation (kernel loops over

array one byte at a time).
• More space efficient layout.
• Better single disk layout.
• Incomplete implementation support for growing,

reshaping, raid6, initialization, etc.
• Journal guided resync through LVM layers ...

Brian Kroth, Suli Yang Checksumming Software Raid

Intro
Design

Implementation
Results

Conclusions

Issues
Questions?

Conclusions continued ...

Crash Recovery

• Partial write crash recovery poses a problem.
Checksums/parity/data blocks may not be consistent.

• Really the only solution (short of COW) is to rebuild the
checksums/parity.

• We can reuse prior work on Journal Guided RAID
Resynchronization to have the journalled filesystem(s)
on top of the RAID to inform it which stripes should be
rebuilt.

• MD has also added support for an intent log which can
do the same thing, at worse performance.

Brian Kroth, Suli Yang Checksumming Software Raid

Intro
Design

Implementation
Results

Conclusions

Issues
Questions?

Questions?

Questions?

Brian Kroth, Suli Yang Checksumming Software Raid

	Intro
	About the Authors
	The Problem
	Solutions?

	Design
	Our Solution
	Analysis

	Implementation
	Overview
	Typical Processes
	Caching

	Results
	Test Setup
	Correctness
	Disk Count Performance
	Single Disk Performance
	Corruptions Performance

	Conclusions
	Issues
	Questions?

