
CS764 Project Update

Brian Kroth

2014-03-15

1 Problem Description

The Computer Aided Engineering center at the Col-
lege of Engineering of UW-Madison manages a plat-
form of web, database, storage, and other related
servers for a campus wide Moodle service (a learn-
ing management system). Due to the large scope and
supported user base of this web application it encoun-
ters some interesting systems and database related
problems. The main focus of this project is to eval-
uate and analyze some of the different database and
related (eg: NoSQL) configurations for user session
and application cache data that Moodle currently
supports (or can be made to) with respect to their
impact on scalability, reliability, security, and perfor-
mance.

2 Background

The current Moodle service server platform is based
off of a distributed LAMP stack, and is a subtype
of a larger general purpose website server platform
that currently handles over 800 vhosts of various fla-
vors (eg: HTML only, PHP5, prepackaged Word-
press, etc.). [31] has more details on the general sys-
tem. It largely resembles the architecture of a scal-
able MOOC as described in [42], except that it is
currently all homegrown and running locally rather
than using any cloud services.

The Moodle portion of the service currently consists
of two production vhosts as well as a number of devel-
opment and testing vhosts and has a pair of frontend
Apache servers running mod proxy balance (and op-
tionally mod disk cache to save certain responses)
to distribute client requests to a pool of backend
Apache mod php5 application servers that are specifi-
cally tuned for Moodle vhosts. 1 Each backend server

1At the time of this writing the main campus Moodle site,
courses.moodle.wisc.edu, has 5 backend VMs assigned to it,
each with 4 vCPUs and 6G of RAM, though that number may
change throughout the year according to load demands in a
manner originally developed in [30] that resembles that of [28],
whereas the other production site, innovate.moodle.wisc.edu,

has a local copy of the Moodle PHP code base, syn-
chronized with an authoritative NFS server store us-
ing a homegrown 2 phase commit rsync based pro-
tocol, in order to avoid the overhead of stat calls for
code that doesn’t often change during runtime as well
as provide relatively atomic code updates between all
of the backends when code does need to change so
that clients don’t receive different and inconsistent
responses. 2

For each site, dynamic user data such as PDF docu-
ments and quiz question banks are split between an
NFS store and a MySQL 5.6.15 database server, re-
spectively. There is a separate database server VM
for each of two production sites, as well as a third
for the development sites. 3 The MySQL servers
each have binary logging enabled in order to asyn-
chronously replicate changes to their own slave server
so that consistent application level backups can be
taken of the database without locking all tables or
interrupting service. 4 No reads are currently di-
rected at the slave database server. Data is stored in
InnoDB storage format tables for ACID compliance.

2.1 Session Data

To provide an interactive user interface, and over-
come limitations in browser cookie size, the Moodle
code currently stores per-user session data as a seri-

has 2 backend VMs assigned to it. The backend assignment
systems attempts to avoid overlapping ”large” vhosts whenever
possible. [30]

2The stat calls are a function of the PHP opcode cache
subsystem (APC) and can be disabled at the price of poten-
tially inconsistent responses due to lack of awareness of code
base changes, so it is therefore usually not done. Additionally,
once the code files are local, the stat calls tend to hit the OS
inode cache, which has a much lower overhead when compared
with an NFS call.

3Each database server VM’s resources are tuned to the
dataset size of the particular site that it serves. Currently the
two production servers have 4 vCPUs and 16G of RAM each
with separate disk LUNs backed by storage arrays for data and
logging volumes.

4Mixed student and instructor usage means that the service
does not follow a typical diurnal pattern.

1



alized data structure 5, one row per active session, in
a database table (mdl sessions).

It is valuable for this data to survive a system restart
so that users in the middle of a task (eg: a quiz essay
question) need not start over from scratch, however
the durability requirements on it are not as strin-
gent as other parts of the database. For example, the
session data need not even be backed up, let alone
replicated.

Since MySQL binary logging cannot currently be dis-
abled for a single table [12], during periods of high
activity, the amount of churn on the mdl sessions

alone can result in upwards of 5x as much binary log-
ging traffic as there is total database data. 6.

Additionally, for educational research purposes, all
user activities such as a page view or button click are
logged to another table (mdl log), which can also
generate a large amount of database traffic. To keep
it a manageable size 7 we currently rotate the table
data out to long term storage at least once a year.

To make sure that the serialized session data remains
consistent, each Moodle page load (excepting certain
mostly static theme resources like images and CSS)
requests a named lock (GET LOCK()) on the row ob-
ject that isn’t released until just before the page is
returned to the user. This has the unfortunate effect
of serializing a single user’s requests and potentially
tying up a large number of database resources in the
process, especially in the case of errant client browser
behavior (eg: redirect loop). This also means that
every page load involves at least two database writes.

2.2 Cache Data

Like many web applications 8, Moodle makes heavy
use of caching to attempt to improve performance.
Moodle’s Universal Cache (MUC) [24] system sepa-
rates this cache into 2 distinct pieces:

1. User specific session cache, and

2. Module specific application cache that applies to
all users (eg: JavaScript, unified CSS, localized
strings, LATEX rendered equation images, etc.).

5Maximum size for a record is currently 4M, though it is
usually less than 50K.

6The largest we have seen the mdl sessions table, including
it’s indices, is roughly 500M. The entire database is roughly
20G, whereas there is currently over 75G of log data for the
past day.

7The table currently has more than 16M rows comprising
5.2G for the 2013-2014 academic calendar year.

8Indeed most things in computer science.

By default, and as it is currently configured, these
caches are stored in a file system hierarchy local to
the given backend server. It attempts to make sure
that files (often identified by a hash) that are missing
or look out of date are regenerated as necessary, so
that inconsistencies do not arise. However, as Moo-
dle is a distributed development effort, not all of it
is necessarily built with multiple backend servers in
mind, so inconsistencies and program errors 9 do still
occur.

Moodle also does some in database cache material-
ization.

Note that in both cases, the cache does not re-
quire persistence as it can be rebuilt from its original
sources as necessary.

3 Evaluation

3.1 Project Goals

3.1.1 Session Data

In addition to the main database session store
provider described above, the Moodle code base now
also has support for memcached. 10

Additionally, in the past we have explored other op-
tions such as using a separate MySQL database that
did not have binary logging enabled as the target for
the mdl sessions data, though our initial implemen-
tation suffered from poor integration with the stan-
dard database driver. We believe this should be eas-
ier to accomplish in the current version of Moodle
(2.6 vs. 2.4). With such a system additional session
data specific optimizations such as reduced concur-
rency levels would be possible (eg: there are no range
searches, so phantoms are not an issue).

With standard memcached servers, if the server is
restarted, even gracefully for maintenance operations,
all data within it is lost. If that data is session data,
it will effectively log out the user. As noted above,
this may be undesirable from a long running user’s
point of view if they’re in the middle of some work,
but not as big of a problem for a very recently logged
in user who hasn’t had a chance to start anything
yet.

The version of MySQL we are running also provides
an InnoDB table backed memcached interface. [2]
This provides us a drop in replacement with the

9[14] occurred just recently, for instance.
10In both cases, it is merely a wrapper around the standard

PHP session handler.

2



ability to define more granular durability modes by
specifying that MySQL’s memcache operations need
only flush periodically, for instance. Couchbase [1]
and MemcacheDB [13] would be other such options,
though with some missing features especially with re-
spect to expiration of values and some additional ones
such replication.

In this project we would like to explore each of these
options as possible alternatives to our current config-
uration.

Because we operate in a shared environment, in such
an evaluation it is also important for us to understand
the reliability and security offered by each system as
well as the performance and scalability.

Though the former will likely be a qualitative anal-
ysis, we can aim for a more quantitative analysis in
the latter two by measuring the response times 11 of
requests as we vary the number of active clients in
our tests.

3.1.2 Cache Data

In addition to the per-backend file system based cache
system described above, the Moodle code base now
also has support for memcached 12 and MongoDB as
cache targets.

While at first glance a local file system based cache
and its associated OS page cache would appear to
have far less overhead than any of the network based
cache systems, this hypothesis deserves testing.

It is also possible that a local file system based cache
on the web server scales only so long as the number
of clients, and therefore Apache processes, is small
enough to allow for the OS page cache to take the hit
instead of the disk and that given sufficient load the
memory contention on the web server makes a net-
work round trip to a dedicated memory cache service
more attractive.

Furthermore, a shared cache should not suffer the
same inconsistency problems that multiple ”separate
but equal” caches do, though this also deserves test-
ing.

As with session data, we need to understand the se-
curity, resiliency, performance, and scalability of each
option.

11eg: 95 percentile
12It actually supports both memcache and memcached PHP

client library flavors, though we concentrate only on mem-
cached for this project due to its extra features such as binary
protocol support.

3.2 Test Methods

To test the performance each of these alternative con-
figurations we plan to

• Implement two memcached services for use as
cache and sessions targets.

There are questions of sizing and authentication
here, to name a few options, that we will need
to explore.

• Implement two MySQL InnoDB memcached ser-
vices for use as cache and sessions targets.

There are questions of what the durability level
should be here, in addition to those presented
above.

• Implement a separate database connection ses-
sion handler.

There are questions of what the concurrency and
durability levels should be here.

• Implement a MongoDB service for use as a cache
target.

There are questions of write flush policy, shard-
ing, replication, and authentication and autho-
rization here, to name a few options, that we will
need to explore.

• Create a test Moodle environment.

We have a choice here between an environment
that includes all of the usual UW Moodle mod-
ules and themes, or a more standard off the shelf
Moodle environment.

• Construct a repeatable load test suite.

For instance a quiz attempt or a forum post and
view.

As each of these involves multiple pages, many
database writes, cache and session interactions,
and varying levels of concurrency, we think they
are reasonably characteristic representations of
our most intensive workloads. 13

• Conduct test runs of 1, 10, 50, 100, 250, 500,
1000, and 2000 simultaneous users from our
roughly 100 Linux lab machines.

• Measure the response time for each page request
as well as the overall test run time.

13Historically we have had the most load during final exams
periods.

3



• Report the results for each cache configuration
and each session configuration in terms of min,
max, average and 95 percentiles.

Other useful metrics to gather may be things
like CPU load, number of main database
reads/writes, and number of successfully han-
dled requests.

To test the resiliency characteristics of each of the
alternative configurations we plan to repeat our tests
used above, but part way through the test

1. Gracefully restart the service. This simulates an
administrative action such as a service configu-
ration change or patch that requires a restart.

2. Forcefully restart the service. This simulates a
full server crash.

We want to know

1. In the case of session configurations, what hap-
pens to a given users session? For instance, do
they need to login again?

2. How long does it take for the system to recover?

3. During that period is the system as a whole in-
operable while the given cache or session service
is unavailable or is it merely slower?

These tests are easiest done with a single client,
though that may not show issues such as the thunder-
ing herb problem [11]. They’re also most interesting
when done with more than one server, though time
constraints may prevent us from exploring such vari-
ations.

3.3 Implementation Discussion

3.3.1 memcached

To address the sizing of our memcached service we
plan to begin with a single separate memcached vir-
tual server running with 2 vCPUs and 2G of RAM.
We feel this should be sufficient to test with as it is,
even taking data structure overheads into account,
still larger than the maximum current cache and ses-
sion size.

If there’s time, we intend to measure the effects of
varying the number of servers from 1 to 3 as well as
to understand the application behaviors as we make
part of the service unavailable. It should be noted
that in modern memcached clients, failover does not

usually occur since it would cause invalid cache con-
sistency between nodes. Instead, a form of consistent
hashing of keys is used to distribute values to partic-
ular server, and clients either block or timeout if that
server is unavailable. [3] For cache systems this is
okay since the data can ultimately be reconstructed
from the original source, but for sessions this may not
be acceptable.

One interesting thing to note about this aspect of
memcached is that not only can any client that can
connect to the server explore and dirty the keyspace,
but they can also flush it entirely. This makes a sin-
gle memcached undesirable to service multiple Moo-
dle instances since a key feature of the MUC is the
ability to purge all of the cache’s data for events like
code upgrades or theme changes. Doing so would in-
validate the data of all the Moodle instances, leading
to another warm up period for all sites. This problem
is further exacerbated in our shared hosting environ-
ment. Alternatively, if the same memcached server
were used for both session data and cache, then even
a single site’s purge caches function could clear all
actively logged in sessions.

Also note that memcachedb and the MySQL InnoDB
and Couchbase memcached services also share this
disadvantage since it is a deficiency in the protocol.

To address this and the authentication aspects of
memcached, we could simply configure test systems
both with and without using SASL authentication to
see its performance effects. Even though the authen-
tication mechanism currently only serves as a gate-
way barrier to the service as a whole, something a
firewall could generally do, in our shared hosting en-
vironment, the shared credentials requirement pro-
vides an added layer of separation of competing needs
between different sites and their use of one or more
memcached servers as it represents a declaration of
intent for the use of the service.

Another performance related option we could ex-
plore is the use of data compression with memcached.
By default most memcached client libraries compress
data exceeding a particular size (eg: 2000 bytes). The
theory is that the time it takes to compress the data
will be saved in network IO latency. This seems rea-
sonable, so we chose to skip evaluating this particular
setting. [3]

3.3.2 MySQL InnoDB memcached

There are a number of tunable settings that affect
the MySQL InnoDB memcached service. Of most in-
terest to us are those relating to durability and con-
sistency. The main reason to use a MySQL provided

4



memcached is for the granularity that these options
offer us, even though it’s likely to add write perfor-
mance overhead.

In this case, we think that one MySQL server
instance devoted only to serving memcached clients
(read: data that isn’t required to survive a restart),
setting daemon memcached r batch size=50,
daemon memcached w batch size=1000,
innodb flush log at trx commit=2,
innodb flush log at timeout=1,
innodb doublewrite=0,
innodb api bk commit interval=5,
innodb api enable binlog=0,
daemon memcached enable binlog=0 should provide
a good balance between performance and semi-timely
durability since data should make it to disk within
1 second after a smaller number of in memory
operations and won’t suffer from the binary logging
overhead due to high churn.

3.3.3 MongoDB

MySQL’s InnoDB Memcache API provides a way to
get tunable persistence of memcache values, thereby
limiting the amount of cold start and session avail-
ability issues that a service restart or outage might
entail. However, they are server wide rather than
based on an individual client’s requested level of dura-
bility.

MongoDB on the other hand allows for the applica-
tion to specify a given write’s durability requirements
through the use of write concern levels. [8].

For example in the case of cache writes, we may be
perfectly happy with a write concern of ”acknowl-
edged” but not necessarily journalled (this is the cur-
rent Moodle default for MongoDB caches), since in
the case of a failure, the cache should simply not
contain the data (in MongoDB all single document
writes are in theory atomic), and the system can go
about repopulating it from the original source.

On the other hand, if replication is being used, the
above situation may get us into a discrepancy when a
write to is acknowledged at the primary, but fails to
reach the secondary, and then the primary dies lead-
ing to that secondary being elected as the new pri-
mary. Now, with automatic client failover, or client
specified read preferences which allow them to read
from the secondary, the secondary (now primary)
may return stale cache rather than up to date or no
cache data, which can lead to display or logic errors
for the client.

MongoDB’s replication feature is also an attractive
feature for its potential to reduce system stalls, cold
cache degradation, session loss, or outages through
the use of automatic client failover. If time allows, we
intend to test a MongoDB cache configuration with
2 secondary replicas as well. One concern we might
have is that since replication effectively still uses a
binary logging technique (MongoDB calls it oplog),
then high churn on session cache data might cause the
same issues that we’ve seen with MySQL. It appears
that MongoDB bounds the size of the oplog log, but
not the journal files at initial configuration time, so
this may still be an issue. [5] [6]

Automatic sharding is another feature that Mon-
goDB provides, that splits a namespace up amongst
participating servers in order to distribute the load.
However, unlike the memcached implementation
which depends on the client to perform a hash to
determine the server to communicate with, the Mon-
goDB solution requires several more servers (mon-
gos and config servers) to manage the shards. Given
we think our current cache and session sizes can fit
within 2G, we think this is an unnecessary extra set
of overhead for our current environment and do not
intend to test it. Clearly if we were to scale Moo-
dle another order of magnitude or two to the MOOC
scale, it might need reconsideration.

Unlike memcached which has a single flat authoriza-
tion space per server, recent versions of MongoDB
(2.4) allows administrators to assign user roles sepa-
rately for each database. [7] This is another very at-
tractive feature for our shared hosting environment.

3.3.4 Test Environment

We have a spectrum of choices for how to configure
Moodle. On the one hand, we could take a bare-
bones basic install with only the minimal configura-
tion tweaks required to operate in our environment.
On the other, we could include all of the local mod-
ules, themes, plugins, and customizations that the
current UW Moodle service offers.

Given that some of the available load testing tools
operate on more standard installations more easily,
and that many of our current Moodle tweaks are for
an older version of Moodle (2.4) than we’re testing
(2.6) so may not work immediately, we’ve opted for
a setup that’s further towards the former end of the
spectrum.

5



3.3.5 Load Testing

There are a number of tools available for performing
web site testing.

PhantomJS, Selenium, Tsung, Jmeter, Faban,
curl-loader, ab, httperf, tcpcopy, and so on.

Of the few that we’ve listed, PhantomJS and Sele-
nium are closer to the unit testing for correctness end
of the spectrum. They operate by attempting to sim-
ulate a browser’s rendering of a web page’s content
and allowing one to specify DOM selectors to script
interactions with the results and match against ex-
pected return data. This can be useful in replicating
a browser’s tendency to open multiple connections to
fetch extra page resources (eg: CSS, JS, etc.) as nec-
essary and for timing the expected time for a user
to perceive a page as ready, which incorporates as-
pects such as the order in which the extra page re-
sources where requested in the original page, rather
than simply a network client’s ability to receive the
bytes. However, they are generally meant for single
client simulations.

On the other end of the spectrum, Apache Bench-
mark (ab) and httperf can simulate many concur-
rent connections, complete with keepalives and POST
data, but only to a single URL. This can be useful to
stress test a particularly popular page, however it is
generally emblematic of typical user traffic.

tcpcopy is a network layer TCP replay tool that is
capable of reusing actual client traffic to test devel-
opment systems.

Tsung, Jmeter, Faban, and curl-loader are some-
where in between. They all have a limited amount
of document rendering capabilities, but are more fo-
cused on replaying a stream of requests for a re-
quested protocol, in this case HTTP(S). They each
also have the ability to handle cookies and POST
form data to simulate some limited user interactiv-
ity. They are also especially meant to scale these
sorts of operations in order to simulate different users
concurrently accessing different parts of the system.
Included in each are useful graph and summary statis-
tics generation tools as well as warm up period spec-
ification options.

Recently Moodle developers have produced an auto-
mated course, forum, and JMeter test suite genera-
tion tool [9] that others have used to create a semi-
automated performance comparison tool [?].

We intend to use this tool, perhaps with some exten-
sions to simulate users taking quizes and ensure that
extra page resources are also being fetched, in order
to conduct our tests.

4 Related and Future Work

4.1 Previous Performance Studies

4.1.1 Moodle

There isn’t a great wealth of formal Moodle applica-
tion specific performance analyses that we were able
to find.

The Moodle developers post microbenchmark regres-
sion counts of the number of function calls, regex,
db load/stores, etc. between major versions in the
release notes, but they are not necessarily indicative
of overall performance, nor do they include any cache
or session subsystem details, so limited insight on dif-
ferent configurations can be gleaned from them. The
Moodle forums have no shortage of comments and
advice for performance recommendations, but very
little with respect to MongoDB, nor is the suggestion
of memcached often justified beyond anecdotes.

Work by Coelho et al [18] is the only paper on ”Moo-
dle performance” we were able to find that wasn’t
a study of student learning or instructor teaching
achievements. In it, they simulate different load lev-
els for different hardware, OS (Windows vs. Linux)
and RDBMS (MySQL vs PostgreSQL) configura-
tions based on some samples from a running system.
However, the study was conducted with significantly
smaller databases sizes than we have (400M was their
”large” database), and on a much older version of
Moodle (1.9 in 2008) prior to Moodle including mem-
cached or MongoDB support.

For these reasons, we believe our work still merits
attention.

4.1.2 Memcached

Numerous memcached specific benchmarks and com-
parisons have been done that focus on making mem-
cached faster. [44, 27]

However, while nearly every current major web pres-
ence uses some form of an in memory key-value cache
like memcached [?], there are relatively few studies
that examine the general effect of introducing mem-
cached to a typical web application platform con-
sisting of one or more web/application servers and
a database server or cluster.

[16] offers one such analysis. As expected it finds
that memcached can certainly reduce the load on the
database server and thereby improve the number of
requests per second the web/application servers are

6



able to handle. However, they do not address con-
cerns such as the use of memcached for data that
should be, at least in part, persistent, nor the effect
of cold cache or failures. It is interesting to note
that, although they do not take failure scenarios into
account, their experiments actually show a slightly
higher overhead to using a clustered memcached ar-
chitecture. We guess that this is due to the extra
connection management and hash computations re-
quired by the web/application servers.

Another such analysis comes from Facebook. In [37]
they introduce a number of changes to the standard
memcached to accommodate the extra load and scale
that Facebook has as well as handle their concerns
with failures, consistency, and at least probabilistic
persistence. For instance, a client (mcrouter) handles
scheduling and batching requests from web servers to
memcached servers helping to reduce the number of
network connections and round trips required. They
add replication to account for distributing the load
for hot key requests as well as failures, and add an in-
validation daemon (mcsqueal) on all database servers
to handle authoritative updates to the memcached
data in order to maintain consistency, again using
batching to alleviate network constraints. The repli-
cation feature also allows for a simple cache warmup
mechanism. In addition to a number of other daemon
modifications, they also reworked the memory alloca-
tion strategy so that data in the cache could survive
a software upgrade, though not a complete systems
reboot, also reducing the possibility of a cold cache
scenario. However, several of their extensions, not
all of which have been open sourced, required modi-
fications to their application code. For instance, for
mcsqueal to be able to invalidate upstream caches
upon writes to the database layer, queries needed to
include the memcache lookup key. Although their
work certainly advances the memcached technology,
it does not seem directly applicable to such a com-
paratively small platform as ours.

4.1.3 MongoDB

There have been a number of studies on performance
that have included MongoDB [39, 22, 47, 33, 45].
However, they tend to focus on whether or not Mon-
goDB is a suitable replacement for a traditional
RDBMS system, particularly for workloads such as
document management, analytics, GIS data, etc.
There appears to be very little data available on Mon-
goDB when used as a cache system in front of an
RDBMS.

4.2 Performance Analysis Techniques

4.2.1 Benchmarks

The NoBench [17] microbenchmark provides a means
for directly measuring specific query types for a given
NoSQL system. However, it currently lacks the abil-
ity to measure concurrency or scale out. [34] also
proposes a combined NoSQL RDBMS system bench-
mark, currently developed for Windows, however the
Yahoo! Cloud Serving Benchmark (YCSB) [19] is
probably the current standard for such comparisons
and supports scalability as well as simulated concur-
rency through the use of multiple threads on a single
YCSB client.

Each of these tools is beneficial in comparing two or
more products for serving the same task, but does
not necessarily help us when determining their effect
when used in combination with one another, each for
a different subtask. Furthermore, as we do yet not
currently know the exact workload types that Moo-
dle may impart on each of these candidate systems,
single system benchmark results would not offer us
very much insight, though we could consider taking
traces of some of our tests in order to help understand
that relationship better.

Perhaps the closest benchmark for testing such an en-
vironment that was not Moodle application specific
could be the now discontinued TCP-W benchmark
[15]. However, the specification limits the tests to sin-
gle systems since the focus is not on scalability. More-
over, its model is based on that of an e-commerce site
that requires higher ACID compliance than the cache
and session portions of our dataset that we are trying
to alleviate load from.

4.2.2 Load Testing

Unlike benchmarking, which tends to stress test a
particular component, load testing is focused on
stress testing an actual end-to-end system. In our
case a web application.

Since there are more variables at play there are many
questions to consider when devising such a test. [20]
provides a nice overview of a number of options re-
lating to web application testing.

As mentioned in Section 3.3.5, tools like ab and
httperf that only fetch a single URL, perhaps ac-
cording to some probability distribution, do not ade-
quately capture most client interactions with modern
web applications, and so do not serve as useful load
testing solutions.

7



[35, 40] each offer an argument for closed or partly-
open loop models that include think time for user ses-
sions in order to accurately reflect their interactions
within a web application. As Moodle interactions
are generally gated by a login step, this partly-open-
loop model is a much better representation of our
workload, and one which we believe our Jmeter tests
implement well.

[35], which is web site load testing specific, also argues
for reporting results in terms of number of abandoned
user sessions due to long response times and lost rev-
enue in addition to the typical page load response
times as it varies over number of clients. Although
the lost revenue figures do not directly apply to our
scenario, we like the idea of incorporating the fact
that users give up if a site seems to overwhelmed.

[21] also includes the idea that multiple different
classes of clients, that interact with the site in dif-
ferent ways, may be interacting with the system con-
currently. This is certainly true in our environment
as some students may be merely browsing course con-
tent (read dominant) while others could be taking a
quiz (write and CPU dominant) or interacting with
a forum (a mixture or read and writes).

Characterizing each of those interactions can be a
difficult task in any load testing framework. Work in
[25] aims to help automate that task through log min-
ing of previously recorded load tests, though there is
no reason they couldn’t also be applied to produc-
tion logs as well, in order to weed out anomalies that
may require manual intervention as well as allowing
an operator to focus on dominant behavior patterns.

Cloudstone [41] includes a nice summary of the argu-
ments for needing to take the entire web application
stack and different user interaction streams into ac-
count when testing. Though their model is based
around computing the optimal platform setup for a
given cost per user and SLA (eg: 99th percentile re-
sponse time) within a cloud hosted environment such
as Amazon’s, the techniques they employ and specific
test cases they examine are very similar to those we
have.

While the above focus on techniques for developing an
general testing strategy that can be applied to specific
instances, WikiBench [43] is an example of a specific
implementation of such a test strategy that employs
real data set and traffic replicas. Unfortunately, it is
specific to the MediaWiki application, though can be
used to test different platform configurations for it.

A subject related to load testing is correctness testing
through the use of unit tests for instance, however we
do not address this issue in our work.

4.3 Failure Models

As mentioned in in Section 3.2, we also would like
to understand the impact of both brief component
outages due to software maintenance vs. machine
failures that may lead to full system outages or cold
cache performance issues.

There are several other failure models we could have
considered, such as network partitions or the Netflix
Chaos Monkey.

However, given the comparatively small size of our
system we think our simple tests are the far more
likely scenario. Beyond that, the entire system is
likely to be affected anyways.

Usually service outages are mitigated through repli-
cation and automatic failover and partitioning. Mon-
goDB for instance includes this functionality natively.
However, in a typical memcached cluster, there is no
replication, only key space partitioning, so failures
may reduce the scope of an outage partially.

[46] offers a brief analysis of cache consistency and
failures when using memcached in a clustered envi-
ronment. In it, they propose the use of consistent
hashing combined with replication in order to tolerate
failures, as well as Paxos [32] to achieve consistency
between replicas. However, they do not address the
performance implications of such an addition, which
we expect could be substantial.

4.4 Security

In general, most NoSQL systems, including Mon-
goDB and memcached are designed to be operated
in a trusted environment. Authentication is usually
not required by default, so granular authorization is
not possible. Moreover, just as their SQL predeces-
sors, they are often vulnerable to injection attacks
from clients. [38]

In our general shared hosting platform we employ
ModSecurity [4] to attempt to filter input for things
like injection and DoS attacks before it is received by
the application from the web server. However, due to
the high expectation of false positives for computer
science related coursework in particular, the precau-
tion was requested to be disabled for the Moodle ser-
vice.

Moreover, the filter does nothing to prevent an at-
tack or abuse on the backend services, malicious or
not, once a client is operating within the web service
platform.

8



4.5 Additional Configurations and
Technologies

In addition to MySQL, Moodle also supports Post-
greSQL as a primary database. It is possible that
it offers different performance characteristics than
MySQL which may worth be exploring at some point.
Unfortunately, there is little more than conjecture
to this point on much of the moodle.org related
sites mostly coming down to very old comments of
what constitutes ”properly tuned” and whether or
not MySQL’s InnoDB was available for production
use. Our initial impression from the literature is that
PostgreSQL has traditionally been better at ensur-
ing proper data durability and full ACID compliance,
which might lead to more overhead in write intensive
scenarios such as ours.

There are also other persistent NoSQL choices such
as Cassandra or CouchDB that Moodle could likely
be adapted to support. Both of which list some com-
pelling resiliency features similar to MongoDB’s such
as multi-master replication, no single point of failure,
and per operation tunable durability.

As mentioned in Section 3.1.1, Couchbase is another
alternative to memcached which provides protocol
compatibility but adds replication and persistence ca-
pabilities to avoid cold cache restart and repartition-
ing issues, though comes at a licensing cost. mem-
cachedb is an opensource alternative with similar ad-
vantages, but does not currently support expiration
of key-values.

In general we note that not all data is equal and
applications’ need for a combination of technologies
like fully ACID RDBMS, no durability memcached,
and somewhere in the middle NoSQL solutions like
MongoDB’s write concern levels represent a need for
”degrees of durability”, similar in nature to Gray’s
degress of consistency work. [23]

The term ”degrees of durability” also appears in work
on the Oracle NoSQL Database [26] in which appli-
cations can specify per operation what level of dura-
bility and consistency they would like the system to
provide. For instance, a write may be considered
committed as soon as either a network acknowledg-
ment from a replica or the local log disk write has
been received, reducing the overall write operation’s
latency to whichever of the two systems has the lower
latency. This is very similar to MongoDB’s notion of
write concerns.

In [36] Nance et al also offer a nice summary of
the different arguments for a mix of both traditional
RDBMS and NoSQL systems, as they are often de-

signed for and solve different problems relating to
both the data organization required as well as their
consistency and durability requirements.

References

[1] Couchbase memcached. http://www.couchbase.com/

memcached.

[2] Innodb integration with memcached. https://dev.

mysql.com/doc/refman/5.6/en/innodb-memcached.html.

[3] Memcached: Client configuration. http://code.google.

com/p/memcached/wiki/NewConfiguringClient.

[4] Modsecurity: Open source web application firewall. http:
//www.modsecurity.org/.

[5] Mongodb: Journaling mechanics. http://docs.mongodb.

org/manual/core/journaling/.

[6] Mongodb: Replica set oplog. http://docs.mongodb.org/
manual/core/replica-set-oplog/.

[7] Mongodb: User privilege roles. http://docs.mongodb.

org/manual/reference/user-privileges/.

[8] Mongodb: Write concerns. http://docs.mongodb.org/

manual/reference/write-concern/.

[9] Moodle: Jmeter test plan generator. http://docs.

moodle.org/26/en/JMeter_test_plan_generator.

[10] Moodle performance comparison tool. https://github.

com/moodlehq/moodle-performance-comparison.

[11] Thundering herd problem. http://en.wikipedia.org/

wiki/Thundering_herd_problem.

[12] Mysql bug 2917. http://bugs.mysql.com/bug.php?id=

2917, 2010.

[13] Memcache benchmarks. http://symas.com/mdb/

memcache/, 2013.

[14] Moodle issue 40569. https://tracker.moodle.org/

browse/MDL-40569, 2013.

[15] Tpc-w. http://www.tpc.org/tpcw/, 2013.

[16] K. A. Bakar, M. H. M. Shaharill, and M. Ahmed. Per-
formance evaluation of a clustered memcache. In In-
formation and Communication Technology for the Mus-
lim World (ICT4M), 2010 International Conference on,
pages E54–E60. IEEE, 2010.

[17] C. Chasseur, Y. Li, and J. M. Patel. Enabling json docu-
ment stores in relational systems.

[18] J. Coelho and V. Rocio. A study on moodle’s perfor-
mance. 2008.

[19] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan,
and R. Sears. Benchmarking cloud serving systems with
ycsb. In Proceedings of the 1st ACM symposium on Cloud
computing, pages 143–154. ACM, 2010.

[20] G. A. Di Lucca and A. R. Fasolino. Testing web-based
applications: The state of the art and future trends. Infor-
mation and Software Technology, 48(12):1172–1186, 2006.

[21] D. Draheim, J. Grundy, J. Hosking, C. Lutteroth, and
G. Weber. Realistic load testing of web applications. In
Software Maintenance and Reengineering, 2006. CSMR
2006. Proceedings of the 10th European Conference on,
pages 11–pp. IEEE, 2006.

9

http://www.couchbase.com/memcached
http://www.couchbase.com/memcached
https://dev.mysql.com/doc/refman/5.6/en/innodb-memcached.html
https://dev.mysql.com/doc/refman/5.6/en/innodb-memcached.html
http://code.google.com/p/memcached/wiki/NewConfiguringClient
http://code.google.com/p/memcached/wiki/NewConfiguringClient
http://www.modsecurity.org/
http://www.modsecurity.org/
http://docs.mongodb.org/manual/core/journaling/
http://docs.mongodb.org/manual/core/journaling/
http://docs.mongodb.org/manual/core/replica-set-oplog/
http://docs.mongodb.org/manual/core/replica-set-oplog/
http://docs.mongodb.org/manual/reference/user-privileges/
http://docs.mongodb.org/manual/reference/user-privileges/
http://docs.mongodb.org/manual/reference/write-concern/
http://docs.mongodb.org/manual/reference/write-concern/
http://docs.moodle.org/26/en/JMeter_test_plan_generator
http://docs.moodle.org/26/en/JMeter_test_plan_generator
https://github.com/moodlehq/moodle-performance-comparison
https://github.com/moodlehq/moodle-performance-comparison
http://en.wikipedia.org/wiki/Thundering_herd_problem
http://en.wikipedia.org/wiki/Thundering_herd_problem
http://bugs.mysql.com/bug.php?id=2917
http://bugs.mysql.com/bug.php?id=2917
http://symas.com/mdb/memcache/
http://symas.com/mdb/memcache/
https://tracker.moodle.org/browse/MDL-40569
https://tracker.moodle.org/browse/MDL-40569
http://www.tpc.org/tpcw/


[22] A. Floratou, N. Teletia, D. J. DeWitt, J. M. Patel, and
D. Zhang. Can the elephants handle the nosql onslaught?
Proceedings of the VLDB Endowment, 5(12):1712–1723,
2012.

[23] J. N. Gray, R. A. Lorie, G. R. Putzolu, and I. L. Traiger.
Granularity of locks and degrees of consistency in a shared
data base. In IFIP Working Conference on Modelling in
Data Base Management Systems, pages 365–394, 1976.

[24] S. Hemelryk. The moodle universal cache (muc).
http://docs.moodle.org/dev/The_Moodle_Universal_

Cache_(MUC), 2013.

[25] Z. M. Jiang, A. E. Hassan, G. Hamann, and P. Flora.
Automatic identification of load testing problems. In
Software Maintenance, 2008. ICSM 2008. IEEE Inter-
national Conference on, pages 307–316. IEEE, 2008.

[26] A. Joshi, S. Haradhvala, and C. Lamb. Oracle nosql
database-scalable, transactional key-value store. In
IMMM 2012, The Second International Conference on
Advances in Information Mining and Management, pages
75–78, 2012.

[27] R. Kapoor, G. Porter, M. Tewari, G. M. Voelker, and
A. Vahdat. Chronos: predictable low latency for data
center applications. In Proceedings of the Third ACM
Symposium on Cloud Computing, page 9. ACM, 2012.

[28] A. Karve, T. Kimbrel, G. Pacifici, M. Spreitzer, M. Stein-
der, M. Sviridenko, and A. Tantawi. Dynamic placement
for clustered web applications. In Proceedings of the 15th
international conference on World Wide Web, pages 595–
604. ACM, 2006.

[29] J. Krizanic, A. Grguric, M. Mosmondor, and
P. Lazarevski. Load testing and performance moni-
toring tools in use with ajax based web applications.
In MIPRO, 2010 Proceedings of the 33rd International
Convention, pages 428–434. IEEE, 2010.

[30] B. Kroth. Cs787 project: Bin packing: A survey and its
applications to job assignment and machine allocation.
2013.

[31] B. Kroth. Cs787 project proposal. 2013.

[32] L. Lamport. Paxos made simple. ACM Sigact News,
32(4):18–25, 2001.

[33] Y. Li and S. Manoharan. A performance comparison of sql
and nosql databases. In Communications, Computers and
Signal Processing (PACRIM), 2013 IEEE Pacific Rim
Conference on, pages 15–19. IEEE, 2013.

[34] I. LUNGU and B. G. TUDORICA. The development of
a benchmark tool for nosql databases. Database Systems
Journal BOARD, page 13.

[35] D. Menascé. Load testing of web sites. Internet Comput-
ing, IEEE, 6(4):70–74, 2002.

[36] C. Nance, T. Losser, R. Iype, and G. Harmon. Nosql
vs rdbms-why there is room for both. In Proceedings of
the Southern Association for Information Systems Con-
ference, pages 111–116, 2013.

[37] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee,
H. C. Li, R. McElroy, M. Paleczny, D. Peek, P. Saab,
et al. Scaling memcache at facebook. In Proceedings of
the 10th USENIX conference on Networked Systems De-
sign and Implementation, pages 385–398. USENIX Asso-
ciation, 2013.

[38] L. Okman, N. Gal-Oz, Y. Gonen, E. Gudes, and
J. Abramov. Security issues in nosql databases. In Trust,
Security and Privacy in Computing and Communications
(TrustCom), 2011 IEEE 10th International Conference
on, pages 541–547. IEEE, 2011.

[39] Z. Parker, S. Poe, and S. V. Vrbsky. Comparing nosql
mongodb to an sql db. In Proceedings of the 51st ACM
Southeast Conference, page 5. ACM, 2013.

[40] B. Schroeder, A. Wierman, and M. Harchol-Balter. Open
versus closed: A cautionary tale. In NSDI, volume 6,
pages 18–18, 2006.

[41] W. Sobel, S. Subramanyam, A. Sucharitakul, J. Nguyen,
H. Wong, A. Klepchukov, S. Patil, A. Fox, and D. Patter-
son. Cloudstone: Multi-platform, multi-language bench-
mark and measurement tools for web 2.0. In Proc. of
CCA, volume 8, 2008.

[42] N. Sonwalkar. The first adaptive mooc: A case study on
pedagogy framework and scalable cloud architecturepart
i. In MOOCs Forum, volume 1, pages 22–29. Mary
Ann Liebert, Inc. 140 Huguenot Street, 3rd Floor New
Rochelle, NY 10801 USA, 2013.

[43] E.-J. van Baaren. Wikibench: A distributed, wikipedia
based web application benchmark. Master’s thesis, VU
University Amsterdam, 2009.

[44] I. Voras, D. Basch, and M. Zagar. A high performance
memory database for web application caches. In Elec-
trotechnical Conference, 2008. MELECON 2008. The
14th IEEE Mediterranean, pages 163–168. IEEE, 2008.

[45] Z. Wei-ping, L. Ming-Xin, and C. Huan. Using mon-
godb to implement textbook management system instead
of mysql. In Communication Software and Networks
(ICCSN), 2011 IEEE 3rd International Conference on,
pages 303–305. IEEE, 2011.

[46] P. Xiang, R. Hou, and Z. Zhou. Cache and consistency in
nosql. In Computer Science and Information Technology
(ICCSIT), 2010 3rd IEEE International Conference on,
volume 6, pages 117–120. IEEE, 2010.

[47] J. Yang, W. Ping, L. Liu, and Q. Hu. Memcache and
mongodb based gis web service. In Cloud and Green Com-
puting (CGC), 2012 Second International Conference on,
pages 126–129. IEEE, 2012.

10

http://docs.moodle.org/dev/The_Moodle_Universal_Cache_(MUC)
http://docs.moodle.org/dev/The_Moodle_Universal_Cache_(MUC)

	Problem Description
	Background
	Session Data
	Cache Data

	Evaluation
	Project Goals
	Session Data
	Cache Data

	Test Methods
	Implementation Discussion
	memcached
	MySQL InnoDB memcached
	MongoDB
	Test Environment
	Load Testing


	Related and Future Work
	Previous Performance Studies
	Moodle
	Memcached
	MongoDB

	Performance Analysis Techniques
	Benchmarks
	Load Testing

	Failure Models
	Security
	Additional Configurations and Technologies


