
DRAFT: Ext4 with Parity and Checksums

Brian Kroth
bpkroth@cs.wisc.edu

Suli Yang
suli@cs.wisc.edu

Abstract

NOTE: Due to a number of reasons we have abandoned
the pursuit of handling this within the filesystem layer.
Instead, we’ve decided to adapt Linux’s MD software
RAID implementation to include checksums and to reuse
the techniques previously developed in [2] in order to
speed up recovery of the RAID to a consistent state fol-
lowing a crash.

The reasons for this are as follows:

1. The implementation of this method is far less intru-
sive. In the fs layer we would have had to fight with
the entire fs layout, page cache, behavior, block al-
location logic, etc.

2. Our journalling protocol didn’t really make use of
the fact that we had journalled full checksum/parity
blocks upon crash recovery. Rather, all it did was
use their locations to figure out where it should re-
calculate the checksums/parity. This is effectively
the same scheme as that presented in [2].

3. Without being aware of it from top to bottom the
filesystem can’t really do anything interesting to re-
covery from the fact that checksums don’t match
anyways. RAID on the other hand can use this data
to rebuild a stripe similar to ZFS.

1 Introduction

This is the intro.

Disks fail.

Sometimes silently.

We want to detect it.

We’d even like to repair it.

? Why at the filesystem level ?

End-End ...

Here’s a citation for ext4 [3].

We designed a system that introduces checksumming and
parity into ext4/jbd2 at a stripe level.

2 Background

This is the background section.

3 Design Decisions

3.1 Problem Overview

We wish to add checksuming and parity features to ext4
such that we can tolerate a single block error. Check-
sums are necessary to determine when and which block
has gone bad so that it can potentially be recovered from
parity.

The summary of the major problem to overcome is that
without data journalling mode (ie: ordered or write-
back data journalling where only metadata is journalled),
checksums and the datablocks they protect must be writ-
ten separately to their fixed disk locations and due to the
nature of the disk these updates are not atomic. Thus, in a
model where we store a single checksum/parity block for
an extent or more generally a group of blocks, no matter
the order they’re written, we can reach a state (eg: after a
partial write crash or error) where the data and its check-
sum do not match up, but we cannot be bad aware of this
after a crash. We solve this by storing two checksums on
disk, the current and previous, and maintaining the in-
variant that each data block will at all times match one
of these two checksums, else we must invoke a recovery
from parity.

In general we will not address data journalling mode
as it’s somewhat a simplification of ordered journalling
mode. That is, if everything is logged to the journal, we
don’t have any consistency problems.

First, let us address some basic design comparisons and
questions.

3.2 Checksum Block Association

Given that we have two checksum/parity block versions
to store, where should we store them?

Associating them with an extent is an incomplete solu-
tion since it does not handle all metadata. Additionally,

it’s an inefficient solution due to the fact that extent sizes
can vary radically. Also, there is an inconsistent recovery
guarantee in the extent model.

Thus, we arrive at the alternative of associating them
based on a stripe size of N blocks, where N is speci-
fied by the user as the level of recovery guarantee that
they wish to have at mkfs time. In this way we can ig-
nore what the content in the "datablocks" actually is to
a certain degree since the checksum/parity block pair is
simply a protection over an individual stripe. It should be
noted that since we pair checksum and parity blocks, the
maximum value of N is restricted based upon the num-
ber of checksums we can store in a filesystem block. See
sections 3.5 and 3.4 for further discussions of this topic.

3.3 Checksum Block Layout

In either association case, we need to consider where to
store the checksum/parity block pairs.

For backwards compatibility with the current ext4 on
disk structure we could consider storing them in a sep-
arate fixed location, much like the addition of a journal
file was backwards compatible with ext2. However, we
probably also wish to read and compare the checksum
upon every read of a datablock, else how will we know
when something has gone wrong and that we need to is-
sue recovery. This last desire implies that we should store
them close to the data to avoid extra long seeks during
uncached read operations. Moreover, this behavior co-
operates better with the internal caching and read-ahead
behavior of the disk.

Thus, we originally came up with the following layout,
in which blocks were organized as a stripe group with
leading and trailing checksum/parity block pairs:

FIXME: Turn this into a figure.
+-----+-----+---+---+---+-----+-----+ | P_new

| C_new | D_1 | ... | D_N | P_old | C_old |

+-----+-----+---+---+---+-----+-----+

In this model the beginning and end checksum/parity
block pairs would alternate between which matched the
in progress (new) and current (old) data. We now refer
to this model as the LFS style layout since it bears some
resemblance to LFS’s checkpoint regions.

A challenge here is determining which block pair to write
during a rewrite of data within the stripe. Upon first write
we have no information, so at best we must guess and po-
tentially have to read the next block, at worst we have to
read both blocks and compare some generation number.
Now, let’s suppose we cache this data after that point.

In a 512GB drive (not especially large by today’s stan-
dards), we have 131072000 4K fs blocks. Supposing

a 16 block stripe size we have about 8192000 check-
sum/parity new/old pairs to be concerned with. We need
at least 2 bits of information for each of these: one to de-
note if we’ve read it, another to denote which is the live
pair. This results in about 2MB of cache for the entire
filesystem. For a 16TB fs we’d need 64MB, which be-
gins to look like an excess amount. FIXME: This isn’t
nearly as bad as I originally thought. Perhaps a com-
parison with ZFS?

Upon writes, we have two options in this model for
the order in which we write datablocks and checksum
blocks.

1. We could hook into the usual jbd2 journalling code
and write all affected checksum blocks for the
datablocks of a given transaction before the data
blocks.

2. We could write the checksum blocks along with
their corresponding datablocks, one stripe at a time.

The first involves a single pass over the disk in one direc-
tion with a number of short seeks followed by a wait and
a long seek.

The second involves a series of short seeks and waits.
In the LFS style layout outlined above it would also po-
tentially involve backwards seeks in each of the short
seek groups. One potential way of solving that partic-
ular issue is to change the stripe layout to store an extra
checksum/parity block so that writes can always happen
in a unidirectional fashion yet partial writes won’t oblit-
erate our old values. However, this uses extra space and
still involves seeks for non full stripe writes. Further,
if the disk reorders I/O operations we cannot guarantee
correctness.

FIXME: Turn this into a figure.
+-----+-----+-----+-----+---+---+---+---+-----+-----+

| P_new | C_new | P_old | C_old | D_1

| D_2 | ... | D_N | P_new | C_new |

+-----+-----+-----+-----+---+---+---+---+-----+-----+

In either case, it appears that we would spend the major-
ity of our time waiting for the disk head to seek and settle
rather than writing.

Thus we arrive at an alternative that journals new check-
sum/parity blocks in a special way before writing the dat-
ablocks associated with a transaction. In this model, for
writes we do as follows:

1. As before, we hook into the usual jbd2 journalling
code to collect and write all affected checksum
blocks for the datablocks of a given transaction be-
fore the data blocks. However, we write them to a

fixed location (ie: journal) before the final destina-
tion and due so in such a way that we are confident
of their validity but have not yet marked them as
replayable.

2. We write the datablocks for the transaction.

3. At this point the datablock checksums should match
the new checksum blocks that we journalled, so we
commit the journal of the checksum/parity blocks
(ie: mark it as replayable).

4. We proceed with the rest of the journalling oper-
ations at this point and at some point (potentially
later) checkpoint everything to disk. If we don’t
crash at this point the correct checksums and data
are at least still in page cache, so whether or not
they’ve made it to their final location doesn’t mat-
ter. In principle this step is really separate, but we
like to include it just to understand how the whole
process fits together.

Note that in data journalling mode all of these steps can
go straight to the journal. Further note, that we have not
addressed whether the metadata journal and checksum
journal are separate. Conceptually we consider them to
be so, however for implementation simplicity, we reuse
and modify the existing jbd2 system.

During a read operation we do as follows:

1. Read the data.

2. Read the checksum.

3. Compare the two, and if necessary begin recovery
procedures for that stripe. Recovery is effectively
an XOR of the remain blocks in the stripe, provided
they all check out as still valid. If that fails, we issue
an error and remount-ro.

There are a number of advantages and a few disadvan-
tages in this model.

1. Our write of the new checksums is sequential and
contiguous. Thus, we’ve introduced only a sin-
gle extra seek and wait rather than O(number of
checksum blocks in the transaction). The number
of seeks for datablocks is unchanged from a non-
checksumming filesystem. However, the check-
sum journal is also potentially further away, which
means a potentially long seek. The hope is that
since ext4 buffers data a bit more aggressively that
previous ext filesystems, and because it batches
many datablock writes into a single transaction,
then the number of checksum blocks affected is
large enough to make better use of disk bandwidth
compared to the seek times.

2. During normal running operations we no longer
need to worry about which checksum is the current
one. It’s understood based on the location and jour-
nalling protocol semantics. Further, this potentially
integrates better into the existing journalling code.

3. During crash recovery, based on the journal, we are
aware of which stripes were potentially in the pro-
cess of being written so we can deal with them im-
mediately rather than waiting for them to be read
again at some later time (possibly much later) as
would have been the case in the LFS style layout. In
that case we would not be able to tell the difference
between a corrupted block due to bitrot and a partial
rot and would typically have to fail the filesystem.

3.4 Pairing Checksum and Parity Blocks

The pairing of checksum and parity blocks allows us to
deal with recovery intelligently and efficiently. FIXME:
discuss the complications of allowing checksums for
N blocks and parity of M blocks.

3.5 Checksum Block Design

Our current design of the checksum block includes a
brief header that stores the block number of the check-
sum a checksum of the whole block including perhaps
some of the metadata followed by a list of checksums
whose index in the list denotes the datablock in the stripe
it represents (including parity blocks).

Each of those entries is composed of a valid bit (if the
block is unused we can avoid the overhead of calculating
it’s parity or checksums), an inode bit and 32-bit inode
number for datablocks that are associated with an inode,
a 6-bit checksum type index (eg: crc32, md5, sha512,
etc.), and the checksum calculation up to 472-bits, round-
ing the entire entry out to 512-bits. We reserve this space
ahead of time for flexibility and because being ultra space
efficient really doesn’t matter since the number of check-
sums we’re able to store in a single fs block is typically
much larger than the parity stripe size, which is deter-
mined at mkfs time by the user. Since the parity stripe
size is a metric of recovery guarantee, the user is likely
to make it much less than even 50. For comparison, if we
assume a 4K fs block, and each entry is 512 bits, we can
store 63 entries plus our header. For further comparison,
consider that typical RAID5 arrays max out their number
of spindles at 16. FIXME: A better probabilistic anal-
ysis could be made here to motivate one stripe size
versus the other and to make sure we’re comparing
apples to apples.

We store the inode number in the checksum blocks as a
potential aid for fsck operations to recover extra data,
however we do not depend upon it.

An example checksum block: FIXME: Turn this
into a figure. +---------+-------------+ | Block

number | Block checksum | +---------+-----+--------+

| V | I | Inode | Type | Checksum |

+--+--+-----+----+--------+ | V | I | Inode | Type

| Checksum | +--+--+-----+----+--------+ | ... |

+-----------------------+

We included the block number in the checksum block in
order to detect misdirected writes and a checksum over
the block to detect errors in that block. Unfortunately, we
still cannot detect phantom writes to the checksum block,
though we can detect phantom writes to the datablocks it
represents.

Alternatively, rather than storing a checksum for the
checksum block in the block itself we could store them
in a fixed location that would allow us to detect phan-
tom and misdirected writes of checksum blocks. Updates
could be done in a manner similar to ZFS. FIXME: what
exactly did we mean by this? However, as discussed in
the section 3.3, this would involve extra seeks and not
make the best use of internal disk cache. We rejected
the idea of storing the checksum of the checksum block
in a nearby checksum block since that would introduce
cascading I/O operations and a significant performance
penalty.

Also, we could potentially store a hamming code like
OCFS2 does for metadata [1], instead of just a check-
sum. This would allow us some us some basic per block
recovery possibilities, up to a single bit error, so that we
could possibly get closer to a state where we can use our
parity block to recover a more damaged block (eg: one
that couldn’t be repaired from a hamming code). Another
spin on this design is that we store checksums for each
sector instead of an fs block. However, we can do no
better in terms of recovery (from our parity block) in that
case anyways, so it doesn’t appear to matter, even though
it’s more likely that within the disk we fail at the gran-
ularity of a sector. In both of these cases, as the IRON
filesystems paper [4] pointed out, sector and bit errors
are likely to exhibit spatial locality, so having only a sin-
gle bit flip in multiple sectors or blocks is unlikely, so the
extra work and storage cost is of little value.

3.6 Discussion

One major problem with this is that it’s a departure from
the ext4 fs layout. FIXME: Is there an excuse, argu-
ment, etc. for/against this?

Another is that we can not recover from stripes that were

partially written and crashed in the middle, but we can
detect it, which is in itself an improvement over current
ext4 semantics, and we can do so at remount time with-
out a full fsck, which is an improvement over our orig-
inal LFS style design. We gain this benefit by journalling
checksum updates. Without this, in ordered journalling
mode the journal doesn’t yet contain the inodes that were
being updated until the data has been fully written. Thus,
we don’t realize that’s there’s inconsistent data until we
next read the blocks during normal operations and find
that we have inconsistencies that we cannot recover from
so we otherwise wouldn’t have been able to just distrust
and recalculate those checksums at remount time as we
do. FIXME: Did we say this already?

FIXME: Says this in a less snarky way. We mostly ig-
nored writeback mode because people who use that don’t
care about their data anyways, so we should prevent them
from mounting it in that mode with checksums enabled
anyways.

In this design, we believe that we are still able to make
use of the performance advantages extents offer such
as smaller metadata requirements and contiguous writes
and reads. This is because when reads are issued they
follow through the VFS layer to the filesystem (FIXME:
we should reference the code paths here. I just don’t
recall what they are at the moment.) where we trans-
late the logical block number to a sector which is then
returned from page cache or issued as a read to the disk.
In the latter case we still need to calculate and compare
checksums so a larger read can still be issued without
being wasted. However, since the page cache is indexed
by both physical block number and file offset, and our
checksums sit within these extents we must exclude the
checksum/parity blocks within this structure from being
returned to the user, which imposes an extra header to
separate these structures in memory. We feel this is a
reasonable sacrifice.

FIXME: @Remzi: Thoughts? Writes on the other
hand mostly just involves some modulo arithmetic and
a few changes to the block allocator to take them into
consideration when finding contiguous regions for new
extents. Another possibility is to change the semantics
of how the fs blocks are indexed, which would change
the layout of the bitmap. We have not yet fully explored
either of these ideas. TODO: Do that.

4 Design

In this section we describe our final design by discussing
the process of writing, reading, and recovery including
more system call code path specifics.

4.1 Write Operation

First, let’s consider a write operation.

1. When a system call is issuing a write, it must calcu-
late the block number within a given extent subject
to the in stripe parity/checksum blocks, then it grabs
a handle from the current transaction of the in mem-
ory journal structure (by start_journal()), writes in
page caches, dirties the affected page, files the af-
fected inode to the current transaction’s inode list,
files the affected metadata block to the transaction’s
metadata list, then stops the journal.

2. At some point later (due to memory pressure, a
commit timer, fsync call, etc.), the journal freezes
(ie: stops accepting any new updates) and later com-
mits.

3. During the journal committing process:

(a) From the inode list in the transaction, we iden-
tify all the dependent data blocks.

(b) From the data block numbers and the corre-
sponding metadata block numbers in the meta-
data list we determine the checksum/parity
block number using some modulo arithmetic
and its new content including the inode num-
ber for the checksum block entry.
Note, that here we are currently glossing over
the specifics of how to update the checksum
and parity blocks efficiently. We discuss a
couple of different strategies we can poten-
tially use in section 4.1.1.
Rather than naively keeping the checksum
and metadata transactions separate, an opti-
mization here is to write the checksum/parity
blocks so that they take into account the new
metadata in the transaction right away as well.
This has the advantage that in the most com-
mon case we are avoiding an extra set of
I/Os to journal checksums for the metadata.
As discussed in section 4.3, even if we crash
between commiting the checksum and meta-
data we will be able to detect it and appropri-
ately recalulate the necessary checksum/parity
blocks.

(c) Journal the checksum and parity blocks to-
gether. Mark the journal as ready but not
checkpointable. See section 4.1.2 for a dis-
cussion on how we mark the journal as ready,
but not checkpointable.

(d) Write data block in place.

(e) Journal the metadata block. Note that as in
ext4, the last two steps can happen in parallel.

(f) Mark both the metadata journal and checksum
journal as checkpointable (replayable) atomi-
cally. Note that we must be able to write the
commit block for our metadata and checksums
atomically, else the checksums and metadata
may not appear to be replayable at the same
time, which will result in non-matching data
upon a journal recovery. To do this we simply
use a single commit block for both checksum
and metadata transactions.

4. Journal checkpointing: write the checksum/parity
and metadata blocks in place. If the storage system
allows, this too could happen in parallel.

4.1.1 Efficient Parity and Checksum Calculations

During a write process for we previously ignored how to
efficiently update the corresponding parity and checksum
blocks.

For both the checksum and parity blocks, independently
we can either update the block’s data in the page cache
or defer until write out time.

For heavily updated pages, it’s probably better to avoid
the overhead of checksum/parity recalculation upon each
write call. However, if we do not do this immediately,
then in the naive implementation, upon flush to disk we
may need to recalculate parity from the other blocks in
the stripe, which can involve more I/O to read them into
memory and can be equally if not more expensive.

In a hybrid approach, at a write system call, we could
take the difference of the page cache version and the
user version and recalculate the parity block in the page
cache immediately. This is a relatively inexpensive op-
eration. 1 Both pages are marked as dirty. Checksums
however, are not updated until the pages are flushed to
disk. This imposes the restriction that upon a read system
call, pages read from the cache cannot be compared with
their checksums if they are marked as dirty, else they will
not match. This has the potential of missing some mem-
ory errors, but other solutions such as ECC memory can
be used to account for that issue. An alternative is that
a mount time option affects whether or not we recalcu-
late and recheck checksums for blocks upon every write
and read respectively or only upon flush to and read from
disk.

In another approach we could cache the original on disk
version of each block until write out time. Given enough

1In our napkin math estimations we could do over 1000 of these
operations in the time it would take for a single seek to occur.

cache memory this would allow us to avoid any calcula-
tions or extra I/O until it was time to flush to disk.

4.1.2 Validating Non-Checkpointable Checksum
Journal Transactions

FIXME: I think this can already be done with exist-
ing ext4 journalling techniques, else the idea I have in
mind is:

In order to mark checksum journal transactions as ready
and valid, but not checkpointable we propose the follow-
ing scheme:

1. Add a checksum in the journal header that is a
checksum over all the blocks and the journal header
in the transaction.

2. Since it contains a length field and we can check the
checksum we know later on whether or not those
blocks represent a full journal record (minus the
commit block).

3. Later when we write the commit block it signifies
that the journal is replayable.

This means one less I/O since we won’t have to write the
commit block twice or update anything else.

4.2 Read Operation

Next, let’s consider a read operation.

1. The system call checks the page cache, if con-
tents don’t already exist in page cache, it calls into
ext4_readpage() to start reading from disk.

2. Submit read request to disk and register an I/O com-
pletion function.

3. (a) When the read completes, it calls into the I/O
completion function we setup in the last step
which calculates its checksum and reads its
corresponding checksum block, which could
already be in the page cache. FIXME: Verify
this. Since jbd2 doesn’t mark pages as clean
until the corresponding block has been check-
pointed, then the block is either in the page
cache or in its fixed disk location, but we don’t
need to check the journal.

(b) In the case of reading the checksum block
from disk we register a different I/O comple-
tion function that verifies the consistency of
the checksum block itself. If the checksum

block is not consistent there’s not much we
can currently do, so we issue an error and re-
mount the filesystem read-only. Else, we con-
tinue to the next step.

4. If checksum for the datablock agrees, the read suc-
cessfully completes, and we return the data. Else,
we start recovery processes. If the recovery process
completes successfully, we retry.

4.3 Recovery Operations

Next, let’s consider recovery operations. There are ac-
tually two forms of recovery in our design: checksum
mismatch and filesystem crash.

4.3.1 Checksum Mismatch Recovery

First, let’s deal with the case of checksum mistmatches.
Recall that this situation arrises during step 3a of the read
process, further that we have already verified the validity
of the checksum block based on its checksum.

1. Log an error so that the user knows that we detected
a corrupt block.

2. Read in all the blocks, including the parity block,
in the stripe group, and check their checksums. If
more than one block fails to match, we cannot re-
cover from a single parity block, so return an er-
ror and remount the filesystem read-only. Note, that
for file data we could argue as others have [4] that
remounting the filesystem read-only is perhaps an
overly heavy handed approach, however we like the
uniform treatment of this case. Further, it is consis-
tent with current ext3/4 approaches.

3. To recover a single block failure we XOR all the
good blocks, including the parity block, to get the
content of the bad block.

4. Calculate the checksum of the recovered bad block.
Check if it matches the stored checksum.

(a) If it matches, rewrite the recovered block to
disk. Recovery has succeeded and we can
retry the previous read operation and log an-
other message that we recovered the corrupt
block we detected.

(b) If it doesn’t match, something really bad hap-
pened like a memory or I/O system, or pro-
grammer error. We should remount read-only.

4.3.2 Filesystem Crash Recovery

Next, we address the issue of recovery after a filesystem
crash.

1. Check the journal:

(a) If both the checksum journal and metadata
journal are checkpointable, then checkpoint
both journals.

(b) If the checksum journal is marked ready (ie:
valid) but not checkpointable, it indicates a
partial write of either file data or the metadata
journal.

Based on the information we have about the
checksum blocks, we can find the correspond-
ing stripe groups.

For each group, we calculate the checksum of
each block in the group.

If the datablocks do not as a group match
either entirely match the original checksum
block or entirely match the new one, then we
have a partial write of the stripe that we can-
not recover from since the data on disk will not
as a whole match either the new or old parity
blocks paired with those checksums.

Thus, our only recourse is the recalculate the
checksum/parity blocks based upon the data
we currently have on disk. This is not differ-
ent from the current ext3 or ext4 semantics ex-
cept that we can notify the user of that situa-
tion. Additionally, since we stored inode num-
bers in the checksum blocks we can inform the
user of the inodes involved, though a more in-
tensive disk scan would be required to identify
the file name(s) associated with that inode.

Note that this partial write could happen
within a block (eg: 3 out of 8 sectors new,
the rest old data). However, the results are the
same.

To recalulate the checksum/parity block pairs,
for each group, we must recalculate the check-
sum of each block within the group.

Write the checksum block (w/ the appropriate
checksum entries) and the new calculated par-
ity block.

5 Implementation

This is the implementation section.

6 Evaluation

This is the evaluation section.

Here’s a possible set of things to measure:

• Recovery correctness. FIXME: How?

• Parity/Checksum caclulation schemes (eg: at
write() or at flush to disk).

• Stripe size performance affects.

• Checksum function performance affects.

7 Related Work

7.1 RAID

Our work is in some sense similar to RAID since we cal-
culate parity in terms of stripes and are more or less data
contents agnostic.

On the other hand, RAID is incapable of detecting per
block bit rot, misdirected writes, or phantom writes. Fur-
thermore, RAID is only able to detect data corruption or
partial writes during a read (either in operation or scrub-
bing). Finally, typical RAID repair policies are to throw
the entire disk with the faulty sector and rebuild the entire
array.

In our model, we can avoid this and perform a single
parity stripe repair operation. Also, since the check-
sums are journalled first, we can detect partial write fail-
ures (eg: due to a crash) at remount time as opposed to
some lengthy period later. This is in fact the biggest ar-
gument for journalling the checksum/parity block pairs
since without that our only recourse for a partial write
crash would be a full fsck, which is at least as expen-
sive as a RAID rebuild.

Also, our system can work with a RAID to make use
of multiple disk spindles and bandwidth. Ideally, the
checksum/parity stripe size in our journalling and buffer-
ing layers can be tuned to match the RAID level so that
we can perform matching full stripe writes.

@Remzi: Since this is getting to be very similar to RAID
and is becoming more of a general journaling system as
opposed to just ext4 specific, it would be good to dis-
cuss the arguments for doing this in the fs/journal layer
as opposed to the storage layer.

8 Conclusions

This is the conclusions section.

Acknowledgments

References

[1] J. Becker. Block-based error detection and cor-
rection for ocfs2. http://oss.oracle.
com/osswiki/OCFS2/DesignDocs/
BlockErrorDetection.

[2] T. Denehy, A. Arpaci-Dusseau, and R. Arpaci-
Dusseau. Journal-guided resynchronization for soft-
ware RAID. In Proceedings of the 4th confer-
ence on USENIX Conference on File and Storage

Technologies-Volume 4, page 7. USENIX Associa-
tion, 2005.

[3] A. Mathur, M. Cao, S. Bhattacharya, A. Dilger,
A. Tomas, and L. Vivier. The new ext4 filesystem:
current status and future plans. In Ottawa Linux Sym-
posium, 2007.

[4] V. Prabhakaran, L. Bairavasundaram, N. Agrawal,
H. Gunawi, A. Arpaci-Dusseau, and R. Arpaci-
Dusseau. IRON file systems. In Proceedings of
the twentieth ACM symposium on Operating systems
principles, pages 206–220. ACM, 2005.

http://oss.oracle.com/osswiki/OCFS2/DesignDocs/BlockErrorDetection
http://oss.oracle.com/osswiki/OCFS2/DesignDocs/BlockErrorDetection
http://oss.oracle.com/osswiki/OCFS2/DesignDocs/BlockErrorDetection

	Introduction
	Background
	Design Decisions
	Problem Overview
	Checksum Block Association
	Checksum Block Layout
	Pairing Checksum and Parity Blocks
	Checksum Block Design
	Discussion

	Design
	Write Operation
	Efficient Parity and Checksum Calculations
	Validating Non-Checkpointable Checksum Journal Transactions

	Read Operation
	Recovery Operations
	Checksum Mismatch Recovery
	Filesystem Crash Recovery

	Implementation
	Evaluation
	Related Work
	RAID

	Conclusions

