CS764 Project Proposal

Brian Kroth
2014-02-06

1 Problem Description

The Computer Aided Engineering center at the Col-
lege of Engineering of UW-Madison manages a plat-
form of web, database, storage, and other related
servers for a campus wide Moodle service (a learn-
ing management system). Due to the large scope
and supported user base of this web application it
encounters some interesting systems and database re-
lated problems. The main focus of this project is to
evaluate and analyze some of the different database
and related (eg: NoSQL) configurations that Moodle
currently supports (or can be made to) with respect
to their impact on scalability, reliability, security, and
performance.

2 Background

The current Moodle service server platform is based
off of a distributed LAMP stack, and is a subtype of
a larger general purpose website server platform that
currently handles over 800 vhosts of various flavors
(eg: HTML only, PHP5, prepackaged Wordpress,
etc.). The Moodle portion of the service has a pair of
frontend Apache servers running mod_proxy_balance
(and optionally mod_disk_cache to save certain re-
sponses) to distribute client requests to a pool of
backend Apache mod_php5 application servers that
are specifically tuned for Moodle vhosts. ! Each
backend server has a local copy of the Moodle PHP
code base, synchronized with an authoritative NFS
server store using a homegrown 2 phase commit
rsync based protocol, in order to avoid the overhead
of stat calls for code that doesn’t often change dur-
ing runtime as well as provide relatively atomic code
updates between all of the backends when code does
need to change so that clients don’t receive different
and inconsistent responses. 2

LAt the time of this writing the main campus Moodle site,
courses.moodle.wisc.edu, has 5 backend VMs assigned to it,
each with 4 vCPUs and 6G of RAM, though that number may
change throughout the year according to load demands.

2The stat calls are a function of the PHP opcode cache
subsystem (APC) and can be disabled at the price of poten-

Dynamic user data such as PDF files and quiz ques-
tion banks are split between an NFS store and a
MySQL database server. The MySQL server has bi-
nary logging enabled in order to asynchronously repli-
cate changes to a slave server so that consistent back-
ups can be taken of the database without locking all
tables or interrupting service (mixed student and in-
structor usage means that the service does not follow
a typical diurnal pattern). No reads are currently
directed at the slave database server.

2.1 Session Data

To provide an interactive user interface, and over-
come limitations in browser cookie size, the Moodle
code currently stores per-user session data as a seri-
alized data structure, one row per active session, in a
database table (mdl_sessions).

It is valuable for this data to survive a system restart
so that users in the middle of a task (eg: a quiz essay
question) need not start over from scratch, however
the consistency requirements on it are not as great as
other parts of the database. For example, the session
data need not even be backed up, let alone replicated.

Since MySQL binary logging cannot currently be dis-
abled for a single table 2, during periods of high activ-
ity, the amount of churn on the mdl_sessions alone
can result in upwards of 5x as much binary logging
traffic as there is total database data.

Additionally, for educational research purposes, all
user activities such as a page view or button click are
logged to another table (mdl_-log), which can also
generate a large amount of database traffic.

To make sure that the serialized session data remains
consistent, each Moodle page load (excepting certain
mostly static theme resources like images and CSS)
requests a named lock on the row object that isn’t

tially inconsistent responses due to lack of awareness of code
base changes, so it is therefore usually not done. Additionally,
once the code files are local, the stat calls tend to hit the OS
inode cache, which has a much lower overhead when compared
with an NF'S call.

3http://bugs.mysql.com /bug.php?id=2917



released until just before the page is returned to the
user. This has the unfortunate effect of serializing
a single user’s requests and potentially tying up a
large number of database resources in the process,
especially in the case of errant client browser behavior
(eg: redirect loop). This also means that every page
load involves at least two database writes.

2.2 Cache Data

Like many web applications 4, Moodle makes heavy
use of caching to attempt to improve performance.
By default, and as it is currently configured, it caches
minified JavaScript, unified CSS, localized strings,
TEX rendered equation images, and more in a file
system hierarchy local to the given backend server. It
attempts to make sure that files (often identified by
a hash) that are missing or look out of date are re-
generated as necessary, so that inconsistencies do not
arise. However, as Moodle is not necessarily built
with multiple backends servers in mind, inconsisten-
cies and program errors ® do still occur.

Moodle also does some in database cache material-
ization.

Note that in both cases, the cache does not re-
quire persistence as it can be rebuilt from its original
sources as necessary.

3 Project Goals

3.1 Session Data

In addition to the main database session store
provider described above, the Moodle code base now
also has support for Memcached and MongoDB as
session data targets. Additionally, in the past we
have explored other options such as using a sepa-
rate MySQL database that did not have binary log-
ging enabled as the target for the mdl_sessions data,
though our initial implementation suffered from poor
integration with the standard database driver.

In this project we would like to explore all three of
these options as possible alternatives to our current
configuration.

Because we operate in a shared environment, in such
an evaluation it is important for us to understand the
reliability and security offered by each system as well
as the performance and scalability.

4Indeed most things in computer science.
5This one occurred just recently,
https://tracker.moodle.org/browse/MDL-40569

for instance:

Though the former will likely be a qualitative anal-
ysis, we can aim for a more quantitative analysis in
the latter two by measuring the response times ¢ of
requests as we vary the number of active clients in
our tests.

3.2 Cache Data

In addition to the per-backend file system based cache
system described above, the Moodle code base now
also has support for Memcached, MongoDB, and NFS
as cache targets.

While at first glance a local file system based cache
would appear to have far less overhead than any of
the network based cache systems, this hypothesis de-
serves testing.

Furthermore, a shared cache should not suffer the
same inconsistency problems that multiple ”separate
but equal” caches do.

4 Test Methods

To test each of these alternative configurations we
propose to

1. Implement a memcached cluster. There are
questions of sizing and authentication here, to
name a few options, that we will need to explore.

2. Implement a MongoDB database. There are
questions of write sync policy, master-slave repli-
cation, and authentication here, to name a few
option, that we will need to explore.

3. Create a test environment with 1000 test ac-
counts and at least one course and quiz.

4. Construct a Selenium 7 test suite to simulate a
user taking the quiz.

5. Conduct test runs of 50, 100, 250, 500, and 1000
simultaneous quiz attempts from our roughly 100
Linux lab machines.

6. Measure the response time for each page request.

We intend to report our results in terms of 95 per-
centiles.

As this test involves multiple pages, many database
writes, cache and session interactions, and varying
levels of concurrency, we think it is a reasonably char-
acteristic representation of our workload.

Seg: 95 percentile
"http://docs.seleniumhq.org/



5 Related and Future Work

In addition to MySQL, Moodle also supports Post-
greSQL as a primary database. It is possible that
it offers different performance characteristics than
MySQL which may worth be exploring at some point.

The NoBench [1] microbenchmark provides a means
for directly measuring specific query types for a given
NoSQL system. However, it currently lacks the abil-
ity to measure concurrency. Furthermore, as we do
not currently know the exact workload types that
Moodle may impart on each of these candidate sys-
tems, NoBench results would not offer us very much
insight, though we could consider taking traces of
some of our tests in order to help understand that
relationship better.

There isn’t a great wealth of Moodle application spe-
cific performance analyses that were initially able to
find, so further research will also be required.

References

[1] C. Chasseur, Y. Li, and J. M. Patel. Enabling
json document stores in relational systems.



