
Intro
Results

Related Work
Conclusions

CS764 Project: Adventures in Moodle

Performance Analysis

Brian Kroth

2014-05-07

Brian Kroth CS764 Project: Adventures in Moodle Performance Analysis

Intro
Results

Related Work
Conclusions

Background
The Problems
The Solutions?
Test Plan

Background

Basic Moodle Description

• Moodle is an open source learning management system
(LMS) that’s in use as a UW-Madison campus wide
service.

• Basically a LAMP webapp.

• Hosted at College of Engineering using a form of 3-tier
web setup (part of a much larger general vhosting system).
http(s) proxy → backend application server(s) → DB/storage

Brian Kroth CS764 Project: Adventures in Moodle Performance Analysis

Intro
Results

Related Work
Conclusions

Background
The Problems
The Solutions?
Test Plan

Basic Moodle Screenshot

Brian Kroth CS764 Project: Adventures in Moodle Performance Analysis

Intro
Results

Related Work
Conclusions

Background
The Problems
The Solutions?
Test Plan

The Problems

Cache Data Problem Motivation
• Fairly CPU intensive, so needs to cache processed data.

• Not originally built with multiple backends in mind.

• Expects a shared cache for certain things (probably fixable), but
right now local cache has consistency issues.

• The default shared NFS cache is almost as slow as not caching!
Example logged in front page xhprof profile results:

Cache Mode Queries Query Time Total Time
“Local Global” Cache 42 31ms 219ms
NFS (flock cto) 43 32ms 504ms
CACHE DISABLE ALL 85 80ms 610ms

• Would like this cache to survive a restart to avoid the need to
rebuild it.
For some cached data (eg: filtered text) it can take 9.8 seconds to rebuild on demand, only 1.5 seconds
of which is spent in database or file IO calls (15%). 1.9 seconds spent just in preg match calls. That’s a
very long page load for a user!

Brian Kroth CS764 Project: Adventures in Moodle Performance Analysis

Intro
Results

Related Work
Conclusions

Background
The Problems
The Solutions?
Test Plan

The Problems

Session Data Problem Motivation

• Logged in user’s session data exceeds standard cookie size
(abused for cache as well), so must be stored in a shared
location on the servers.
eg: DB (shared NFS is too slow due to cache coherency overhead)

• Session data is very write intensive.
Read and written back on every page load.
Means waiting on a flush to disk before returning page content to the user.
1st among all tables for total write waits time (2nd and 3rd place wait 3.5x and
7.5x less respectively).

• But does not have very strict persistence requirements.
Would like it to survive a restart so that users who were logged in don’t get
logged out, but if we miss a few seconds of updates, it’s probably ok.

Brian Kroth CS764 Project: Adventures in Moodle Performance Analysis

Intro
Results

Related Work
Conclusions

Background
The Problems
The Solutions?
Test Plan

The Solutions?

Moodle has some recent (v2.6) support for alternative storage
for cache (eg: Memcached, MongoDB) and session data (eg: Memcached).

Qualitative Constraints

• Shared hosting environment.
Firewalls insufficient. What about authentication?

• How do things react when services restart?
Some degree of data persistence for certain data?

The Goals

Two basic issues we want to explore:

1 What is the “best” cache storage mechanism to use?

2 What is the “best” session storage mechanism to use?
We’ll use quantitative response time as our measure of “best” in this talk.

Brian Kroth CS764 Project: Adventures in Moodle Performance Analysis

Intro
Results

Related Work
Conclusions

Background
The Problems
The Solutions?
Test Plan

Test Setup (Part 1)

To test each alternative data storage system, we setup an
independent basic Moodle install (v2.6) to mimic the smaller
campus instance (innovate.moodle.wisc.edu):
• Separate MySQL 5.6 Master w/ 12G of RAM, 4 vCPUs,

4 virtual disks (OS, db data, InnoDB logs, binary logs).

• MySQL replication slave (for backups)

• Separate Apache 2.2.22 Proxy w/ 4 vCPUs and 4G of RAM.

• 2 PHP 5.4 Apache backends w/ 6G of RAM and 4 vCPUs.

• Created 3 Memcached servers w/ 2G and 2 vCPUs
(only 1 used for some tests)

• Created MongoDB 2.4 server with 4G RAM, 2 vCPUs,

3 virtual disks (OS, db data, journal)

In all cases, the active data fits in memory (minimal read IO).

Brian Kroth CS764 Project: Adventures in Moodle Performance Analysis

Intro
Results

Related Work
Conclusions

Background
The Problems
The Solutions?
Test Plan

Brief Technology Intro

Memcached

• By default an in memory Key Value store.

• Supposed to be able to support SASL authentication ...

• But no access control.
Any client can FLUSH the cache, so need many separate instances.

• There are implementations that can make it
semi-persistent.
eg: MySQL, MemcacheDB, Couchbase, etc.

Brian Kroth CS764 Project: Adventures in Moodle Performance Analysis

Intro
Results

Related Work
Conclusions

Background
The Problems
The Solutions?
Test Plan

Brief Technology Intro continued

MongoDB

• JSON Document Store.

• Persistent to disk.

• Depends on OS for in memory cache.

• Per-transaction “Write Concerns”.
Like having “Degrees of Durability” ...

• Supports authentication and access control across
separate DBs (collections).
Possibly nice for shared hosting environments.

Brian Kroth CS764 Project: Adventures in Moodle Performance Analysis

Intro
Results

Related Work
Conclusions

Background
The Problems
The Solutions?
Test Plan

Test Method
• Run a variation of moodle-performance-comparison at different

concurrency levels (XS = 1user, S = 30users, M = 100users) and
a target throughput of 20 requests/sec.
With higher levels of concurrency, Java encounters OOM issues.

• Mostly just a wrapper around JMeter.

• Parses Moodle debug output to report on things like # of DB
queries, session size, etc. in addition to request latency.

• It also assembles output for comparison via a PHP webapp and has
scripts meant to help reset DB state for accurate comparisons.

• Test involves simulating a user logging into the site, accessing a
course, viewing and posting to a forum, and logging out.

• There’s a warm up period prior to results collection.

• Test runs several iterations.

Brian Kroth CS764 Project: Adventures in Moodle Performance Analysis

Intro
Results

Related Work
Conclusions

Background
The Problems
The Solutions?
Test Plan

Outline

1 Intro
Background
The Problems

Cache Data
Session Data

The Solutions?
Test Plan

2 Results
Cache Data

Test Configurations
Results

Session Data
Problem Recap
Session Data Thoughts
Results

Systems Discoveries

3 Related Work

4 Conclusions

Brian Kroth CS764 Project: Adventures in Moodle Performance Analysis

Intro
Results

Related Work
Conclusions

Cache Data
Session Data
Systems Discoveries

Outline

1 Intro
Background
The Problems

Cache Data
Session Data

The Solutions?
Test Plan

2 Results
Cache Data

Test Configurations
Results

Session Data
Problem Recap
Session Data Thoughts
Results

Systems Discoveries

3 Related Work

4 Conclusions

Brian Kroth CS764 Project: Adventures in Moodle Performance Analysis

Intro
Results

Related Work
Conclusions

Cache Data
Session Data
Systems Discoveries

Outline

1 Intro
Background
The Problems

Cache Data
Session Data

The Solutions?
Test Plan

2 Results
Cache Data

Test Configurations
Results

Session Data
Problem Recap
Session Data Thoughts
Results

Systems Discoveries

3 Related Work

4 Conclusions

Brian Kroth CS764 Project: Adventures in Moodle Performance Analysis

Intro
Results

Related Work
Conclusions

Cache Data
Session Data
Systems Discoveries

Cache Data Test Environments

Tested several different configurations of

• NFS - flock cto, noflock cto, noflock nocto

• Moodle by default uses shared file locks on file based caches, but that
flushes the Linux NFS page cache!

• Close-to-open affects whether the client checks back with the server.
• Disabling CTO can lead to stale results returned (limited by NFS stat

cache TTL).

• Memcached - standard, cluster, compression, igbinary serializer, both

• igbinary is an alternative PHP data structure serializer.
• In simple tests on the Moodle cache files it results in 50% less space

(important for network storage) and 37% less CPU time in unserializing.

Also

• MongoDB - single node, with authentication

• Local FS
Brian Kroth CS764 Project: Adventures in Moodle Performance Analysis

Intro
Results

Related Work
Conclusions

Cache Data
Session Data
Systems Discoveries

Bugs Filed

Missing Memcached SASL Support

Debian Bug #724872: 2 line Makefile variable misspelling
prevents SASL authentication for Memcached, affects all
dependent libraries! (eg: PHP driver)

Seems to indicate that very few people actually use SASL authentication
with Memcached.

MySQL Memcached Broken

MySQL Bug #72435: assertion in MySQL InnoDB
Memcached encountered with Moodle and memccapable, but
not memcslap.
Attempted to compare MySQL Memcached and standard Memcached
performance using various “delayed commit” settings at a number of
different concurrency levels, but found very little difference.

Brian Kroth CS764 Project: Adventures in Moodle Performance Analysis

Intro
Results

Related Work
Conclusions

Cache Data
Session Data
Systems Discoveries

7513.8 mslocal

11591.28 msMemcached cluster

9642.76 msMemcached cluster compression

11220.72 msMemcached cluster igbinary

9023.211 msMemcached cluster igbinary compression

11458.11 msMemcached singleton

8276.56 msMemcached singleton igbinary compression

9956.57 msMongoDB (noverbose)

8615.17 msMongoDB (noverbose) igbinary

21409.98 msNFS flock cto (default)

14126.98 msNFS noflock cto

7872.46 msNFS noflock nocto

5s 10s 15s 20s

Cache Stores - Average Total User Test Latency (ms) - M Course

Brian Kroth CS764 Project: Adventures in Moodle Performance Analysis

Intro
Results

Related Work
Conclusions

Cache Data
Session Data
Systems Discoveries

Results comments

• Some items left off to keep graph semi-legible.

• Smaller concurrency sizes have similar patterns.

• Memcached singleton variations shows similar patterns to
Memcached cluster variations.

Brian Kroth CS764 Project: Adventures in Moodle Performance Analysis

Intro
Results

Related Work
Conclusions

Cache Data
Session Data
Systems Discoveries

Cache Data Observations

• P90 values are much higher than averages indicating there’s still
significant variability we haven’t found/fixed.

• Local FS cache and NFS noflock nocto cache request latency
averages are nearly identical (< 5% difference) due to very little
network accesses.

• NFS cto noflock still requires checking in with the NFS server,
which increases latency by 79%.
Only partial (53%) savings in just not flushing local page cache
(noflock).

• Using igbinary with NFS noflock nocto is actually worse! CPU
overhead no longer worth it when there’s no network in the way.

Brian Kroth CS764 Project: Adventures in Moodle Performance Analysis

Intro
Results

Related Work
Conclusions

Cache Data
Session Data
Systems Discoveries

Cache Data Observations continued

• Disable verbose mode for MongoDB! Resulted in increase in syslog
traffic (47%) and slowed down responses (23%).

• MongoDB (noverbose) had nearly the same request latency
averages (< 1% difference) as Memcached w/ compression.

• Memcached (cluster or singleton) with igbinary reduces latency
slightly due to decreased network at the cost of higher CPU
overhead.

• Memcached (cluster or singleton) shows greater latency reduction
(due to network reduection) for compression.

• Memcached using both decreased request latency averages by
roughly 20% due to decreased network usage (roughly 50%).

• Memcached cluster slightly worse than singleton, perhaps due to
extra network connections.

Brian Kroth CS764 Project: Adventures in Moodle Performance Analysis

Intro
Results

Related Work
Conclusions

Cache Data
Session Data
Systems Discoveries

Possible Improvements

• MongoDB (noverbose) used the same network traffic as
standard Memcached.

• No network compression for MongoDB. Just BSON
encoding.

• Tried to have it use igbinary, but our PHP extension
wouldn’t support non-UTF-8 strings.

• FIXED: Results in performance somewhere in between
singleton Memcached and cluster Memcached with data
persistence!

Brian Kroth CS764 Project: Adventures in Moodle Performance Analysis

Intro
Results

Related Work
Conclusions

Cache Data
Session Data
Systems Discoveries

Outline

1 Intro
Background
The Problems

Cache Data
Session Data

The Solutions?
Test Plan

2 Results
Cache Data

Test Configurations
Results

Session Data
Problem Recap
Session Data Thoughts
Results

Systems Discoveries

3 Related Work

4 Conclusions

Brian Kroth CS764 Project: Adventures in Moodle Performance Analysis

Intro
Results

Related Work
Conclusions

Cache Data
Session Data
Systems Discoveries

Session Data Problem Recap

• Logged in user session data needs to be stored in a shared
location (eg: DB).

• Lots of activity. Read and written on every page load.

• Doesn’t necessarily need strict persistence requirements.
We could lose a few seconds of updates and it’d probably
be okay.

Brian Kroth CS764 Project: Adventures in Moodle Performance Analysis

Intro
Results

Related Work
Conclusions

Cache Data
Session Data
Systems Discoveries

Session Writes Problem

For tables that are accessed frequently, mdl sessions table is:
(per performance schema.table io waits summary by table analysis)

• 1st among all tables for total write waits time (2nd and 3rd place wait 3.5x and
7.5x less respectively).

• 11th for average write waits times (not that slow on average).

• 4th for total read waits time.

• 11th for average read wait times (reads are generally fairly quick, though don’t
get to make use of query cache due to writes invalidating it).

• 4th for total overall waits time.
• 2nd for average overall wait times.

• Aside: the mdl cache text table, which is handled outside of the regular MUC caching systems described

earlier, is another top contender that doesn’t require strict persistence.

Brian Kroth CS764 Project: Adventures in Moodle Performance Analysis

Intro
Results

Related Work
Conclusions

Cache Data
Session Data
Systems Discoveries

Session Writes Problem continued

• Databases are replicated for backup purposes.

• Two aspects to writes in a MySQL database: InnoDB logs, Binary (replication)
logs.

• Both flushed at commit for consistency.

• Server wide, not per transaction, setting (binlog sync=1,
innodb flush log at trx commit=1).

• In one sample window mdl session table data made up 46% of all binary log
data at and 27% of all binary log events (per mysqlbinlog analysis).

• 55% of all time spent waiting for a production Moodle instance using a DB as
the session data store are for InnoDB logs and binary logs (per
performance schema analysis).

• So, would expect an improvement of at least 15-25% by diverting that activity
somewhere that didn’t have to wait on a disk flush immediately. Perhaps more
simply due to reduced resource contention.

• Aside: the mdl cache text table makes up 45% of all binlog events, but only 1% of the binlog data. It

takes second place for write waits.

Brian Kroth CS764 Project: Adventures in Moodle Performance Analysis

Intro
Results

Related Work
Conclusions

Cache Data
Session Data
Systems Discoveries

Session Data Thoughts

Session Data Thoughts

• Idea: Write back the session in the background.
(ie: don’t block page response)

Already being done?
(PHP session write() handler is called after output stream is closed)

Problem: Hides errors? Yes.

• Since session data is important to user experience, would
like the data to at least be semi-persistent.

Brian Kroth CS764 Project: Adventures in Moodle Performance Analysis

Intro
Results

Related Work
Conclusions

Cache Data
Session Data
Systems Discoveries

General Thoughts

Degrees of Durability

• It is convenient for developers to have a single place to
manage data for an application (eg: SQL DB).

• But not all data has the same requirements.

• Need a way to declare those different requirements to the
system.

Brian Kroth CS764 Project: Adventures in Moodle Performance Analysis

Intro
Results

Related Work
Conclusions

Cache Data
Session Data
Systems Discoveries

Degrees of Durability Proposal

• SET TRANSACTION DURABILITY =
[STRICT|BACKGROUND|LAZY]

• Still use WAL protocol.

• Basically don’t wait on or even skip WAL log flush at COMMIT.

• If a background thread or another transaction forces log (eg: due to
COMMIT), then our transaction will have been made durable.

• Allows larger Group Commit.

Potential Problems

• What about distributed transactions or replication?
eg: slave reads from in memory replication log instead of what’s actually on disk and then master crashes

• Do we need a “prepared, but not committed” state?

• MSSQL 2014 has already implemented this feature!
COMMIT TRANSACTION WITH DELAYED DURABILITY=ON

Brian Kroth CS764 Project: Adventures in Moodle Performance Analysis

Intro
Results

Related Work
Conclusions

Cache Data
Session Data
Systems Discoveries

Session Data Tests

Session Data Drivers Explored

• Memcached (for comparison, but has access control and persistence issues)

• NFS (for comparison) with flock cto (since it needs consistency)

• Wrote a MongoDB session driver (optionally with reduced Write Concern

level)

• Wrote a separate-db session driver (extra network connection)

• Used with separate MySQL server with reduced durability levels, no
replication.

• Same MySQL server, but with replication disabled for the
mdl sessions table transactions (potential slave sync issues)
Not practical since SET sql log bin=1 requires SUPER privileges to the DB

server.

Brian Kroth CS764 Project: Adventures in Moodle Performance Analysis

Intro
Results

Related Work
Conclusions

Cache Data
Session Data
Systems Discoveries

Session Data Driver Comments

File and NoSQL Locking

• We use NFSv3 in this case, which has explicit locking protocol.

• But no way in PHP file session handler to specify a timeout.

• NFSv4 uses polling with exponential backoff. Slow!

• Memcached PHP session driver also uses polling to “lock” a key via
CAS.

• MongoDB session driver wrote uses polling of separate lock
document which depends on atomic insert operation.

• Requires using safe=true, w=1 writes for those operations, else
no response code to check!

• For all of these, lock “canary” may remain in case of client failure.

• Need to periodically remove old locks.

• May lead to bad client behavior.

Brian Kroth CS764 Project: Adventures in Moodle Performance Analysis

Intro
Results

Related Work
Conclusions

Cache Data
Session Data
Systems Discoveries

Session Data Driver Comments continued

MySQL Locking

• For MySQL, named locks are released automatically at
client connection close (or change user in the case of
persistent connections).

• Natively supports timeout.

• Can be made to support early backout when the number
of waiters is too high.

• Helps to prevent DoS problems when redirect loop causes
too many PHP processes to wait on the same MySQL
session lock.

Brian Kroth CS764 Project: Adventures in Moodle Performance Analysis

Intro
Results

Related Work
Conclusions

Cache Data
Session Data
Systems Discoveries

7911.18 msdb

8161 msdb-igbinary

6518.83 msmemcached

7343.17 msmemcached-igbinary

7832.19 msmongodb-safe

7056.31 msmongodb-igbinary-safe

6477.75 msmongodb-notsafe

6186.76 msmongodb-igbinary-notsafe

6088.4 msnfs-flock-cto

7434.33 msnfs-flock-cto igbinary

6754.18 msseparate-db compression no-persistent

6430.95 msseparate-db igbinary no-compression no-persistent

5s 6s 7s 8s 9s

Session Stores - Average Total User Test Latency (ms) - M Course

Brian Kroth CS764 Project: Adventures in Moodle Performance Analysis

Intro
Results

Related Work
Conclusions

Cache Data
Session Data
Systems Discoveries

Session Data Comments

• Default db tests include network compression.

• Memcached PHP driver also does dynamic compression
(above a threshold).

• For session data, igbinary + compression is too much
CPU overhead for little network traffic reduction gains.

• Smaller concurrency sizes have similar patterns.

Brian Kroth CS764 Project: Adventures in Moodle Performance Analysis

Intro
Results

Related Work
Conclusions

Cache Data
Session Data
Systems Discoveries

Session Data Observations

• For all “db”-like systems, relaxing durability (eg: safe → notsafe,
db → separate-db) reduces latency.

• Similarly, using no-durability (Memcached) also improves
performance, though not much better.

• Cost becomes more in the network and CPU.

• Surprisingly, NFS (v3), even with flock and cto, performs very well.

• Guessing due to proxy matching clients to the same backend so
nodes don’t fight over locks.

• MongoDB does no network compression, so it benefits from
igbinary serialization improvements.

• MySQL 5.6 ROW FORMAT=DYNAMIC may have better storage of
igbinary BLOBs (1073bytes on average) than standard PHP
serialized TEXT (1432bytes on average) (hard to tell) .

Brian Kroth CS764 Project: Adventures in Moodle Performance Analysis

Intro
Results

Related Work
Conclusions

Cache Data
Session Data
Systems Discoveries

Outline

1 Intro
Background
The Problems

Cache Data
Session Data

The Solutions?
Test Plan

2 Results
Cache Data

Test Configurations
Results

Session Data
Problem Recap
Session Data Thoughts
Results

Systems Discoveries

3 Related Work

4 Conclusions

Brian Kroth CS764 Project: Adventures in Moodle Performance Analysis

Intro
Results

Related Work
Conclusions

Cache Data
Session Data
Systems Discoveries

Systems Discoveries

Troubles with reliable measurements

• Variability wreaks havoc on measurements.

• Shows up in a number of different and interesting ways.
Network, Power Management, Load Balancing, Cache Management, HW
exposure, etc.

Next, a brief systems overview.

Brian Kroth CS764 Project: Adventures in Moodle Performance Analysis

Intro
Results

Related Work
Conclusions

Cache Data
Session Data
Systems Discoveries

Apache Proxy

EqualLogic

iSCSI SAN

VMware cluster

two buildings

mixed hardware

Debian VMs DB master DB slave

PHP Servers NFS Server

Separate storage/VM networks

DoIT Networks

same vlan

different building

crosses router

Brian Kroth CS764 Project: Adventures in Moodle Performance Analysis

Intro
Results

Related Work
Conclusions

Cache Data
Session Data
Systems Discoveries

Brian Kroth CS764 Project: Adventures in Moodle Performance Analysis

Intro
Results

Related Work
Conclusions

Cache Data
Session Data
Systems Discoveries

Systems Improvement Lessons

• Crossing a router (a shared resource) for same vlan (across

buildings) traffic makes network much more unpredictable.
Roughly 40ms drop in variability when we move all VMs to two hosts in the
same room.

• Dynamic migration to balance VM load during load
testing of typically idle machines makes things
unpredictable. Disable it or segregate systems for testing.

• Disable power management, or at least place it in OS
control (it has more insight into upcoming workload).
Resulted in roughly 50ms drop in variability and average latency.

Response times for a simple (37bytes) static HTML (no PHP) page request over SSL
at different BIOS power modes:

PM Mode Avg Watts Min Latency Max Latency Avg Latency
BIOS managed 185W 140ms 220ms 162ms
No throttling 232W 90ms 120ms 99ms
OS Managed 190W 99ms 132ms 109ms

Brian Kroth CS764 Project: Adventures in Moodle Performance Analysis

Intro
Results

Related Work
Conclusions

Cache Data
Session Data
Systems Discoveries

Systems Improvement Lessons continued

• For iSCSI SANs use MPIO instead of LACP. It allows
multiple TCP endpoints (eg: different arrays), so you get
higher cache, buffer, and spindle utilization.
Resulted in an average of 77.6% improvement in IOPS iozone results and
54.8% improvement in throughput iozone results.

• Need to expose the extra I/O paths to VMs by placing
disks on separate vSCSI controllers.
Doing so cut the combined per operation average read latency from 15.1ms to
4.4ms to on MySQL servers log volumes.

• Even on local networks it often makes sense to trade CPU
for decreased network traffic.
Enabling MySQL connection compression reduces page latency by 27.4%.

Brian Kroth CS764 Project: Adventures in Moodle Performance Analysis

Intro
Results

Related Work
Conclusions

Cache Data
Session Data
Systems Discoveries

Systems Improvement Lessons continued

• Need to expose underlying hardware capabilities through
VM layer (eg: VMware EVC Mode).
Exposing the AES-NI instruction and using a recent version of OpenSSL resulted
in over 5x faster SSL operations as reported by openssl speed.

• Increase SSLSessionCacheTimeout to allow greater hit
rate on reconnecting (not KeepAlive) clients in order
avoid SSL Renegotiation overhead (30− 80ms).

• Increase TTL on mdl cache text data in order to avoid
semi-random and very lengthy (6− 10 s) cache regen
events.
Alternatively, fix the Moodle code to use deterministic cache invalidation
mechanism. See Also: MDL-43524

Brian Kroth CS764 Project: Adventures in Moodle Performance Analysis

Intro
Results

Related Work
Conclusions

Outline

1 Intro
Background
The Problems

Cache Data
Session Data

The Solutions?
Test Plan

2 Results
Cache Data

Test Configurations
Results

Session Data
Problem Recap
Session Data Thoughts
Results

Systems Discoveries

3 Related Work

4 Conclusions

Brian Kroth CS764 Project: Adventures in Moodle Performance Analysis

Intro
Results

Related Work
Conclusions

Related Work

Related Work
• Not much in the way of serious Moodle performance analysis available.

• J. Coelho and V. Rocio. A study on moodles performance. 2008.
Looked at MySQL vs. PostgreSQL and Windows vs. Linux for a much earlier
version of Moodle (1.9)

• K. A. Bakar, M. H. M. Shaharill, and M. Ahmed. Performance evaluation of a
clustered memcache. 2010.
General analysis of the impact of clustered memcached on a typical webapp to
alleviate DB load. Also shows an increase in overhead when using a cluster. No
consideration of persistence or cold cache or failure analysis. Also, our DB load
for reads typically isn’t that high.

• Also little on MongoDB when used for a cache.

• Lots of other ways to load test.
eg: ab, tsung, httperf, faban, etc.

• But different from benchmarks, which don’t necessarily represent your
application. Some possibly applicable ones: TCP-W, TCSB, NoBench, etc.

• Lots of others left off ...

Brian Kroth CS764 Project: Adventures in Moodle Performance Analysis

Intro
Results

Related Work
Conclusions

Outline

1 Intro
Background
The Problems

Cache Data
Session Data

The Solutions?
Test Plan

2 Results
Cache Data

Test Configurations
Results

Session Data
Problem Recap
Session Data Thoughts
Results

Systems Discoveries

3 Related Work

4 Conclusions

Brian Kroth CS764 Project: Adventures in Moodle Performance Analysis

Intro
Results

Related Work
Conclusions

Conclusions

Summary

• Investigated different cache and session configurations for Moodle.

• And several sources of variability.

Conclusions
• Hardware and network organization details matter, even in a virtual

environment.

• As expected, network delay seems to be biggest source of
performance differences.

• Compression and encoding really matter here.

• Different data has different needs. Informing the system about that
probably useful.

Brian Kroth CS764 Project: Adventures in Moodle Performance Analysis

Intro
Results

Related Work
Conclusions

Questions?

Questions?

Brian Kroth CS764 Project: Adventures in Moodle Performance Analysis

	Intro
	Background
	The Problems
	The Solutions?
	Test Plan

	Results
	Cache Data
	Session Data
	Systems Discoveries

	Related Work
	Conclusions

