
D
RA
FT

CS787 Project: Bin Packing: A Survey and its Applications to Job

Assignment and Machine Allocation

Brian Kroth

2013-04-19

Abstract

In this paper we present a survey of some common
online heuristics to the single dimensional bin pack-
ing problem, and their analysis, including some offline
variants, especially as it pertains to resource alloca-
tion. Through the lens of a case study of virtual
hosting at a local university campus, we examine its
applicability to the sizing of resources based on task
demands and consider some multi dimensional vari-
ants as well as some takes on the problem from the
perspective of some commercial applications.

1 Introduction

The single dimensional bin packing problem (BPP)
can be described as finding a way to assign a list of
n items L, each with varying sizes or weights si, into
the smallest number of identical bins, each of capacity
B. Usually, the item sizes are normalized to the range
[0, 1] with unit bin capacities. Given as an (integer)
linear program, the problem can be stated as follows:

Minimize:

n∑
j=1

yj

Subject to:

n∑
i=1

sixij ≤ Byj , ∀ j ∈ { 1, ..., n }

n∑
j=1

xij = 1, ∀ i ∈ { 1, ..., n }

Where the yj and xij are each { 0, 1 } indicator vari-
ables denoting whether we need to use a bin j (up
to n since we need at most n bins in any solution)
and whether item i is included in bin j, respectively.
This can be extended to multidimensional problem
descriptions in different ways as well as variable sized
bins, though even in the single dimensional case it
is an NP hard problem. Yet, the problem has ba-
sic applications to industry in the context of packing

real physical objects in boxes [12], resources assign-
ment such as VMs to physical machines [32] [25] [38],
and task assignment such as in the context of mul-
tiprocessor systems [6], and has such has generated
continued interest over the years. Additionally, it has
served as a test bed for various advancements in the
techniques used in competitive analysis [2]. It is also
closely related to the cutting stock and partitioning
problems.

In this paper we focus on a survey of several com-
mon heuristics for greedy approaches to BPP such as
First Fit (FF), Best Fit (BF), Harmonic, and Sum
of Squares (SS). We also conduct a brief compar-
ative study of certain aspects of them on our case
study’s data such as the repacking displacement effect
for items that may change in size, and load balance,
which is typically consider to be a separate problem.
We conclude with an overview of bin packing’s uses in
some related work and describe future possible areas
of exploration.

2 Bin Packing Analysis
Overview and Bounds

The problem of bin packing has long been studied to
to its many applications and NP hardness, which has
been known since at least [21]. In general, the tech-
niques used in solving the one-dimensional version
can be divided into online versions, where the algo-
rithm does not have foreknowledge of the future input
stream, and offline versions where the algorithm can
examine the entire set of input data, bounded and un-
bounded space, depending upon how many bins are
kept ”open” for consideration at a time, and greedy
approximations and integer (IP) and linear program-
ming (LP) approaches.

Online analyses have traditionally focused on the
worst case competitive ratio α of an algorithm A
to that of an optimal OPT , sometimes defined as
A(L) ≤ αOPT (L) + c for some constant c, though

1

D
RA
FT

other texts prefer a lim sup based definition. This is
usually obtained by means of a work function to at-
tribute some cost to an item’s bin assignment [4] or
by constructing a worst case list where OPT (L) can
still be reasonably calculated and then carefully ac-
counting for the possible combinatorial arrangements
given by the algorithm’s solution. However, more re-
cently work has been concerned with determining av-
erage case analyses of the various heuristics under
certain item distributions by looking at the expected
waste in a given bin configuration compared with
that of OPT , which is sometimes approximated via
novel pseudo-polynomial time LP calculation tech-
niques [14], which is the best we can hope for in this
case.

Of the approaches outlined above, we will focus pri-
marily on the greedy algorithms, which are also the
ones more commonly used in practice. According to
[32], IP or LP approaches are 1) relatively too ex-
pensive to compute except for small values of n (eg:
10s or 100s), and 2) in the case of the more common
integer instances of the problem, require non-obvious
rounding techniques which may result in worse ap-
proximations.

However, it is worth noting that it is due to the LP
methods used by Courcoubetis and Weber (CW) in
[12] [10] [11] that we have very useful general bounds
for average case analysis of different item distribu-
tions. By mapping the solutions for any discrete dis-
tribution F onto the convex cone, they were able to
show that there exists an optimal algorithm OPT for
the three possible cases corresponding to to whether
the solutions were inside, on, or outside the cone, and
that the expected waste of each of these three cases
was O(1), Θ(

√
n), Θ(n), correspondingly. [14]

Combined with the perfect packing theorems of Coff-
man et al. in [7] and others, which says that for cer-
tain integer valued lists whose sum of the equally oc-
curring items is a multiple of the bin size there exists
a perfect packing arrangement (ie: with no wasted
space), these oft cited papers have been used, for
example, to derive some average case analyses un-
der certain discrete, usually uniform, distributions
for several greedy algorithm heuristics such as SS,
FF, etc. [15] [29] in cases that would otherwise be
intractable to get a reasonable bound on OPT for
comparison to A.

There are several other general and useful bounds
shown by Yao [39] in what Borodin called the first
use of competitive analysis [4] for his work on Refined
First Fit (RFF), a variant of the Next Fit algorithm,
itself a simplified version of First Fit that only keeps
a single bin open at any time.

For instance, he shows that any online algorithm, re-
gardless of computational cost, can do no better than
a competitive ratio of 3

2 . A bound which was later
improved to 1.536... by Liang [27]. The argument
consists of constructing a list L = L 1

6
L 1

3
L 1

2
of sub-

lists of items of sizes 1
6 −2ε, 1

3 − ε,
1
2 − ε, respectively,

for an ε ∈ (0, .01) so that it should be clear to see that
when |L 1

6
| = |L 1

3
| = |L 1

2
| = n, then OPT (L 1

6
) = 1

6n,

OPT (L 1
6
L 1

3
) = 1

2n, and OPT (L) = n. However,
intuitively, if an online algorithm A optimally packs
the first list so that A(L 1

6
) = 1

6n, then it doesn’t have
enough space later to optimally pack larger items as
well. Similarly, if it saves space up front to pack the
larger items optimally, then it necessarily cannot pack
the smaller items optimally. So, by a careful account-
ing of the possible configurations, Yao is able to show

that max {
A(L 1

6
)

OPT (L 1
6
) ,

A(L 1
6
L 1

3
)

OPT (L 1
6
L 1

3
) ,

A(L)
OPT (L) } ≥

3
2 .

Also in this same paper, using similar ε construction
of lists, Yao derives a simple lower bound of d on the
competitive ratio of any d dimensional online (vector)
bin packing algorithm, which to our knowledge, has
not been improved upon.

Finally, we note that while online greedy approxi-
mation approaches have been our focus, there are
some results [16] showing that for any ε there ex-
ists an offline asymptotic polynomial approxima-
tion scheme Aε so that the competitive ratio of
Aε is at most 1 + ε, though with large constants
so that it is not a reasonable competitor to some-
thing like MFFD [29]. One improvement upon that
result was the differencing method of Karmarkar
and Karp (KK) [22] which showed how to achieve
KK(L) ≤ OPT (L) + O(log2OPT (L)) using com-
plex LP and ellipsoid rounding methods, but at the
cost of O(n8 log3 n) [14], thus it has usually be con-
sidered too costly and complex to be generally used
in practice.

In the following two sections, we continue with a sur-
vey of some First-Fit and Best-Fit based heuristic
methods.

3 First Fit Based Heuristics

In this section we briefly discuss some greedy heuris-
tic algorithms related to the First-Fit (FF) algorithm.

FF is an O(n log n) [20] unbounded space online al-
gorithm which uses the rule of, for a fixed order of
bins, simply placing the arriving item into the first
”feasible” bin in the ordering, where by feasible we
simply mean one with a sufficient free space gap to fit

2

D
RA
FT

it. If there is no feasible bin available, then FF opens
a new one and places the item into it. Repacking
is not generally allowed or considered in most BPP
formulations.

FF also has an offline version called First-Fit-
Decreasing (FFD), also O(n log n), in which the en-
tire list is first sorted in decreasing order of item sizes
so that large items are processed first, filling in the
largest gaps possible as the list is worked through in
order to achieve an approximation ratio of 11

9 . [21]

An even simpler heuristic, which can be implemented
in O(n) time, can be seen in Next-Fit (NF) which
keeps only one open bin under consideration. If the
arriving item won’t fit in that bin, then that bin is
closed for future consideration and the item is placed
in a new bin. NF achieves a competitive ratio of 2
since lists such as n = 2k copies of { 1

2 ,
1
2k } will cause

it to place each sublist into its own bin with 1
2 −

1
2k

space wasted, leading to a total of 2k bins, where as
OPT would place a pair of the 2k 1

2 pieces together
in their own bin and the 2k 1

2k pieces together leading
to k + 1 bins in total.

On the other hand, in [21] Johnson et al. showed
that FF has a competitive ratio of 17

10 using a similar
worst case list construction that we previously cited
from Yao [39] - L = L 1

6
L 1

3
L 1

2
- so that it should be

easy to see that OPT (L) = n. In a simplified ver-
sion of the proof due to Borodin [4], it then sets up
a work (weight) function split by item size intervals
that attributes so much of each bin to every item. If
we change our perspective then and view the weight
of each item as the amount of bin space it uses up,
including wasted space, then it can be shown by enu-
merating the possible combinations in each bin, that
the work (weight) of an optimally packed bin is at
most 17

10 .

In [39], Yao extends the basic idea of grouping items
together in this fashion into a new algorithm Refined-
First-Fit (RFF) by classifying items by more dis-
joint ranges: (1

2 , 1], (1
3 ,

2
5], (1

3 ,
2
5], (0, 13]. Items in

each range are packed together using a NF heuristic
within each class, except that certain smaller items
are packet into bins with larger items, in order to
make use of the otherwise wasted gap in those bins.
Through careful accounting for the possible combina-
tions Yao is able to show that RFF achieves a com-
petitive ratio of at most 5

3 . One interesting feature
of RFF is that it only needs to keep one open bin for
each class. Thus, unlike Best-Fit or First-Fit, it has
bounded space requirements.

This idea of classifying items into a fixed number of
ranges naturally extends to the HARMONICM al-

gorithm proposed by Lee in [24]. In it they define
ranges Ik = (1

k+1 ,
1
k] for k ∈ (1,M] and (0, 1

M] for
IM , so that exactly k items will fit into Ik when it
is full, so that like RFF, HARMONICM only needs
to keep a single bin for each class open at a time.
Further, evaluations of HARM show that there is lit-
tle improvement on the competitive ratio of 1.6910...
for M > 12, so HARMONIC12 can be viewed as a
bounded space online algorithm. Note also that the
number of bins in the solution to an input L that
HARMONICM produces is invariant to the order
in which the items arrive, since they all go into a
fixed bin classification. Finally, like RFF, Refined-
HARMONIC extends harmonic by packing smaller
items into I1 bins which may have just less than 1

2
of their space ”wasted” in order to a achieve a worse
case competitive ratio of 1.6359 < 5

3 of RFF.

4 Best Fit Related Heuristics

In contrast to the FF variants, the recent Sum-of-
Squares (SS) algorithm takes its inspiration from the
Best-Fit (FF) algorithm. Like FF, BF is another very
common, simple, and effective greedy heuristic which
keeps an ordered list of bins and places an incom-
ing item into the feasible bin that will result in the
least free space gap remaining in that bin, though in
this case the ordered list of bins only affects the algo-
rithm’s efficient (O(n log n)) implementation, not its
correctness. The online BF has been shown [21] to
have the same competitive ratio of 17

10 as FF, and the
natural offline version, Best-Fit Decreasing (BFD),
also obtains FFD’s worst case approximation ratio of
3
2 .

However, work by Coffman et al. [8] [9] and Shor [35],
showed that BF does better than FF in the average

case, by generating expected waste of Θ(
√
n log

3
4 n)

compared with Θ(n
3
4) under a continuous uniform

distribution on (0, 1], and O(
√
n log k) versus Θ(

√
nk)

when a discrete uniform distribution of U{k, k} is
used, where U{j, k} represents the discrete uniform
distribution of the set { 1

k , ...,
j
k } for j ∈ [1, k]. [1]

Coffman et al. further show that when k ≥ j(j+3)/2,
then BF is ”stable”. That is, the expected waste is
bounded by a constant regardless of the size of the
input list L. This corresponds to the first case of the
aforementioned CW results.

Interestingly, the discrete average case results for BF
are derived using a Markov Chain model by first rec-
ognizing that any packing configuration can be repre-
sented by the residual space left in the bins, but the
order itself doesn’t matter. Then, the possible arriv-

3

D
RA
FT

ing items represent the transitions from a possible bin
configuration to another.

In [1] Mitzenmacher and Albers extended this idea
to a Random-Fit (RF) heuristic. Unfortunately, the
competitive ratio RF achieves is no better than NF’s
2, but by extending it to RF(2+) with a Power of Two
Choices technique so that it examines 2 (or more)
possible state transitions (bins) for every incoming
item, they are able to show that, for lists of sufficient
size, it achieves a competitive ratio of 17

10 just as BF
and FF do.

The Sum-of-Squares (SS) algorithm grew out of this
work in analyzing the average case of algorithms like
BF under certain discrete distributions like U{j, k}
that was described above, and as such only handles
cases of integer sized items and bins, or those that can
be scaled to be, so often the normalization factors are
dropped when discussing it.

In the case of BF, it was noted that it does partic-
ularly well in the case of symmetric distributions -
those where P[si = s] = P[si = B − s], so that there
is a high likelihood of perfectly packing a new item
into a bin since there probably already exists a par-
tially filled bin with a free space gap of that size, so
there is close to no waste.

The SS algorithm attempts to extend this idea to
non-symmetric distributions by reacting to the input
stream to maintain a relatively consistent gap size
amongst all its open bins. This is done by placing a
new item into the bin that rather than just minimiz-
ing the sum of the gaps in the remaining open bins,
minimizes the square of the gaps, since ”for a fixed
sum of variables, their sum of squares is minimized
when they area as close to equal as possible”. [15]
Stated mathematically, the objective function is:

Minimize:
∑

1≤g≤B−1

N(g)2

Where N(g) represents the number of currently open
bins that have gap of g.

In [15] Johnson et al. note that for an incoming item
of size s there are three cases:

1. The item starts a new bin, so that the sum of
squares increases by 2N(B − s) + 1,

2. It perfectly fills an old bin, so that the sum of
squares decreases by 2N(s)− 1, or

3. It goes into a gap of size g which minimizes
N(g)−N(g − s) so that the sum of squares de-
creases by 2(N(g)−N(g − s))− 2

so that no squares need actually be computed.

However, they do not find a way to appreciably de-
crease the case 3 operation to less than a search over
all bin gap sizes, so SS results in O(nB) time rather
than O(n logB) that BF takes, though both require
O(n) space since they do not keep a fixed number of
bins like NF, RFF, HARMONIC.

Further, although it is shown to have a worst case
competitive ratio of 3 for general distributions, in
particular those classified by CW as Θ(n) expected
waste, so that it does not violate Yao’s result [39],
in the case of the so called ”perfectly packable”
and ”bounded waste” distributions, SS obtains ra-
tios close to 1 and at most 1.5 in the case of O(

√
n)

expected waste distribution. [14]

Finally, we note that for asymptotic input list sizes,
a variant of SS, is able to ”learn” the discrete input
distributions that may vary over time by are still con-
fined to a fixed set in order to achieve O(1) expected
waste by selecting a new randomized SS variant that
is tuned to the particular distribution [14]. However,
even the authors consider this approach to be too
impractical.

5 Case Study

The Computer Aided Engineering center at the Col-
lege of Engineering of UW-Madison has a fairly com-
plex virtual hosting infrastructure that it provides for
the college and other university wide services. The
ultimate issue we would like to be able to answer is
how best to size our server infrastructure to suit the
service’s needs using some variant of bin packing, in-
stead of trial and error. In order to explore how we
might do this, we first describe the system as it is
currently laid out as follows.

5.1 Background

There are roughly 800 individual production virtual
hosts (vhosts) of various types served by roughly 25
backend virtual machine (VM) servers that are prox-
ied by 4 frontend servers. Each vhost has certain
properties associated with it in a database such as
an editing group, the certificate domain it belongs in
1, and a type, as well as a number of others. In or-
der to save on memory footprint required, but still

1We use wildcard certificates as much as possible to save on
IPv4 address requirements on the frontends, though we make
use of IPv6 addresses extensively as well.

4

D
RA
FT

retain certain security features such as running dif-
ferent websites under different users, the vhosts are
combined into roughly 650 security domains by these
three features, and a single standalone Apache web
server instance is dedicated to running each of these,
with an individual VirtualHost directive for each
vhost that belongs to that security domain.

A vhost’s type might be one of HTML, Mod PHP,
Mod Perl, etc. Each backend VM implements one of
these types and represents a standard hardware con-
figuration (eg: 4 GB RAM, 2 vCPU, etc.) for that
type. The type of a vhost determines which type of
VM a vhost can be assigned to and controls some
of the vhost’s default configuration parameters in-
cluding how much memory a barebones vhost of that
type is expected to take up. We are generally more
concerned with memory than CPU usage, though cer-
tainly each request occupies a certain amount of CPU
time. However, individual vhost code and settings
customizations can increase those requirements, and
since it is not currently practical to load test every in-
dividual vhost accurately, currently we tend to fairly
crudely estimate the size of a given vhost type by
using what we expect to be typical values and then
possibly adjusting it by a factor based upon the load
its requests generate on the system.

5.2 Vhost Workers

Currently a rudimentary assignment routine is used
to balance the number of the vhosts across the avail-
able number of backends for a given type by con-
sidering a workers property on each vhost, which
is currently set manually, while avoiding moving the
”heaviest” vhosts if possible to prevent service inter-
ruption. The workers property is an integer field
which is (ab)used in the following ways:

1. It represents the number of spare/idle Apache
child processes 2 we configure for the vhost’s se-
curity domain 3 to keep around to process incom-
ing requests. The tradeoff here is that since each
worker is a full separate process keeping more
spares around requires more memory, but low-
ers the expected response time latency since we
need to also incur the cost of a fork.

2For most vhost types we use a Prefork Apache MPM rather
than a threaded one, so each worker is a separate full process
since most user code, especially PHP, doesn’t properly support
threading.

3Currently the maximum value of all vhosts in a security
domain is used for that Apache instance, though under the
proposed scheme that might be reworked to be the sum of the
security domain’s vhosts’ workers property

2. The workers property is assumed to represent
the relative importance of the vhost (ie: if we ex-
pect more requests, then more people must care
about the resource it represents), so we configure
our monitor systems to check it more frequently.
This has the side effect of possibly keeping more
children active after they otherwise would have
been reclaimed in the case that the vhost goes
idle for a period of time.

Currently the workers property defaults to a value
of 2 for all vhosts in order to try and keep memory
requirements low, since most vhosts are not partic-
ularly active. If the vhost has more activity than
that, then extra children are automatically spawned
to handle the incoming requests, and are automati-
cally reclaimed when they’ve been idle for a sufficient
period of time.

On the other hand, certain vhosts get enough activity
or have extra redundancy requirements that they are
assigned multiple backends and the frontend proxy is
configured to balance and failover among them. This
is currently controlled through a secondary backend

instances integer field, and is also controlled manu-
ally.

5.3 Vhost Size

If we had

1. a good value for the workers property for a vhost
that accurately represents the expected number
of requests we’ll need to process in a given time
window, and therefore the number of Apache
child processes that will be running at a given
time, and

2. a good estimate on the amount of memory re-
quired by each of those Apache child processes,

then, we should be able to obtain a reasonable es-
timate on the memory ”size” of a vhost by simple
multiplication. 4 If we additionally had an estimate
on the average amount of time or CPU resources it
took to process a request, we could also obtain an
estimate on the CPU ”size” of a vhost.

To address item 1 we have analyzed the Apache Pre-
fork and Worker MPM source code and written a sim-
ulator to determine the number of active worker pro-
cesses/threads at each second throughout the day 5

4At least, that mechanism works for Prefork Apaches. For
threaded Apaches we also need to divide by a factor of 25 first,
since in that case a new full process is not forked until all of
its threads have been claimed.

5This is the highest granularity the logs will give us.

5

D
RA
FT

by replaying access logs. This time series data is then
summarized on a per day basis into a table that in-
cludes for each vhost and each day min, max, median,
mean, and variance of the number of active workers
for that vhost throughout that day, so that we can
very roughly reconstruct the distribution later should
we need to, without needing to rerun our simulator
over all of the log data. For this initial experiment
we decided to use the average number of workers per
day, however for the future we are considering using
an exponentially weighted moving average over each
day’s average or maximum in order to get somewhat
smooth reactions to changes in long term vhost activ-
ity. One area of future study could be to analyze how
best to tune the exponential factor parameter, or if
another distribution would provide a better estimate
altogether.

To address item 2 for each vhost accurately, we would
really need to perform load testing on each vhost
independently. Since this is not practical, we de-
cided to obtain an upper bound by loading a vhost
with as many extensions and plugins as possible (ie:
turn all the available settings on) and load test it
to get a reasonable guess at how much memory a
single worker could possibly use. We then applied
techniques outlined in Section 10.1.1 of [3] in order
to estimate the real memory usage of each Apache
process, since there’s some shared between different
worker children. This is a somewhat more difficult
task for the threaded Worker MPM type vhosts, so
at the moment our results are confined to just Prefork
MPM type vhosts. It should be noted that the tech-
nique above also doesn’t currently consider memory
required by threads of other cooperating processes on
the system such as shibd.

To extend this to a multidimensional vector pack-
ing problem, for vhost request CPU resource esti-
mates we can again use log analysis of the average
request response times. However, this number unfor-
tunately encompasses extra overhead such as external
I/O calls during which a worker may be preempted so
it does not accurately reflect actual CPU resource de-
mands. Hence, for the moment we restrict ourselves
to only considering the memory dimension.

5.4 Vhost to VM Assignment and In-
frastructure Sizing

Thus, for each separate type of vhost, we have a bin
packing problem where the capacity of the VM (bin)
for that type is fixed, and the vhost sizes (items) vary
in size. Our goal then is to determine the minimum

number of VMs we need in order to serve all of our
vhosts.

First we note that a vhost with a ”size” larger than
the capacity (ie: RAM, CPU) of a single backend of
that type, or perhaps some fraction of it 6, would be
a good indication of when we need to split that vhost
across multiple secondary backends. This should then
be equivalent, for instance, to replacing a ball of size
n with 2 of size n

2 , and then running our bin packing
algorithm.

Next, although load balance is perhaps a separate
problem, we would also like to consider a bin packing
solution’s affect on it as follows.

If were also to use bin packing to determine where
to actually place each vhost, then we would like our
solution to be done in a ”stable” and well balanced
way so that we do not disrupt service too much by
unnecessarily moving vhosts to different VMs even
when their ”sizes” might change slightly overtime and
so that the heaviest vhosts are not generally pitted
together as that might impact our ability to handle
a flood of requests to a particular vhost gracefully
or the loss of a VM without an outage on too many
”important” vhosts at once.

Note that in this context our definition of ”stable”
differs from the that typically used in bin packing
contexts. There the term is used to refer to distri-
butions that have bounded expected waste, whereas
we mean something closer to the notion of ”minimal
resizing displacement”. For instance, if we were to
use FFD to place our vhosts on VMs and one of the
larger (and therefore first placed) items was reduced
in size (eg: due to a shift in website content popular-
ity, or time of year relative to the academic calendar),
then potentially many of the vhosts following it are
shifted from their previous VM assignments.

Finally, although rebalancing is usually done off peak
request hours, adding new vhosts can happen at any
time during the day and they are expected to be pro-
visioned and made available within a very short pe-
riod of time. Therefore, we consider running our bin
packing in to different phases:

1. An online version that takes the current packing
configuration and determines the best place for
an incoming item of that type.

2. An offline version that runs off hours to rebalance
everything.

Note, in case 1 there are at least three things to note:

6For these experiments we tried 1
4

.

6

D
RA
FT

1. We don’t know how large a virtual host will be
at first.

2. Our system could actually lock the database the
configuration is derived from for a short period
and perform an offline FFD algorithm in order to
find a better approximation as to where to place
a vhost.

3. Some sort of periodic rebalance will still be nec-
essary since vhosts change in size over time and
may in fact be decommissioned and leave the sys-
tem entirely.

5.5 Evaluation

In order to evaluate the FF(D), BF(D), and SS(D)
heuristics on our vhost input data we consider the
following metrics: 7

1. Total number of bins required, especially when
compared with the current number of VMs in
our system.

2. Total waste in the proposed solution.

3. Average waste per bin, and the standard devia-
tion of this over all bins.

4. Average item size per bin, and the standard de-
viation of this over all bins, as a measure of load
balance.

For each heuristic’s initial solution, in order to gain
some measure of the displacement effect, we also con-
duct some experiments:

1. Increase and decrease the heaviest vhost by a
factor of 1

10 to simulate a slight drop or slight
increase in activity.

2. Increase the lightest vhost by a factor of 2 and 5
to simulate a slight increase in activity.

We then measure the displacement effect as the num-
ber of vhosts that change their VM assignments as a
result of the changes listed above.

Finally, as an attempt to incorporate some load bal-
ancing into the algorithm, we propose a simple exten-
sion to the BF(D) algorithm, which we call BF(D) LB
that adds the rule that for each bin, no more than one
vhost of size 1

4 of the VM’s capacity shall be allowed
in a valid configuration.

7Note, we excluded HARMONIC and RF due to time con-
straints and because they clearly weren’t going to satisfy our
stability and load balance constraints.

Later we also added the rule to not place more than
one copy of a split vhost (due to secondary instances,
which is in turn due to over all size relative to a frac-
tion of the bin size) on the same VM. We did this after
we noticed that despite preprocessing large vhosts to
split them as described above the original algorithms
still packed those vhosts together, which largely de-
feats the point.

We also determined through some trial and error that
using almost any form of mean of daily means (rather
than max, median, etc.) resulted in the closest ap-
proximation of results to what we are currently run-
ning in production. At the time of this writing only
three months of historical logs had been simulated to
obtain daily worker summaries, which is fairly closely
aligned with a single semester of activity (our busy
period), so it’s possible that as we gain more and
more historical data different ways of processing that
data become more useful. For the results posted here,
we simply used an overall average of all available daily
averages for each vhost in order to obtain our worker
count estimates. They were also verified against sev-
eral weeks of monitoring report data for a subset of
the vhosts so that we believe they are accurate.

For our measured worker process in use memory sizes,
we used the maximum value seen by examining the
systems over several days. However, for each type,
the maximum varies significantly from the mean.
This is another area for further refinement.

Two separate vhosts types were considered.

1. php5 is generally available for all users and con-
tains many small vhosts, with a few medium
sized ones.

2. moodle is a specialized fork of the php5 type. It’s
backends get more resources and has far fewer,
but generally much larger vhosts, as well as a few
small ones for development and testing purposes.

It should also be noted that in both cases, the dis-
tribution of our item sizes is far from uniform (there
are many more smaller items), so the Uj, k and many
other average case bounds derived for the heuristics
do not apply. Rather, unfortunately, determining
which of the three cases our distribution is in is NP
hard.

5.6 Results

The results for moodle type vhosts is given in 5.6.
Although, as we have said, there are a couple of very
large vhosts in this class that are split across multiple

7

D
RA
FT

Table 1: moodle results
moodle FF(D) BF(D) SS(D) BFD LB
Total Bins 1 1 1 4
Difference
from
Prod.

-4 -4 -4 -1

Avg. Item
Size/Bin
Mean

561.75 561.75 561.75 888.30

Avg. Item
Size/Bin
Stddev.

0 0 0 377.07

Total
Waste

1394 1394 1394 19058

Waste/Bin
Mean

1394 1394 1394 4764.50

Waste/Bin
Stddev.

0 0 0 30.31

Largest
Vhost
1.1x In-
crease
Displace-
ment

0 0 0 0

Largest
Vhost
0.9x De-
crease
Displace-
ment

0 0 0 0

Smallest
Vhost 2x
Increase
Displace-
ment

0 0 0 0

Smallest
Vhost 5x
Increase
Displace-
ment

0 0 0 0

backend VMs, the standard algorithms all repack the
split vhost items back into the same bin. As such,
the online and offline versions, actually behave iden-
tically, so they are combined in this table. This is
contrary to our experience with these vhosts, so we
believe that the worker process size estimates must
be in accurate, though it’s also possible that these
vhosts, unlike what we’d assumed earlier for the oth-
ers, are actually bottlenecked by CPU, so measuring
these vhosts’ size by memory alone may be insuffi-
cient. Although the numbers get a little bit closer to
what we see in practice for this case when we use the
maximum observed worker process size, then the val-
ues for the php5 data set is blown out of proportion.

The php5 type vhosts produce slightly more inter-
esting results. For solutions that have more than
one bin, we would expect the one that has the least
standard deviation of item sizes among the bins to
give the most balanced solution. It makes some sense
that the online versions of these heuristics should give
those since they get a slightly more random ordering
of the input. 8 However, it’s interesting to note that
these layouts also give the most displacement when
vhost activity and sizes change.

Though it seems natural that our extra load balance
conditions would lead to more bins and extra wasted
space, we were surprised that the BFD LB heuristic
didn’t actually help the load balance much. This can
be seen in both the average item size deviation as
well as the waste per bin deviation - there are large
swings amongst the utilization of the bins.

6 Multi Dimensional Bin Pack-
ing, Applications, and Re-
lated Work

In this section we discuss some applications and re-
lated work. As many applications of bin packing tend
to use some form of a general multidimensional for-
mat (in the literature this is sometimes referred to as
GBPP) we first give a brief overview of some of those
variants.

Bin packing’s perhaps most literal application is
packing real three dimensional physical objects like
manufactured parts or separate items from an online
purchase into a box for shipping. This is what is
typically meant by the multidimensional bin packing
problem (MDBPP). In its general form it consists of
packing hyperpolygons (frequently rectangular) into

8Subject to the database and Perl hash ordering.

8

D
RA
FT

Table 2: php5 results
php5 FF BF SS
Total Bins 8 8 8
Difference
from
Prod.

2 2 2

Avg. Item
Size/Bin
Mean

39.66 40.08 40.08

Avg. Item
Size/Bin
Stddev.

3.48 3.57 3.57

Total
Waste

768 992 992

Waste/Bin
Mean

96.00 124.00 124.00

Waste/Bin
Stddev.

253.99 328.07 328.07

Largest
Vhost
1.1x In-
crease
Displace-
ment

7 9 9

Largest
Vhost
0.9x De-
crease
Displace-
ment

39 30 30

Smallest
Vhost 2x
Increase
Displace-
ment

0 6 6

Smallest
Vhost 5x
Increase
Displace-
ment

0 6 6

Table 3: php5 results
php5 FFD BFD SSD BFD LB
Total Bins 8 8 8 10
Difference
from
Prod.

2 2 2 4

Avg. Item
Size/Bin
Mean

67.43 67.43 67.43 101.55

Avg. Item
Size/Bin
Stddev.

64.36 64.36 64.36 89.83

Total
Waste

992 992 992 4576

Waste/Bin
Mean

124.00 124.00 124.00 457.60

Waste/Bin
Stddev.

286.52 286.52 286.52 676.21

Largest
Vhost
1.1x In-
crease
Displace-
ment

0 0 0 0

Largest
Vhost
0.9x De-
crease
Displace-
ment

2 2 2 2

Smallest
Vhost 2x
Increase
Displace-
ment

0 0 0 0

Smallest
Vhost 5x
Increase
Displace-
ment

0 0 0 0

9

D
RA
FT

hypercubes, again usually normalized to unit capac-
ity in each dimension, though in some cases a single
containing bin is treated to have unbounded height
and the goal instead is to find the minimum height
necessary to pack all the items into a rectangular hy-
perbox. [23]

One especially common version of this is that of pack-
ing 2D rectangles into a 2D bounding box. It comes
in both orientable, where we are allowed to rotate the
items, and non-orientable forms. This is often used
in web site optimization of images so that rather than
many individual resource round trip requests, a client
need only suffer one such request. [33]

In that case, some common techniques include things
like using FFD or BFD within strips, effectively
choosing to optimize one dimension, say width, po-
tentially at the expense of another, so that FFD is
executed in iterative rounds starting from, say the
lower left corner, and the strip height merely becomes
the max height of an item placed during that round.
Some optimizations can then be achieved by packing
smaller items that will fit into the remaining space in
the top right corner, again by FFD. [37]

The general multidimensional problem tends to use
similar approaches: assigning a weighting to the var-
ious dimensions and running FFD, or another greedy
heuristic, over each of them, or AI approaches like ge-
netic algorithms, and iterated local search with mul-
tiple restart.

A slightly more restricted formulation of the multi-
dimensional problem, and one that maps better to
our particular example, is that of vector packing
(MDVP). In it, each item is still represented as an
array of sizes for each dimension, ~i =< si1 , ..., sid >,
but rather than treating these as hyperboxes, we treat
them as vectors, so that rather than filling out the
corners of the bounding box in every dimension and
at every level, each item placed reduces the problem
to a new bounding box of size ~B−~i. Viewed in the 2D
case, we are placing rectangles so that the bottom-
left corner of a new item touches the top-right corner
of the previous one, or simply as placing vectors head
to tail until we have reached any of the edges of any
of our bounding box.

The vector packing problem maps very naturally to
a number of resource allocation constraint problems
since in a sense, every dimension represents an in-
dependently consumable resource, since each task
(item) generally requires more than one resource,
such as CPU, RAM, I/O, etc., and we cannot over-
run our fixed server (bin) amount for any of them.
As such it is also sometimes referred to as the multi-

capacity bin packing problem (MCBPP).

One particularly interesting extension is task schedul-
ing, since time can itself be viewed as a resource di-
mension. This idea has been applied to multipro-
cessor task scheduling by Johnson et al., though the
problem differs slightly in that we have a fixed num-
ber of fixed sized bins rather than a variable number
that we’re trying to minimize. [6] [26] Instead the
object is the place as many items into the bins (ie:
schedule tasks on the cpus) as possible or to maximize
the reward given by placing certain items.

Another common example these days, and one that
is closely related to our example, is VM placement
and consolidation strategies within a virtualization
infrastructure or small cloud environment. Many dif-
ferent approaches have been considered to address
this problem such as genetic algorithms [36] [38],
LP rounding [?], iterated local search with multiple
restart [31], and of course several variations on the
greedy heuristics we have discussed thus far [32] [25].

However, as near as we can tell, bin packing is typi-
cally not directly used in production [18].

One reason is that although VMs are typically sized
to fixed resource dimensions (eg: 2vCPUs and 4GB
RAM) ahead of time by an administrator, actual
workloads (ie: item sizes) vary quickly within such
an environment and most solutions do not consider
repacking. 9 Furthermore, there is a cost associated
with migrating a VM and the result of doing so on the
VMs already residing on the target location are not
necessarily known ahead of time. Some approaches
to bin packing [34] can take maximizing a profit (or
minimizing a cost) value pij associated with packing
each item into a particular bin, but in the context of
VM placement those profit (or cost) values become
functions whose values may change with every item
placed making their applicability less obvious.

A second reason is that the heuristics involved in bin
packing do not usually take load balance into account,
though they may achieve some limited balance as a
by product of the particular heuristic used. This is
a concern we have attempted to address in our case
study evaluations to a limited degree and would be
worth further study.

Rather, implementations such as VMWare appear to
be more concerned with approximating a load balanc-
ing solution by means of an online greedy hill climb-
ing approach that iteratively finds the best VM to
place or migrate within the fixed set of machines it

9See [19] for some theoretical results that do consider
repacking and [31] for some application results with respect
to the Machine Reassignment Problem (MRP).

10

D
RA
FT

has according to some cost-benefit metrics, and con-
sider the use of bin packing as either an offline task
to determine how large to size physical infrastructure
during purchasing phases or to only be used during
admission control phases when deciding whether or
not to allow new VMs to be added to the running
system - very similar to the mutliprocessor schedul-
ing task, though even there there are differences since
for instance not all physical servers may be identical.

However, as energy concerns continue to become
more of a first-class citizen in such environments, as
outlined for example in [5] [38], we believe that real
time multi capacity bin packing approaches to deter-
mine the minimal number of physical servers neces-
sary to service the current load requirements will play
a larger role.

7 Conclusions and Future
Work

In this paper we have presented a survey overview of
the bin packing problem, some of its more important
theoretical results, greedy heuristics and their analy-
ses, and its applications to things like VM placement
and consolidation.

We also conducted a brief evaluation of some of the
heuristics in the context of a specific application case
study: packing virtual hosts into VMs.

Overall we believe that while they are useful for sizing
the raw number, they make poor assignment routines
when things like load balance and displacement are
taken into account. This is a feature that some indus-
try applications seem to have acknowledged as well.

Some questions for future work we would like to con-
sider include:

• Since our bin packing algorithm is only as good
as our vhost size estimates, at what historical
time scale or exponential factor should we pro-
cess our logs at in order to give appropriate
weight to historical versus recent data?

• Can we extend our sizing techniques to threaded
Worker MPM type vhosts?

• Can we extend the bin packing to a 2 dimen-
sional vector packing, provided we are able to
find a way to measure actual CPU capacity and
requirements accurately? Does this extra di-
mension perhaps account for the discrepancy be-
tween our predicted and production values?

• What is the measured impact that taking these
sizing and placement adjustments into account
have on our average response time latency or
other workload performance metrics?

References

[1] S. Albers and M. Mitzenmacher. Average-case
analyses of first fit and random fit bin packing.
In Proceedings of the ninth annual ACM-SIAM
symposium on Discrete algorithms, pages 290–
299. Society for Industrial and Applied Mathe-
matics, 1998.

[2] D. L. Applegate, L. Buriol, B. Dillard, D. S.
Johnson, and P. W. Shor. The cutting-stock ap-
proach to bin packing: theory and experiments.
Proceedings of Algorithm Engineering and Ex-
perimentation (ALENEX), pages 1–15, 2003.

[3] S. Bekman and E. Cholet. Practical modperl.
O’Reilly Media, 2003.

[4] A. Borodin. Online computation and competi-
tive analysis. Cambridge University Press, Cam-
bridge, U.K. New York, 1998.

[5] M. Chen, H. Zhang, Y.-Y. Su, X. Wang,
G. Jiang, and K. Yoshihira. Effective vm sizing
in virtualized data centers. In Integrated Net-
work Management (IM), 2011 IFIP/IEEE Inter-
national Symposium on, pages 594–601. IEEE,
2011.

[6] E. G. Coffman, Jr, M. R. Garey, and D. S. John-
son. An application of bin-packing to multipro-
cessor scheduling. SIAM Journal on Computing,
7(1):1–17, 1978.

[7] E. Coffman Jr, C. Courcoubetis, M. Garey,
D. Johnson, P. Shor, R. Weber, and M. Yan-
nakakis. Bin packing with discrete item sizes,
part i: Perfect packing theorems and the aver-
age case behavior of optimal packings. SIAM
Journal on Discrete Mathematics, 13(3):384–
402, 2000.

[8] E. Coffman Jr, C. Courcoubetis, M. Garey, D. S.
Johnson, L. A. McGeoch, P. W. Shor, R. R. We-
ber, and M. Yannakakis. Fundamental discrep-
ancies between average-case analyses under dis-
crete and continuous distributions: A bin pack-
ing case study. In Proceedings of the twenty-third
annual ACM symposium on Theory of comput-
ing, pages 230–240. ACM, 1991.

11

D
RA
FT

[9] E. Coffman Jr, D. Johnson, P. Shor, and R. We-
ber. Markov chains, computer proofs, and
average-case analysis of best fit bin packing. In
Proceedings of the twenty-fifth annual ACM sym-
posium on Theory of computing, pages 412–421.
ACM, 1993.

[10] C. Courcoubetis and R. Weber. A bin-packing
system for objects with sizes from a finite set:
Necessary and sufficient conditions for stability
and some applications. In Decision and Con-
trol, 1986 25th IEEE Conference on, volume 25,
pages 1686–1691. IEEE, 1986.

[11] C. Courcoubetis and R. Weber. Necessary and
sufficient conditions for stability of a bin-packing
system. Journal of applied probability, pages
989–999, 1986.

[12] C. Courcoubetis and R. Weber. Stability of on-
line bin packing with random arrivals and long-
run-average constraints. Probability in the En-
gineering and Informational Sciences, 4(4):447–
460, 1990.

[13] J. Csirik, D. S. Johnson, and C. Kenyon. On the
worst-case performance of the sum-of-squares
algorithm for bin packing. arXiv preprint
cs/0509031, 2005.

[14] J. Csirik, D. S. Johnson, C. Kenyon, J. B. Orlin,
P. W. Shor, and R. R. Weber. On the sum-of-
squares algorithm for bin packing. Journal of the
ACM (JACM), 53(1):1–65, 2006.

[15] J. Csirik, D. S. Johnson, C. Kenyon, P. W. Shor,
and R. R. Weber. A self organizing bin packing
heuristic. In Algorithm Engineering and Experi-
mentation, pages 250–269. Springer, 1999.

[16] W. F. De La Vega and G. S. Lueker. Bin packing
can be solved within 1+ ε in linear time. Com-
binatorica, 1(4):349–355, 1981.

[17] A. Federgruen and G. van Ryzin. Proba-
bilistic analysis of a generalized bin packing
problem and applications. Operations research,
45(4):596–609, 1997.

[18] A. Gulati, A. Holler, M. Ji, G. Shanmuganathan,
C. Waldspurger, and X. Zhu. Vmware dis-
tributed resource management: Design, imple-
mentation, and lessons learned. VMware Tech-
nical Journal, 1(1):45–64, 2012.

[19] K. Jansen and K.-M. Klein. A robust afptas for
online bin packing with polynomial migration.
arXiv preprint arXiv:1302.4213, 2013.

[20] D. S. Johnson. Fast algorithms for bin pack-
ing. Journal of Computer and System Sciences,
8(3):272–314, 1974.

[21] D. S. Johnson, A. Demers, J. D. Ullman, M. R.
Garey, and R. L. Graham. Worst-case perfor-
mance bounds for simple one-dimensional pack-
ing algorithms. SIAM Journal on Computing,
3(4):299–325, 1974.

[22] N. Karmarkar and R. M. Karp. The differencing
method of set partitioning. Computer Science Di-
vision (EECS), University of California Berkeley,
1982.

[23] R. M. Karp, M. Luby, and A. Marchetti-
Spaccamela. A probabilistic analysis of multidi-
mensional bin packing problems. In Proceedings
of the sixteenth annual ACM symposium on The-
ory of computing, pages 289–298. ACM, 1984.

[24] C. Lee and D.-T. Lee. A simple on-line
bin-packing algorithm. Journal of the ACM
(JACM), 32(3):562–572, 1985.

[25] S. Lee, R. Panigrahy, V. Prabhakaran, V. Ra-
masubramanian, K. Talwar, L. Uyeda, and
U. Wieder. Validating heuristics for virtual ma-
chines consolidation. Microsoft Research, MSR-
TR-2011-9, 2011.

[26] W. Leinberger, G. Karypis, and V. Kumar.
Multi-capacity bin packing algorithms with ap-
plications to job scheduling under multiple con-
straints. In Parallel Processing, 1999. Proceed-
ings. 1999 International Conference on, pages
404–412. IEEE, 1999.

[27] F. M. Liang. A lower bound for on-line bin pack-
ing. Information processing letters, 10(2):76–79,
1980.

[28] Y. Liu, N. Bobroff, L. Fong, S. Seelam, and
J. Delgado. New metrics for scheduling jobs
on cluster of virtual machines. In Parallel and
Distributed Processing Workshops and Phd Fo-
rum (IPDPSW), 2011 IEEE International Sym-
posium on, pages 1001–1008. IEEE, 2011.

[29] E. C. man Jr, M. Garey, and D. Johnson. Ap-
proximation algorithms for bin packing: A sur-
vey. Approximation Algorithms for NP-Hard
Problems, pages 46–93, 1996.

[30] S. Martello. Knapsack problems : algorithms
and computer implementations. J. Wiley & Sons,
Chichester New York, 1990.

12

D
RA
FT

[31] R. Masson, T. Vidal, J. Michallet, P. H. V.
Penna, V. Petrucci, A. Subramanian, and
H. Dubedout. An iterated local search heuris-
tic for multi-capacity bin packing and machine
reassignment problems. 2012.

[32] R. Panigrahy, K. Talwar, L. Uyeda, and
U. Wieder. Heuristics for vector bin packing.
Technical report, Technical report, Microsoft
Research, 2011.

[33] M. Perdeck. Fast Optimizing Rectangle Packing
Algorithm for Building CSS Sprites. http:

//www.codeproject.com/Articles/210979/

Fast-optimizing-rectangle-packing-algorithm-for-bu,
2011. [Online; accessed 19-April-2013].

[34] H. Shachnai and T. Tamir. Approximation
schemes for generalized 2-dimensional vector
packing with application to data placement.
In Approximation, Randomization, and Com-
binatorial Optimization.. Algorithms and Tech-
niques, pages 165–177. Springer, 2003.

[35] P. W. Shor. The average-case analysis of some
on-line algorithms for bin packing. Combinator-
ica, 6(2):179–200, 1986.

[36] D. Wilcox, A. McNabb, K. Seppi, and K. Flana-
gan. Probabilistic virtual machine assignment.
In CLOUD COMPUTING 2010, The First In-
ternational Conference on Cloud Computing,
GRIDs, and Virtualization, pages 54–60, 2010.

[37] S. Wong, Martin and Zhang. Survey on two-
dimensional packing. http://cgi.csc.liv.ac.
uk/~epa/surveyhtml.html, 2006. [Online; ac-
cessed 19-April-2013].

[38] J. Xu and J. A. Fortes. Multi-objective virtual
machine placement in virtualized data center en-
vironments. In Green Computing and Commu-
nications (GreenCom), 2010 IEEE/ACM Int’l
Conference on & Int’l Conference on Cy-
ber, Physical and Social Computing (CPSCom),
pages 179–188. IEEE, 2010.

[39] A. C.-C. Yao. New algorithms for bin pack-
ing. Journal of the ACM (JACM), 27(2):207–
227, 1980.

13

