
CS787 Project Proposal

Brian Kroth

2013-03-04

1 Problem Description

The Computer Aided Engineering center at the Col-
lege of Engineering of UW-Madison has a fairly com-
plex virtual hosting infrastructure that it provides for
the college and other university wide services. The
ultimate issue we would like to be able to answer is
how best to size our server infrastructure to suit the
service’s needs using some variant of bin packing, in-
stead of trial and error. In order to explore how we
might do this, we first describe the system as it is
currently laid out as follows.

1.1 Background

There are roughly 800 individual production virtual
hosts (vhosts) of various types served by roughly 25
backend virtual machine (VM) servers that are prox-
ied by 4 frontend servers. Each vhost has certain
properties associated with it in a database such as
an editing group, the certificate domain it belongs in
1, and a type, as well as a number of others. In or-
der to save on memory footprint required, but still
retain certain security features such as running dif-
ferent websites under different users, the vhosts are
combined into roughly 650 security domains by these
three features, and a single standalone Apache web
server instance is dedicated to running each of these,
with an individual VirtualHost directive for each
vhost that belongs to that security domain.

A vhost’s type might be one of HTML, Mod PHP,
Mod Perl, etc. Each backend VM implements one of
these types and represents a standard hardware con-
figuration (eg: 4 GB RAM, 2 vCPU, etc.) for that
type. The type of a vhost determines which type of
VM a vhost can be assigned to and controls some
of the vhost’s default configuration parameters in-
cluding how much memory a barebones vhost of that
type is expected to take up. We are generally more

1We use wildcard certificates as much as possible to save on
IPv4 address requirements on the frontends, though we make
use of IPv6 addresses extensively as well.

concerned with memory than CPU usage, though cer-
tainly each request occupies a certain amount of CPU
time. However, individual vhost code and settings
customizations can increase that requirement, and
since it is not currently practical to load test every in-
dividual vhost accurately, currently we tend to fairly
crudely estimate the size of a given vhost type by
using what we expect to be typical values and then
possibly adjusting it by a factor based upon the load
its requests generate on the system.

1.2 Vhost Workers

Currently a rudimentary assignment routine is used
to balance the number of the vhosts across the avail-
able number of backends for a given type by con-
sidering a workers property on each vhost, which
is currently set manually, while avoiding moving the
”heaviest” vhosts if possible to prevent service inter-
ruption. The workers property is an integer field
which is (ab)used in the following ways:

1. It represents the number of spare/idle Apache
child processes 2 we configure for the vhost’s se-
curity domain 3 to keep around to process incom-
ing requests. The tradeoff here is that since each
worker is a full separate process keeping more
spares around requires more memory, but low-
ers the expected response time latency since we
need to also incur the cost of a fork.

2. The workers property is assumed to represent
the relative importance of the vhost (ie: if we ex-
pect more requests, then more people must care
about the resource it represents), so we configure
our monitor systems to check it more frequently.
This has the side effect of possibly keeping more

2For most vhost types we use a prefork Apache MPM rather
than a threaded one, so each worker is a separate full process
since most user code, especially PHP, doesn’t properly support
threading.

3Currently the maximum value of all vhosts in a security
domain is used for that Apache instance, though under the
proposed scheme that might be reworked to be the sum of the
security domain’s vhosts’ workers property

1



children active after they otherwise would have
been reclaimed in the case that the vhost goes
idle for a period of time.

Currently the workers property defaults to a value
of 2 for all vhosts in order to try and keep memory
requirements low, since most vhosts are not partic-
ularly active. If the vhost has more activity than
that, then extra children are automatically spawned
to handle the incoming requests, and are automati-
cally reclaimed when they’ve been idle for a sufficient
period of time.

On the other hand, certain vhosts get enough activity
or have extra redundancy requirements that they are
assigned multiple backends and the frontend proxy is
configured to balance and failover among them. This
is currently controlled through a secondary backend

instances integer field, and is also controlled manu-
ally.

1.3 Vhost Size

If we had

1. a good value for the workers property for a vhost
that accurately represents the expected number
of requests we’ll need to process in a given time
window, and therefore the number of Apache
child processes that will be running at a given
time, and

2. a good estimate on the amount of memory re-
quired by each of those Apache child processes,

then, we should be able to obtain a reasonable es-
timate on the memory ”size” of a vhost by simple
multiplication. 4 If we additionally had an estimate
on the average amount of time or CPU resources it
took to process a request, we could also obtain an
estimate on the CPU ”size” of a vhost.

To address item 1 we could perform log analysis for
each vhost (excluding monitoring requests) to deter-
mine for some time window (to be determined) the
number of concurrent requests received. This should
give us an estimate on the number of active children
required in that window. We could then either take
the average number of concurrent requests or some
other distribution in order to obtain a good value for
the workers property of a vhost.

4At least, that mechanism works for prefork Apaches. For
threaded Apaches we also need to divide by a factor of 25 first,
since in that case a new full process is not forked until all of
its threads have been claimed.

One issue with this approach is that we do not know
what the best time window is to use for evaluating
”concurrent” requests. One possible approach is to
look at the rate at which Apache children are re-
claimed after being idle.

Another issue is that it’s not clear on what historical
time scale we should be processing logs. For instance,
processing all logs in the past year would given us
better stability when considering periodic spikes, but
would not react as quickly to a recent general uptake
in activity for a vhost. Furthermore, it would be
expensive to compute without way to track a sort
of moving average since there are roughly 2 GB of
logs per day and they would need to be decompressed
first. 5 On the other hand, a single day’s worth of
logs might be to fine to get a good understanding of
the long term behavior of a vhost.

To address item 2 accurately, we would really need
to perform load testing on each vhost independently.
Since this is not practical, we could possibly obtain an
upper bound by loading a vhost with as many exten-
sions and plugins as possible (ie: turn all the available
settings on) and load test it to get a reasonable guess
at how much memory a single worker could possibly
use. Or, we could estimate some middle ground be-
tween the defaults (minimum) and the maximum. In
either case it is important to accurately measure the
actual amount of resident unshared memory for the
process.

For vhost request CPU resource estimates we can
again use log analysis of the average request response
times. However, this number unfortunately encom-
passes extra overhead such as external I/O calls dur-
ing which a worker may be preempted so it does not
accurately reflect actual CPU resource demands.

1.4 Vhost to VM Assignment and In-
frastructure Sizing

Assuming we had a reasonable estimate on the ”size”
of each vhost, then we should be able to answer the
question of how best to size the number of backend
VMs for a particular type in our infrastructure by ap-
plying a bin packing algorithm 6 to each vhost type,
where the vhosts are the balls and the VMs are the
fixed sized bins, the number of which we need to use
we want to minimize.

We would like our solution to be done in a stable and
well balanced way so that we do not disrupt service
too much by unnecessarily moving vhosts to different

5What is a good mechanism for that?
6https://en.wikipedia.org/wiki/Bin packing problem

2



VMs even when their ”sizes” might change slightly
overtime and so that the heaviest vhosts are not gen-
erally pitted together as that might impact our ability
to handle of requests to a particular vhost gracefully.

Additionally, a vhost with a ”size” larger than the
capacity (ie: RAM, CPU) of a single backend of that
type would be a good indication of when we need to
split that vhost across multiple secondary backends.
This could be equivalent, for instance, to replacing a
ball of size n with 2 of size n

2 , and then running our
bin packing algorithm.

Finally, although rebalancing is usually done off peak
request hours, adding new vhosts can happen at any
time during the day and they are expected to be pro-
visioned and made available within a very short pe-
riod of time. Therefore, our algorithm should be able
to handle both cases well.

2 Deliverables

For this project, we’d like to start with a survey of sin-
gle dimensional bin packing algorithms, such as the
first fit approximation algorithm, since in our case
we’re principally concerned with memory at the mo-
ment, and in particular online versions, in order to
handle the arrival of new vhosts (balls) to our VMs
(bins).

We’d like to be able to present a possibly adapted
algorithm as a solution that meets the criteria pre-
sented in the previous section. We’d also like to un-
derstand, perhaps through some bounds, how bal-
anced and how stable the different solutions provided
are.

In order to be able to analyze that we could use a
measure of the number of vhosts assigned to a par-
ticular VM and the deviation from that average as
the balance. Stability, on the other hand, could be
defined as the number of vhosts that need to change
to a different VM when a new vhost is added to the
system.

To start with this research, we’ve obtained or placed
holds on the material cited in the References section.

If time allows, understanding how to extend this to
a two dimensional bin packing scheme (ie: RAM and
CPU) would be interesting.

Ultimately, we would like to be able to implement
this, but again only if sufficient time allows. In that

case, an empirical comparison of the current balanc-
ing scheme vs. the bin packing one would be desir-
able. Some resulting system metrics to consider could
possibly be the total RAM requirements (ie: sum of
the bin capacities) and any measurable differences in
vhost response time.

References

[1] S. Albers and M. Mitzenmacher. Average-case
analyses of first fit and random fit bin packing. In
Proceedings of the ninth annual ACM-SIAM sym-
posium on Discrete algorithms, pages 290–299.
Society for Industrial and Applied Mathematics,
1998.

[2] A. Borodin. Online computation and competi-
tive analysis. Cambridge University Press, Cam-
bridge, U.K. New York, 1998.

[3] E. Coffman Jr, C. Courcoubetis, M. Garey,
D. Johnson, P. Shor, R. Weber, and M. Yan-
nakakis. Bin packing with discrete item sizes, part
i: Perfect packing theorems and the average case
behavior of optimal packings. SIAM Journal on
Discrete Mathematics, 13(3):384–402, 2000.

[4] C. Courcoubetis and R. Weber. Stability of on-
line bin packing with random arrivals and long-
run-average constraints. Probability in the En-
gineering and Informational Sciences, 4(4):447–
460, 1990.

[5] A. Federgruen and G. van Ryzin. Probabilistic
analysis of a generalized bin packing problem and
applications. Operations research, 45(4):596–609,
1997.

[6] C. Lee and D.-T. Lee. A simple on-line bin-
packing algorithm. Journal of the ACM (JACM),
32(3):562–572, 1985.

[7] S. Martello. Knapsack problems : algorithms
and computer implementations. J. Wiley & Sons,
Chichester New York, 1990.

3


