OpenSAFE: Hardware-Based Network Monitoring Using Software Control

Aaron Gember, Jeffrey R. Ballard, Brian Kroth and Aditya Akella
University of Wisconsin—Madison

Abstract single router. Thus, operators are often forced to

- , . . daisy-chain multiple monitoring devices to achieve com-
Administrators of today’s networks are highly mterestedplex monitoring functionality, which is a rigid and

Idn ;no?norm% tra_fﬂcfor plérposegdpf C(?Ilectln.g Staj[(IjStICS, failure-prone configuration. The introduction of new
U?]fecrtmr? tml rusr‘:otnvi’ rzn izprO\:lldlnngIie)l’:i?IC e\g r?]n(l:(e'monitoring mechanisms often requires difficult physi-
ortunately, network siz€ and complexity can make .., rewiring and complex reconfiguration of monitoring

th'? a daunting task. As!de from the.problem.s n ana'hardware/software, resulting in outages. Secondly, the
lyzing the n_etyvork traffic |t_self for this information—an arriving network traffic can quickly overwhelm the mon-
extremely d_'ﬁ'C_U|t task on Its own—a more fundamental itoring computer, rendering it useless. To overcome these
prgblem exists: how to d|rect the t_rafflc fqr network anal- two problems, network administrators can deploy special
ysis and measurement in a flexible, high performancepurpose load-balancing or traffic-splitting mechanisms.
magmer. t soluti tail to fully add the chall Hardware traffic-splitters (e.g., SPANIDS [20] and Xini-

¢ dl_JrreP S(iu #.)nsf alb ?h Uiy a dresf? ?hc a e_?gesdis et al.[25]) are fast, but they are expensive and difficult
0 |r|ec 't?]g rafiic for both on- ar(1) 0 ngE mon otr- to program. Software-based load-balancers (e.g., those
INg. In IS paper, We propose DPenSArt, a system,, ooy o click [15]) are inexpensive and flexible as they
for enabling the arbitrary direction of traffic for security are easy to reprogram based on observed traffic patterns,

monitoring applications at line rates. Flexible policies but they impose latency and throughput penalties.
are specified in ALARMS, a flow specification language our aoal is to desian a monitoring framework that
that greatly simplifies management of network monitor- 9 9 9

ing appliances. Finally, we demonstrate our OpenSAFI‘:?h"J‘S thﬁ fle>f<t|b|I|ty z;nd zase ?f j:or}flguratl_(;rr]] {ﬁallzabled
implementation using both live network traffic and re- rough software-based control along wi € spee

played traces. Analysis shows that our OpenSAFE ir,n_of approaches based on hardware forwarding. To this

plementation handles higher traffic volumes than our ex—end’ we mtroduc@penSAFl_,:_whlch uses a c_()mmod!ty
isting monitoring infrastructure. software-programmable switch to direct traffic in flexible

ways to meet complex monitoring requirements.
1 Introduction Several inexpensive unoptimized monitoring devices,
Networks are traditionally monitored for many purposessubsets of which may be performing a given monitor-
including performance optimization, usage tracking, sedng function, can be “plugged into” OpenSAFE to pro-
curity and intrusion detection, compliance verification, cess programmatically-defined substreams of data. We
and forensic analysis. There are two common ap-lso introduce a high-level language, ALARMS, to en-
proaches to monitoring and measurement today: 1) onable network administrators to flexibly express rich poli-
path middleboxes and 2) off-path traffic mirrors. The for- cies to control how traffic is distributed to various mon-
mer set of approaches directly receive and affect networioring devices. The policy is expressed at a logically
traffic before forwarding it on to its destination, whereas central monitoring controller which then instantiates pol-
the latter employs a copy or span of network traffic at in-icy constraints in the form of forwarding entries in the
teresting points in the network to monitor without affect- programmable switch's flow table. In effect, Open-
ing it. In addition, growing link speeds and network fan- SAFE couples a high-performance hardware-based mon-
out are making effective network monitoring even moreitoring dataplane with a flexible software-based configu-
challenging. Unfortunately, both sets of approaches suftation/control plane, resulting in a highly effective, yet
fer from key issues pertaining to performance and flexi-low-cost, monitoring framework.
bility. OpenSAFE introduces design abstractions for moni-
Firstly, achieving complex on- or off-path monitor- toring elements and functionality, such as mirror ports,
ing functionality is quite tricky today. Each of the monitoring devices of different kinds, and various mech-
above application domains places different constraint@nisms for controlling traffic. Our ALARMS language
on monitoring techniques. Unfortunately the constraintsexpresses OpenSAFE’s abstractions in a simple pol-
can work against each other, making the monitoringicy language syntax. OpenSAFE and ALARMS are
functions ill-suited for one underlying platform. Fur- designed to allow operators to instantiate and/or up-
thermore, hardware limitations often prevent the abil-date very sophisticated monitoring setups with relative
ity to provide multiple traffic monitoring ports on a ease. The abstractions and policy language in Open-

SAFE/ALARMS are motivated by those in Click [15], mized to move traffic very fast (for example, by using
but are more monitoring-specific. In theory, Click can PFE.RING [7]), leaving little room for error. The heavy
also enable software-programmable network monitoringtuning often results in brittle software configurations. At
but OpenSAFE offers key flexibility and performance times even slightly different revisions of software make a
advantages. OpenSAFE’s architecture allows it to orthuge impact in these monitoring compul@r‘éyen with
chestrate traffic distribution amongst multiple monitor- high tuning, a single off-path monitoring device can be-
ing locations via a simple policy specified at the (lone) come overwhelmed with traffic and lose large amounts of
controller, enabling richer and more flexible monitoring data by randomly dropping packets. A random drop pol-
functionality. In contrast, Click and other solutions re- icy affects the ability for the monitoring device to both
quire configuration at each monitoring point in the net-fully examine all traffic and accurately reassemble net-
work. Click’s reliance on CPU processing of packets im-work flows. OpenSAFE can address these challenges in
poses significant latency penalty, whereas OpenSAFE’sff-path monitoring as well.
hardware fast path removes this overhead for an over- .]
whelming fraction of packets. 2.1 Design Requirements

We conduct a thorough evaluation of OpenSAFE us-To address the challenges discussed above, OpenSAFE
ing both live production traffic and replayed traces. must meet the following design requirements:
We implement OpenSAFE and ALARMS using the
NOX/OpenFlow platform[[12, 17]. We show that it out-
performs an existing, highly-optimized monitoring de-
vice in a multiple day head to head test. We examine
54% more packets and generate 30% more security alerts . . o .
during our four day test using amoptimizedteam of tra1_°f|c amongst muI_tlpIe parallel_monltorlng devices
machines and OpenSAFE. Furthermore, we show that which process traffic at slower link speeds.
OpenSAFE scales with increasing bandwidth and signif- ® Support for flexible configurations is required to

e The ability to handle high-speed linksensures the
monitoring infrastructure can procea8 traffic at
contemporary link speeds of 1 Gbps, 10 Gbps, or
higher. The system must also support multiplexing

icantly outperforms an in-kernel Click configuration. meet the diverse, and often conflicting constraints,
of multiple monitoring domains. The ability to
2 Challenges and Design Requirements monitor specific subsets of traffic and process traffic

Modern networks may employ both on-path or off-path with mu_lt|pl_e momto_rlng devices is essential.
monitoring. On-path middleboxes are used commonly ® No service interruptions should be caused by con-

because of their ability to manipulate live traffic. Un- figuration changes or monitoring device failures.
fortunately, additions, deletions or modifications of mid- Production traffic should remain unaffected.
dleboxes lead to outages and reconfiguration of network e Compatibility with existing monitoring solutions
gear. This results in network interruptions and perfor- ensures admins can integrate their existing intrusion
mance loss. On-path middleboxes also need to be ca- detection, traffic capture, packet counting, and other
pable of processing all traffic traversing a particular net- monitoring tools into the monitoring infrastructure.
work link, even if the processing of some packets only ¢ Easy managementavoids the configuration com-
involves simple forwarding. High traffic volumes can in- plexities of todays highly tuned systems, allowing

undate on-path middleboxes and degrade network per- admins to focus on analyzing monitoring output in-
formance. OpenSAFE can help address all of these chal- stead of managing monitoring infrastructure.
lenges in on-path monitoring.

The alternative to on-path middleboxes is to take a2.2 EXisting Systems
mirror (or tap) of traffic at a border point and examine Many commercial and research systems have been devel-
the traffic off-path. While an off-path monitoring de- oped for monitoring enterprise networks in either an on-
vice does not impact production traffic due to reconfig-path or off-path fashion. However, as shown in Tadfjle 1,
uration outages or traffic overload, hardware limitationsexisting systems still lack some key design features.
often prevent the ability to provide multiple traffic mir- The NIDS Cluster by Vallentin et al.[24] and the state-
rors. This limits the number of monitoring devices that ful intrusion detection system by Kruegel et &l.][16] both
can effectively participate. For example, the Cisco Cat-use commodity PCs and flow-based hashing to distribute
alyst 6000 series is limited to two mirror ports per de-traffic from a mirror or a link to a set of parallel moni-
vice. Making it worse, enabling multicast on a Cisco toring devices all performing the same function. How-
FireWall Services Module (FWSM), consumes one ofever, the link speed both systems can handle is limited
the mirror ports—leaving only one for monitoring. Com- - _ — . .
monly, network operators connect this single mirror port For example, in our initial tests we found that a minor revision of

. . . ‘our IDS software dropped almost 50% more packets on our production
into an expensive computer that has been heavily optimonitoring system.

System Forwarding Hardware Data Plane | Control Plane | Monitoring Devices Distribution Basis
OpenSAFE Programmable network fabric Hardware Software Any configuration Flows (see Secti.2
NIDS Cluster|[24] Commodity PCs Software Software Parallel sensors Flows (hashing)
Stateful Intrusion Detectioi [16] Commaodity PCs Software Software Parallel sensors Flows (filters)
SPANIDS [20] FPGA Hardware Hardware Parallel sensors Flows (hashing)
Active Splitter [25] Programmable network processor Hardware Hardware Parallel sensors Flows (hashing)

Click Modular Router([13] Commodity PC Software Software Any configuration Packets

Table 1: Existing systems for multi-device on- or off-path monitoring

by the software-based data planes they employ. Addi-
tionally their use is limited to a set of monitoring devices
performing the same function in parallel.

¢

SPANIDS by Schaelicke et al. [20] and the active split- N§?£$:||B> Mieisbo
ter architecture by Xinidis et al. [25] employ a hardware- [g
based data plane. SPANIDS employs FPGA hardware Centrdl HZZ%TT;:;?"_' Mg oo
and Xinidis et al. use programmable network processors. T~
Fields in the packet headers are hashed to load balance Middlebox
flows amongst multiple monitoring devices operating in .

parallel. Unfortunately, both systems are still limited to

. . 7 . = (a) Monitoring live traffic on-path.
parallel identical monitoring devices. Additionally, both

the data plane and control plane must be programmed

into hardware using low-level assembly, making it diffi- w

cult to modify the systems’ behavior. Central Monitoring
The Click Modular Router[[18] is most similar to Controller Device 1

OpenSAFE because of its ability to support arbitrary Frewal ' Monitoring

configurations of monitoring devices. Its element-based ZZE?IETS;’L? Device 2

model and simple specification language is similar to |

ALARMSs, except that ALARMS is more narrowly fo- E;:;I\t/(ia:en(g) Moritoring

cussed on monitoring and includes constructs that are

missing in Click. Despite the similarity, new challenges (b) Monitoring mirrored traffic off-path.

arise in realizing OpenSAFE/ALARMS because of the
fundamental difference in the platforms over which for-
warding (of traffic to various monitoring devices) is re-
alized: at a powerful CPU in Click, vs. directly at the utility of network traffic and the flexibility of monitoring,
forwarding tables of dumb switches in OpenSAFE (seewhile at the same time dramatically reducing the effort
next section). needed to engineer and manage the monitoring function-
A Click based approach has key disadvantages as wel@lity. An on-path and off-path example of this are shown
A crucial disadvantage of Click is its use of a software-in Figure[]. The framework, which we call OpenSAFE,
based data plane which can be overwhelmed by the higtdemultiplexes high-bandwidth packet streams into sev-
speed links present in contemporary enterprise networkgral lower-bandwidth flows that are directed to different
In particular, even with recent enhancemehis [9], CPU-monitoring devices. A central controller determines how
based packet processing in Click imposes undesirabl$he fabric is configured. We briefly outline the key ad-
high per-packet latencies. Another downside is that Clickvantages of OpenSAFE.
does not allow easy simultaneous control over multiple (1) Our approach allows fdtexible, fast and scalable
monitoring locations, as each location needs to be indemonitoring This has at least two different aspects to it.
pendently configured. In contrast, by design, OpenSAFEFirst, when applied to off-path monitoring, our approach
allows a single network controller to use simplistic poli- allows for flexible sharing of a single mirror port across
cies to centrally orchestrate multiple network monitoring multiple devices. Second, with a programmable network
locations, thereby enabling richer and more flexible mon<abric, network flows are directed on demand, and new
itoring functionality. monitoring functions can easily be added/reconfigured
)) without incurring outages. ldeally this will leverage the
2.3 Using programmable network fabrics support of an intuitive declarative language to control
The key problem in monitoring is not being able to ex- traffic. Related to this is the issue of scaling the through-
ercise fine-grained control over network traffic. We ob- put of monitoring functions, particularly those that are
serve that by inserting a programmable network fabricvery intensive. In such cases, OpenSAFE allows multi-
at the monitoring point we can dramatically increase theple devices to work on disjoint subsets of traffic in paral-

Figure 1: The desired dynamic layer.

lel thereby improving the throughput significantly. @ $

(2) Another benefit of using a programmable network Fore0 ‘-
fabric is that it workger-flow Since decisions are made]) o
per-flow in hardware—unlike other packet distribution Figure 2: A basic monitoring path.
techniques([15, 21, 22]—the scale-up of network mon-
itoring is facilitated in an more manageable way. Fun- S]”< I)
damentally, software performing intrusion detection or
deep packet inspection will reassemble out of order pack- Figure 3: Abstractions to describe monitoring paths.
ets to correctly process streams. This process is dramat-
ically streamlined, however, by having per-flow opera- Paths are composed of several componenfaits se-
tions in the programmable switch fabric. In addition, lects filters, andsinks At a high level, each path begins
when seeing all the packets from a flow as opposed tavith an input, applies an optional select criteria to select
a random subset of packets (e.g. due to some roundx desired subset of network flows, directs matching traf-
robin policy), the monitoring software is generally able fic through zero or more filters, and ends in one or more
to more accurately collect useful data. sinks (Figurg B). Inputs can only produce traffic, sinks

(3) Our approach izost-effective Programmable can only receive traffic, and filters must do both.
network fabrics have become available for commodity If we take Figur¢ R and view it with these abstractions,
prices today; for example, OpenFlow[17]—an approachit becomes Figurg]4. This shows traffic entering on a
to program a switch’s flow table—is supported on com-mirror port (input) matching our criteria of port 80 (se-
modity networking hardware via a firmware upgrade. Inlect), passing through a counter (filter), and ending at a
addition, the ability to demultiplex traffic into multiple TCP dump (sink). The same abstractions apply when
low-bandwidth flows has the immediate advantage of al-OpenSAFE is used on-path: live traffic enters through
lowing the use of commonly-available, inexpensive, andan input and returns to the production network at a sink.
easy to manage 1 Gbps NICs on the monitoring device&igure]$ shows a more complicated on-path example in-

rather than 10 Gbps NICs. volving multiple filters, demonstrating how paths can be
extended and applied to live traffic. A typical OpenSAFE
3 OpenSAFE configuration consists of multiple paths treated in aggre-

We propose OpenSAFE (Open Security Auditing andgate.
Flow Examination), a unified system for network mon- . .

itoring and measurement. Leveraging a programmablés'2 F_)ara”el Filters and-Slnks .]
network fabric, our system can direct network traffic in 10 Monitor large networks at line rates it is possible (and
a flexible (programmable) fashion without sacrificing la- 9Uite likely) that a single middlebox or monitoring de-
tency or throughput. OpenSAFE consists of three comYic€ Will not be able to cope with all the network traf-
ponents: a set of design abstractions for codifying thlC- TO address this problem, we allow traffic to be sent
flow of network traffic; ALARMS, a policy language to multiple filters or sinks operating in parallel within
for easily specifying traffic paths (Sectiph 4); and a con-& path. Figur¢]6 shows such a path for a mirror-based
troller that implements the policy using OpenFlow (Sec-S€tup, with HTTP traffic sent to multiple IDS appliances.
tion[5). Unless otherwise specified, we describe Open- The division of traffic between multiple filters or sinks

SAFE assuming an off-path monitoring configuration; IS handled usinglistribution rules Rules are applied on
the same design can be applied for on-path setups. a per-flow basis. Existing parallel monitoring systems
(e.g. [20,24] 25]) only support distribution based on

3.1 Paths hashing. OpenSAFE supports five methods of distribu-

OpenSAFE is designed around several simple primitive:gIon amongst a set of parallel components:

to make the direction of network flows for network mon- e ALL—send a flow to every component in the set
itoring both flexible and easy. We use the notion of a e RR—alternate flows between components of the set
path as the basic abstraction for describing the selec- using Round Robin

tion of traffic flows and the direction these flows should , ANY—randomly select a component from the set
take. Fundamentally, we wish to support the construc-
tion of paths that allow desired traffic to enter the system
on a particular network port and be directed to one or
more network monitoring systems, regardless of physical
configuration. A basic example of this is shown in Fig-
ure[2, where mirrored HTTP traffic is sent first through a Distribution rules (except foALL rules) are consid-
counter appliance and then to a TCP dump appliance. ereddynamie—the path a particular flow follows is de-

e HASH—apply a hash function on the first packet of
a flow to select a component

e PROB—apply a probability function to load bal-
ance flows amongst components

Counter J—><'CP Dumr)

Figure 4: A basic logical monitoring path (Figt[r]e 2) with
coded abstractions.

. Producti
% Lechptic H Counter]”<;12t3vco'rﬁn> Figure 6: A monitoring path with parallel sinks.
Figure 5: A logical monitoring path with multiple filters.
Original:

termined at runtime when the first packet of a flow tra-

verses the distribution rule. Hooks, described below, ar¢ %" @
also dynamic. In contrast, the other portions of a patr

are consideredtatic—the path taken by all flows is con- Resuit: m
stant. The difference betweatatic and dynamicrules

has implications for how paths are implemented in the

programmable network fabric, as described in Se¢fjon 5Figure 7: An example of a hook (top line). The middle
line is a hook request made by a device and the bottom

3.3 Hooks line is the resulting path implemented by OpenSAFE.

One issue that can arise when splitting monitoring traf-
fic among multiple devices is that flows from a particular

host (or a potential adversary) can be directed to separal ! eaChtCI|'|Ck rom:terlor load balancer. A s;nglet pfllcﬁ ﬁt
machines. While information about the flows can be ag- € controtier not only eases management, but aiso Nelps

gregated after the fact, it may be useful for monitoringfensl';Ire Eon5|st?ntl[nongolrlng acfgss t_he IneftV_/Iork. Ingt?ll-
software to examine all future traffic from a host after '"'9 PacKUP CONTrOLIErS Nelps avoid a single fariure point.

;uspicious activity is detecteq. This requires the capabily A| ARMS: A Language for
ity tq add.new pgths gt runtime. In OpenSAHRBoks Arbitrary Redirection for
provide this functionality.) .

Monitoring devices can make hook requests at runtime Measuring and Security
to have new paths added to the current OpenSAFE conl0 enable network administrators to easily manage and
figuration. A hook request effectively duplicates the pathupdate their monitoring infrastructure, we introduce
containing the hook and appends the path specified bQLARMS, a language to enable the arbitrary redirection
the monitoring device. For example, Fig{ifle 7 shows 20f network flows for measurement_and secu_rity purposes.
path with a hook and Figuf€ 2 shows a potential resultALARMS represents the abstractions mentioned in Sec-
ing path based on a hook request to send HTTP traffic tdion[3 in a simple policy language syntax. Each compo-

counterfollowed by TCP dump nent is defined with a name and parameters, and paths
are defined between the named components. In this sec-
3.4 Overall Design tion we present the syntax of ALARMS; details about the

The overall design of OpenSAFE is shown in Figiife 8.Implementation of policies are described in Secfipn 5.
The input is a connection from the chosen network ag- Most of the examples in this section and Secfipn 5 are
gregation point to a port on our programmable switch.intended for mirror-based off-path monitoring. However,
Some number of filters (i.e. middieboxes) are used atthe same language constructs and implementation details
tached to various switch ports. Finally, output is directed@PPly to on-path monitoring, unless otherwise noted.

to some number of sm@Optlonally, multiple switches 4.1 Component Declarations

can be used, assuming they are directly connected; paths I h . .
can be defined between ports on any of the switches. In ALARMS, all components of a path are given unique

All switches are controlled by a logically central con- ';yﬁes .and names. Spegfl?a::y’ tlhe pollcsy_flll(e dsec,;lares the
troller. This allows administrators to manage the en-: O\IL\nng gc\)/(/npongrltsWW|;c eS_Spl:;s Im $ Selects)
tire monitoring infrastructure from a single point. In 00KS andyvaypoints YVe describe the language speci-

contrast, Click [15] and existing load balancing tech- fication and parameters for each of these below.
niques|[20,_25] require configuration changes to be mad&witches Each switch is declared with a uniqgue name
and the identifier of the programmable switch fabric:

2An on-path setup typically has a single sink to return traffic to the
production network. switch sw = 0x00000021;

OpenFlow .

Sink,

OpenFlow
Switch

Figure 9: A logical monitoring path with a waypoint.

[Filter,] [Filter,,]

Waypoints In a system of reasonable size, it is proba-
ble to have multiple paths configured with common at-
tributes. For instance, suppose an administrator wants to
perform some degree of processing on one of two sets
of traffic, then send the results of both to the same filter
and sink. This quickly becomes a maintenance problem
as modifying the common end-components of the paths
input mirror = sw:0; may involve editing many paths.

sink tcpdump = sw:1; The final component type in ALARMS is an abstrac-

Since inputs can only transmit traffic and sinks can onlyt'on added as a convenience to ease the creation and man-

receive traffic, each named input or sink is restricted tgrgement f?f_ mulltlgle, _sen_n-re’c,junc(ija“nt_ pat:Waypomt”s |
a single port. Traffic can be directed to multiple sinks serve as “virual destinations™ and "virual sources” al-

using distribution rules (Sectign 4.2.2). A special def::lultlo‘_’v,ing administre}tors to aggregate Paths anq fe‘?'uce rep-
sink namedtiscard drops all traffic sent to it. For on- ©ttion. A path using a waypoint is displayed in Figlife 9,

path monitoring, an input provides live traffic and a sink where HTTP and HTTPS traffic is sent tovéb waypoint

sends live traffic back into the production network. before being passed to a counter filter and TCP dump
]] o sink. Declaring waypoints requires only a name:
Filters Middleboxes within an OpenSAFE network are

called filters. A filter is a combination of an input and W&YPoint web;
a sink, shown as the_ third _item in Fig 3. As such,4_2 Paths
filters are declared with a singlefrom switch port (to
both receive and transmit on the same port) or bath a
and afrom port (to delegate receiving and transmitting,
respectively, to separate ports):

Figure 8: The overall design of OpenSAFE, using our
abstractions.

Inputs and Sinks Inputs and sinks are simply named
switch ports (as in Figuig 8), declared like so:

After all named components have been declared, we can
connect these components to form paths. The declaration
of paths is similar to the language used in Clickl[15], ex-
cept OpenSAFE paths are designed to direct flows rather
filter to counter = sw:2; than individual packets. Paths in ALARMS must con-
filter from counter = sw:3; . - .

form to the following specification:

SelectsSelects are named criteria used to limit traf- 1. Paths begin with an input, waypoint, or filter.
fic flows based on fields in packet headers. ALARMS 2. Paths end with a sink, waypoint, filter, hook, or rule.
supports selecting on any of 9-different header fields: 3. Selects can be applied to any connection between
Ethernet source and destination addresses, EtherType, components.
VLAN identifier, network source and destination ad- The path in FigurEJ4 can be written in ALARMS as:
dresses, transport protocol, and transport source and des-
tination ports. Additionally, an arbitrary number of bits mirror[http] -> counter -> tcpdump;
can be declared as wildcards for network source and
destination addresses to provide for CIDR-like addres$-2.1 Paths with Selects
ranges. Limited boolean logic (AND, OR) can be used inA select limits the traffic seen by all components in the
a select definition to specify criteria on multiple headerpath downstream from the select. In the path above, the
fields. Any header fields not specified in the select ardilter (counter) will only see HTTP traffic coming from
treated as wildcards. The example select below yieldghe input gniror) and the sinkttpdump) will only see
only traffic whose source or destination port is 80: HTTP traffic leaving the filter. Each connection in the
path is limited to having one select.

If a path has multiple selects, the selects downstream
, . _ further restrict upstream selects, with the downstream se-
Hooks Path requests made at runtime are facilitated Viggct taking precedence in the case where both specify cri-
hooks. In ALARMS they are declared with only a name: teria for the same header field(s). For example, a revised

hook hook1; path with an additional select will result in the filter still

select http = tp_src: 80 || tp_dst: 80;

seeing all HTTP traffic from the mirror port, while the fields (known as thé@penFlow 10—tup|)5{f] Any fields
sink now sees only HTTP traffic for a particular server: in the 10-tuple for which values are not specified are
_ i treated as wildcards. Each entry also contains an action
select webserver = nw_src: 10.0.0.1 . .

|| nw_dst: 10.0.0.1; that should be applied to packets matching that entry:
mirrorfhttp] -> counter[webserver] -> tcpdump; drop, output to one or more ports, or send to the con-
422 Distribution Rules _troIIer. When a packet arrives qt an OpenFlow switch, it
o) . is matched against the entries in the flow table. The ac-

The distribution of traffic between multiple components s of the highest priority matching entry are applied to
(excluding inputs) is handled by distribution rules, ap-he packet. If the packet does not match any entry in the

plied on a per-flow basis. flow table, it is forwarded to the controller for a decision
The first three distribution methods.L, RR andANY, 4 he made. While other all-ASIC options exist (such as

each take a list of components to act on. In the on-ynes from GigaMon[10]), OpenFlow is readily available
path example below, the rule will round-robin new HTTP today on commodity hardware.

flows between two counter middleboxes before returning _ _
traffic to the production network: 5.1 Policy Parsing
live[http] -> {RR, counterl, counter2} ALARMS_poIicy parsing performs two key e_lcti(_)ns on
->" production; paths. First, each path is checked to verify it meets
N the three criteria outlined in Sectipn #.2. Second, over-
HASHandPROBrules take an_gddltlongl argument—the lapping paths are identified and combined. Combin-
name of the hash or probability function—and rely onjng paths avoids overwriting the flow table entries for
the output of this function to determine the destination.;, earlier path with flow table entries for an overlap-

Probability rules are designed to allow OpenSAFE to dising path defined later in a policy. A set of paths with
tribute traffic based on the current load of distribution the same first component and select criteria are inter-

components, so.the user must al_so provide a way for thﬁa”y combined by applying the following transforma-
function to receive load information from components. tjon ryle: Given a set of patha: — Bi,...,a — B,

For example, the following policy instructs OpenSAFE \yheren > 2, remove the existing paths and add new
to use a user defined hash functieyhash to distribute pathswaypoint,, — Bi, ..., waypointa, — B, o —
new flows between two counter filters before they Pro-{ ALL, waypoint,, , ..., waypoint,, }. For example,
ceed to a tcpdump sink. This could be more desirablgne set of overlapping paths

than arrrule since it can be deterministic.

mirror -> counter -> tcpdumpi;

mirror[http] mirror -> counter -> tcpdump2;

-> {HASH(myhash terl ter2 : : .
= Ecpdﬁm(g?y ash), counterl, counter2} are internally combined to form non-overlapping paths
counter -> {ALL, waypointl, waypoint2};
Distribution rules to distribute traffic amongst parallel Waypo!ng z counEer z :cpgump%;
. waypoin -> counter - cpaumps;
sinks should only be utilized in mirror-based monitoring P paump

environments. Policies for on-path monitoring should, in5.2 Static Flow Installation

most cases, send all traffic to a single sink which reintro-tpe process to program the network fabric based on an
duces the traffic to the production network. ALARMS policy begins with a fundamental observation:
. . hardware is faster than software. In OpenFlow, forward-
5 Programming the Fabric ing a packet which matches an existing flow table entry
Direction of traffic is realized by programming the net- js faster than sending a packet to the controller. To pre-
work fabric based on an ALARMS policy file. Program- ggpye high performance, we pre-compute as many routes
ming the fabric consists of three tasks: as possible and install them in the flow table of the Open-
1. Parse the po“cy f||e Written in ALARMS. FlOW SWitCh on Startup. Th|S aVOidS the need to con-
tact the controller for every new flow and prevents the
controller from being overloaded with traffic—a distinct
,)) possibility when operating at high line rates. We call
3. Install dynamic flows when a packet is received bythese pre-computed flow table entrigatic flowssince
the controller, or upon hook request. they remain in the switch’s flow table the entire time
Our network fabric consists of an OpenFlow [17] OpenSAFE is running. Static flow table entries are in-
switch and NOX controlleri[12]. An OpenFlow switch stalled forstatic path components (see Sectjon|3.2) and
forwards packets in the data plane based on a proto send traffic fodynamiccomponents to the controller.
grammabl_e flow table. The flow taple consists of entries 3The allowable header fields are the nine fields specifiable in selects
that contain values for up to ten different packet headetiefined in ALARMS, plus a field for incoming switch port.

2. Install static flows when a new switch connects to
the controller.

5.2.1 Default Drop from the end of the original path, an incorrect flow table

By default, an OpenFlow switch automatically sends toentry would have been installed:

the controller any traffic for which there is no matching (i, por=3} — output:1

flow table entry. In contrast, ALARMS specifies paths

for only certain traffic, assuming all other traffic is dis- The only traffic that should leavgunter is the HTTP

carded. To reconcile the differences between ALARMStraffic that came in. Therefore, we start processing the

and OpenFlow, we install low-priority wildcard rules to second path with a 10-tuple specifying port 80 traffic.

drop all traffic entering the switch from inputs or fil- Paths ending in waypoints are treated similarly to

ters. These drop rules avoid the overhead of sending urPaths ending in filters. The waypoint is “expanded” and

wanted packets to the controller. All paths defined in theProcessing continues along each path beginning with that

ALARMS policy file are installed with higher priority so waypoint. The difference is that waypoints are merely

desired traffic is not dropped. conceptual and do not correspond to any physical ports
When employing OpenSAFE on-path, traffic not ex- on the OpenFlow switch. Flow entries are installed orig-

amined by monitoring devices should simply be for-inating from the component preceding the waypoint in

warded. Since ALARMS assumes default drop, adminisihe original path, to the component(s) following the way-

trators need to include in the policy file a simple forward- point in the waypoint path(s). For example, the paths

ing path from live traffic input to production network miror[http] -> web;

sink. More specific paths (i.e. paths with selects) will web[webserver] -> tcpdump;

still take precedenc_e over this simple forwarqing path be—result in only one set of flow entries

cause OpenFlow gives precedence to matching flow table

entries with fewer wildcard fields before selecting an en- :E:gg:ggz Rﬁ;‘izi%.g:%i’, 'iggggzg - 83:83:%

try with more wildcard fields. tp_dst=80, nwsrc=10.0.0.1, inport=0} — output:2
tp_dst=80, nwdst=10.0.0.1, inport=0} — output:2
5.2.2 Input Paths

Static flow installation processes each path that begin4 iS important to note that the current 10-tuple is first
with an input. At the beginning of a path, it is assumed!imited by thenttp - select when the inputirror is pro-
that all flows (i.e. a 10-tuple of all wildcards) will tra- Cessed, and the set of flows is further limited by the
verse the path. The 10-tuple becomes more specific a¥ebserver - select when theeb waypoint is “expanded.”
each component and selection in the path is processe#f.n0 Path begins with a particular waypoint, uses of the
The input port in_port) field is updated when processing Wgypomt are “gxpanded” to have a destination of the im-
an input or a filter. A selection adds new tuple items orPliCit discard sink.

overrides existing values. 5.2.4 Distribution Rules
New flow table entries are typically installed at the to static flow table entries installed for distribution

switch for each transition (i.e. arrow) in a path. For a5 vary depending on the distribution method. At
example, the path in Figuf¢ 2, writtenin ALARMS @s ;e can be treated statically—no packets need to be sent
mirror[http] -> counter -> tcpdump; to the controller and all flow table entries can be installed

results in two flow entries for the first transition at startup. For example, the path

irror[http] -> {ALL 1 2%

?p,src:SO, i_nport:O% — output:2 mirrorfhttp] {ALL, tcpdumpl, tcpdump2};
tp-dst=80, inport=0} — output:2 results in the flow entries

and two flow entries for the second transition %tpisrczsoy inport=o§ — output:1, output:4

. tp_dst=80, inport=0} — output:1, output:4
?p,srczso, !erort=3% — output:1
tp-0st=80, inport=3} — output:1 If more components exist in the path following the rule,

5.2.3 Filters and Waypoints path processing continues along the path as normal.
Paths ending with a filter require “expanding” the path The other methods of distributioiRR ANY, HASH

to also process all paths succeeding from the filter. 1rRNd PROB require packets to be sent to the controller

the example below, processing the path ending with thdor the appropriate dynamic flow entries to be installed.
filter prompts the processing of the second path:For these rules, static flow entries are installed with the

action of sending to the controller. For example, the path

counter

mirror[http] -> counter;
counter -> tcpdump; mirror[http] -> {RR, tcpdumpl, tcpdump2};

When processing filter paths, the 10-tuple that existed atesults in the flow entries
the end of the original path is used as the starting 10-i

. ; tp_src=80, in.port=0} — controller
tuple for each filter path. If we did not use the 10-tuple %

tp_dst=80, inport=0} — controller

When packets matching these entries are sent to the con-
troller, it is necessary to know which rule should be ap-
plied. Therefore, we store the 10-tuple and the associated
distribution rule at the controller for later reference.

5.3 Dynamic Flow Installation

Dynamic flow entries are installed for distribution rules
(excluding ALL rules) and upon receipt of a hook re-
quest. These flow entries cannot be pre-computed at
OpenSAFE startup because the destination switch ports
are unknown until flows arrive or requests are received.

J; Current IDS

server

5.3.1 Distribution Rules |
Flow entries for dynamic rules are installed when a new N)) .

. . " E Bench test
flow matches an entry whose action is “send to con-
troller” The controller receives the first packet in the
flow and determines which rule should be applied to the

flow. Only the matching rule needs to be processed; the Yy =
rest of the path containing the rule is already processed team
during static flow installation. FaHASHor PROBrules, s acdiional

the controller calls user specified code to select one or (not shown)

more destination components. A destination is selected
at random for anANY rule, and the next component
in the list of possible destinations is selected forRR
rule. Dynamic flow entries for distribution rules contain
a fully-specified 10-tuple with all values populated from 6 Evaluation
the packet headers. Entries are also installed for flow®penSAFE needs to handle traffic volumes at high line
going in the reverse direction to ensure that both halvesates to be able to serve as a feasible network monitor-
of a flow traverse the same path. OpenSAFE uses a déng system. We verify OpenSAFE meets this require-
fault timeout of 30 seconds for dynamic flow entries. ment by measuring its performance using both live and
replayed real-world traffic. First, we compare our im-

5.3.2 Hooks ! . S o

) plementation against an existing monitoring infrastruc-
The controller listens on a network socket for NOOk re-y, e and show that OpenSAFE loses less traffic (Section
quests. Monitoring devices send an XML fragmentgy second, we run our implementation with varying
which contains the name of the hook, the name of thejes sets using a constant set of traffic traces (Section
component to which traffic should be sent, values for onm). We demonstrate that OpenSAFE handles sustained
or more fields in the.0-tuple and the duration the hook ‘34 nts of high traffic volume and scales with increas-
entry should last. The controller installs a high-priority ing path sizes. Lastly, we compare OpenSAFE against
flow entry with the appropriatdO-tuple timeout, and 5 'in-kernel Click[[15] configuration (Sectifn §.3).
output action. Then_port value in the flow table entry Our OpenSAFE implementation uses an OpenFLOW
is determined based on the component that precedes theg g enabled NEC IP8800 10 gigabit switch. The con-

hook component in the hook path. troller is written as a Python module for NOX 0.6.0.
Dynamic flow entries installed for hooks do not con-

sider the rest of the paths specified in an ALARMS pol-6.1 Comparison to Existing Infrastructure
icy. If a hook request overlaps with an existing path, thein this section, we compare OpenSAFE against an ex-
hook request takes precedence. For example, assume tRging mirror-based monitoring system. We describe the

Figure 10: The head-to-head test platform.

following set of paths: existing setup in the College of Engineering at the Uni-
mirror[http] -> tcpdumpl: versity of Wi§consin—Madison, present our OpenSAFE
mirror -> hook1; setup, and discuss the test results. We observe that Open-

SAFE analyzes more traffic and generates more security

A request fohook1 to send all HTTP traffic tecpdump2 alerts than the existing system.

will result in all HTTP traffic going tacpdump2 instead

of tcpdump1 for the duration of the request. After the 6.1.1 Test Setup

hook request times out, the flow entry for the first pathThe existing production monitoring setup has been
will again take effect. highly optimized with technologies such as RING [7]

60 K

router. Figurg 10 is a picture of the head-to-head test-
50K ing platform in the MDF in one of our buildings. We
configured OpenSAFE to further split the traffic amongst
our IDS desktops by statically partitioning the college’s
local subnets between the machines. Since neither our
machines nor subnets are of equal capacity we used the
traffic counts at configuration time as well as the load av-
erage of the individual IDS machines to attempt to man-

40K

30K

Packets/s received

20K f

10K

Production

oK OpenSAFE - ually balance the traffic. Given that traffic fluctuates over
o o) e Wed ed time this configuration was almost certainly suboptimal.

A portion of our ALARMS policy file is below.
Figure 11: Packets per second received by the optimizegi define switches
production IDS system compared versus the OpenSAFEwitch switchl = 0x12f2c720cc;

IDS team. ### define input ports
input mirror = 0of1:0;

define sink ports
and TNAPI [8]. PERING is a special network socket sink idsl = oflL:1;
that avoids excessive kernel memory copy operationSsink idsé = of1:6:
reducing packet loss during high bandwidth captures, _

A . . ### define selects
TNAPI is a threaded network device polling method thatseiect viant = nw_dst: 10.0.1.0 && nw_dst_n_wild: 8
makes interrupt handling more efficient on multi-cored Il nw_src: 10.0.10 && nw_dst_n_wild: 8;
machines. Both technologies require special kernel anguiect vian3s = nw_dst: 10.0.36.0 && nw_dst_n_wild: 8
application modifications that can make the system quite Il nw_src: 10.0.36.0 && nw_dst_n_wild: 8;
brittle. However, both have been shown to improve stansu# define rules
dard packet capture techniques by up to 100P%][6} 7, 8]. mirrorlvlanl] -> ids1;

o . . mirror[vian2] -> idsl,
The existing production system runs three pieces of.

monitoring software: Suricata [23], Barnyard2 [3], and piroianddl > 68

nProbe [[19], each compiled with BRING support. . .
Suricata is a multi-threaded content matching IDS like Ve initially hoped to use a CPU load reporting tool
Snort that uses the same rules and logging. Barnyard®/ith @aPrROBdistribution rule to dyngmlfally load-balance
reads IDS alert logs and consolidates them in a remote Idhe traffic. However, the NEC switch's flow table is lim-
cation like a BASE[[4] database. nProbe is a tool for col-t€d t0 3000 entries. The college border sees an aver-

lecting flow data in a distributed sensor fashion and re-29¢ 0f 330 new flows/second, so we rapidly overflow

porting the data back to a collector. The production sysih€ NEC's flow table in a matter of seconds. As noted
tem’s hardware is comprised of a single Dell PowerEdg@bovea we avoided this Issue by using a_l|m|ted set of
2950 with a 2.0 GHz Dual Core Xeon 5130 CPU and aSCl€lY static rules. An alternative solution is to decrease

10-Gigabit Intel 82598EB XF LR server fiber adapter. the timeout for dynamic rule entries. State is reclaimed

Our OpenSAFE monitoring setup was composed 0]Jaster allowing the flow table to keep pace with the fre-

six old or spare desktop machines attached to the nNeduency of new flows. Howevgr, if flow entries are re-
OpenFlow switch. The six machines’ hardware specs in_moved too quickly, packets will frequently need to be
cluded two HP XV\.I43OOS (Pentium 4 3.4 GHz), one De”directed to the controller, increasing latency and result-
. : S ing in poor performance. This remains an open issue in
GX620 (Pentium 4 3.4 GHz), two Dell Optiplex 755s OpenSAFE (Sectidi7.1).
(3.0 GHz Core2 E8400), and one HP dc5800 (2.6 GHz . A .
According to Antonatos et al [1] 2], drop count (i.e.

Core2 Q9400). We refer to this group of machines a .
the "OpenSAFE team.” Each machine was setup with thZhe number of packets received versus the number of

same monitoring software, configurations, and rules set ackets examlned_) Is the most useful comparison met_nc
. ; X . Jor content matching IDS software. We compare Suri-
as the production system with the exception that we di

. . cata’s reports of the number of packets it processed to
not use PERING or TNAPI. While the comparative data the number and of packets the device orRING saw.

we present com lely from Suri we incl h .
€ prese ch €s solely fro S!J cgta, € Ihc uded t ?Ne combine the counts from all of the OpenSAFE team
other monitoring software to maintain a fair test and to . . .
and summarize the data into 30 minute averages.

illustrate the diversity in monitoring techniques.
All traffic from the border router was sent to both the 6.1.2 Results

production machine and OpenSAFE using a 50/50 opWe ran our test over four days including one weekend.

tical splitter on the single mirror port available on the Figure[I] shows the average number of packets/second

10

Packets/s examined

Production
OpenSAFE

0K
Sun Sun

Tue Wed

Wed

00:00 12:00 00:00 12:00 00:00 12:00 00:00 12:00

lelism obtained through multiple lower bandwidth IDS
machines allows OpenSAFE to scale better.

Figure[I3 shows the number of a packets examined
as a percentage of all those received. Here we note that
although the OpenSAFE team outperforms the existing
system, it still does not reach 100%. We believe this
is caused by the IDS software only considering certain
packets for examination (e.g. only TCP, UDP, ICMP).

6.2 Synthetic Loads
To verify that OpenSAFE does not introduce excessive

Figure 12: Packets per second examined by the prolatency, we replayed multiple real-world traces from our
duction IDS system software versus the OpenSAFE IDSrevious comparison in a hypothetical on-path setting.

team.

100 %

80 %

60 %

40 % |

Percent of packets examined

20 %

0%

Production
‘OpenSA‘FE

Sun Sun

Tue Wed

Wed

00:00 12:00 00:00 12:00 00:00 12:00 00:00 12:00

We are able to show that increased network load has al-
most no effect on individual packet latency.

6.2.1 Test Setup

We used six Dell PowerEdge R210 servers to generate
synthetic traffic loads and measure per-packet latency.
The servers were equipped with 2.4 GHz Quad-core
Xeon CPUs and two 1 Gbps NICs. Each machine re-
played traffic using a user-level Click [15] configuration.
We modified packet payloads in our trace data to assign
each packet a unique identifier, allowing us to match sent
and received packets for calculating the time required to

pass each packet through OpenSAFE.

We configured OpenSAFE for a typical on-path moni-

Figure 13: Percentage of packets received that were a%ring setup. The replayed traces sent by each server rep-

tally examined by the IDS software (note: the IDS does g senteq jive traffic input. Flows were directed through a
not examine all types of packets).

patch cable connecting two switch ports—a setup simi-
lar to passing flows through a middlebox but without any
) o . latency overhead. Lastly, packets were directed back to
received by the existing system compared with the Openg,er griginating server, similar to employing a sink to
SAFE team. Here we see a typical diurnal traffic pattern yiract packets back to a production network. Figurg 14

The OpenSAFE team received almost the same amouRyq\ys this setup. The corresponding ALARMS policy
of traffic as the existing system (96% in total). The Ma-fragment used for each server is below.
f

jor exception occurs on Sunday afternoon when one of

the older desktops (an HP xw4300) missed a large subsef!Pt p%‘\’,v"é‘r’g%‘é%%zr?“i Ef:%f;:z?

of traffic. On Monday evening we examined the data, de- filter to patch2 = of.0;

termined the machine was experiencing hardware prob-ggsvre:gj’gegggfhi 1;2#2 > poweredgezin;

lems and replaced it with an HP dc7900 (3.0 GHz Core2

E8400) on Tuesday evening. During our replacement we

simply updated the ALARMS policy file to direct those : Testing Server

subnets to the new machine. We include this eventin par I

to illustrate the flexibility of our system in action. : “@
Figure [I2 shows the average number of pack- ;

ets/second examined by the IDS software. Unlike the @

OpenSAFE team, which is able to closely follow the

number of packets received, their is a clear threshold-igure 14: Synthetic traffic generation and measurement

past which the production system cannot keep up. Th&etup

OpenSAFE team examined 54% more packets in to-

tal. In addition, we saw that after only the first day the Directing packets back to their originating server al-

OpenSAFE team had registered 4,926 more alerts, 30%wed us to capture both the send and receive time of

more than the production system registered during thepackets on the same server, which increases our timing

same time. This demonstrates that the additional paralaccuracy since we avoid clock skew between machines.

11

1000

inEthl :: FromDevice(ethl, PROMISC true);

classify :: IPClassifier (net 10.0.1.0/24,
800 |
net 10.0.36.0/24,

600 - 1 outQueuel :: Queue(1000);
outEthl :: ToDevice(ethl);

Latency in pis

400 ¢] ### define paths
inEthl -> classify;
200 - classify[0] -> outEthl;

E:'I'assify[SG] -> Discard;
o L ‘ ‘ ‘ ‘ ‘ outQueuel -> outEthl;
0 1 2 3 4 5

Gps of cross traffie Our comparative OpenSAFE configuration used the

Figure 15: Gigabits per second of cross traffic versus avSame division of traffic by subnets. The ALARMS policy

erage individual packet latency in microseconds. used inputs, sinks, and selects to define S|m|Iar.paths.
The same R210 Dell servers from our previous test

were used to replay the same real-world traces and to
We rantcpdump on each server to capture the time Measure packet send and receive times usipgump .
packets were sent and received. Usicgdump allows The subnet divisions and paths in both Click and Open-
us to measure the overall system latency from kernel to>AFE were carefully chosen to ensure packets were di-

6.2.2 Results 6.3.2 Results

We replayed 18.6 million packets from one of the Click | OpenSAFE
servers, with between zero and five other servers replay- 1Gbps | 837us | 664us

ing cross traffic. Each test was run for three iterations. 2Gbps [855us | 89445
Flgure{l’.p_ shows the average per-packet latency, and Stahaple 2: Average per-packet latency in microseconds us-
dard deV|at|o_n, for each test. As can be seen from th‘I;Eng similar configurations in Click and OpenSAFE.
graph, there is almost no change in the average latency

or jitter as cross-traffic volume increases. From this we)

see that when used with static rules OpenSAFE does not e ran the same two tests with both OpenSAFE and

impose any additional performance overhead, making iClick: one test with one server generating 1 Gbps traffic
suitable for both on- and off-path monitoring. and a second test with two servers generating traffic. Ta-

ble[d shows the average per-packet latency for each test.
6.3 Comparison to Click We observe that using Click incurs on average over 150
We verify the benefit of using a programmable net-#S of extra latency per-packet. This extra latency can re-
work fabric by comparing OpenSAFE to an in-kernel Sultin dropped packets on high-speed links.

Click [15] configuration. We show that OpenSAFE's ~We attempted to measure Click's performance with
hardware-based forwarding yields lower per-packet lamnore than 2 Gbps of traffic but encountered kernel panics

tencies than Click’s software-based forwarding. when using more than one NIC. This experience high-
lights Click’s fragility. Furthermore, one NIC typically
6.3.1 Test Setup has at most four ports, so high fanout would require many

We used an in-kernel Click setup to provide a fair com-interconnected Click routers. In comparison, our Open-
parison of a software-based monitoring setup. The maFlow switch is equipped with 48 x 1 Gbps ports and 2 x
chine was a Dell Precision T5500 workstation with a 10 Gbps ports. In summary, employing Click yields sub-
2.26 GHz Dual-socket Quad-core Nehalem CPU, 12 GBoptimal monitoring performance and requires significant
of RAM, and three 1 Gbps Ethernet ports. We installedadditional hardware for high fanout setups.
Click 1.7.0in the 2.6.24. 7 Linux kernel running in Cen- . .
t0S 5.3. 7 Discussion

Our Click configuration was a combination of our OpenSAFE is designed for both flexibility and high per-
setup from our head-to-head comparison test and syrformance. As our results show, it outperforms an ex-
thetic load latency test. Traffic was received from one oristing monitoring infrastructure and scales with increas-
more NICs, passed to an IP classifier to divide traffic bying bandwidth. Our major concerns are state exhaus-

subnet, and queued for output on the appropriate NIC. A 4A null filter, implemented as a patch cable between two switch

portion of the Click configuration file is below. ports, was included in the paths in our OpenSAFE setup because Open-
Flow does not allow immediately sending a packet back to the same
define elements port from which it originated.

12

tion, matching ability, and flow insertion latency. Further Time

performangg .imp.rovements and extensibjlity depends on (RTT1 RTT2 RTTS3
new capab|I|t|e§ in th_e programm_able SWItCh and resolu- e . Fre—
tion of some unique implementation quirks. padetalo ek, Mooming
table. Also, follow flow
packets table.
. returnin,
7.1 Dynamic Rule Latency fom AT,

Latency to send packets to the controller is an importan‘:igure 16: For a particular flow, packets may arrive out
concern for dynamic rules. The OpenFlow version 0.8.9Of order '

specification does not have explicit hashing functions, re-

quiring OpenSAFE to utilize the controller for emulating

Eigam FA‘PL&?AIS rlrJ]Ies(.j I;’a%kets ﬂ?ithﬁd forﬁt}(’lff for mirror-based setting, the first packet of a new flow incurs
HO ule need 1o be sent 1o the controfier for ., sameRT T oniroiier delay. However, since Open-

the appropriate function to be applied. After computinggAFE is handling a copy of network traffic when used

When using OpenSAFE with dynamic rules in a

{he suich to atall flw enties based on the outcome ob 13U (he subsequent packets of a flow are ot de-
ayed. More packets from the flow may arrive at the

;he fl:ncttrl]on. T?ls"resfu Its in a relatl}/lely ![?]ngt:]tround-trlp switch regardless of whether flow entries are installed
Ime 1o the controfier Tor each new Tlow that raverses a, , 4 e firgt packet has been forwarded. If packets arrive
dynamic rule. In addition, the controller has the poten-

tial of being overwhelmed if large numbers of packetsbefore the flow entry is installed, these packets will also

: : . be sent to the controller. As shown in Fig{irg 16, during
are sent fﬁ ' dynamlcdflow mstg(ljlazon. bi b the first RT'T.onironier @ll packets are sent to the con-
As we have stated, we avoid these problems by Cal&oller. During the secon®T T on 11011 Packets from

fully constructing OpenFlow entries that minimize the 4 first RTT return from the controllevhile new incom-
number of flows that are sent to the controller. Additionalirlg packets are routed per the flow table in the switch
study should be done in the area of pre-computing mor%eginning with the thirdRT T.nirotter, packets will be
dynamic distribution rules. It is possible that a particular¢; .~ qed directly
hash function could be covered by a specific set of static During the secon®1T, Lo PACkets may be for
. . H controller -

OpenFIow rule_s, this is obviously n_ot general to all haShwarded out of order. Some newly arriving packets are
funct|ons, but it cou_lq be use_d to improve Performanceforwarded per the flow table in the switch, while older
in some cases. Addmonally, simple distribution methodspackets may still be being processed by the controller.
that do not require sFate, likeny, could be added_ 0 the This issue is minimized in two ways. The easiest way is
OpenFlow specification to reduce controller actlty. {0 Minimize theRT T, prop10r and thereby drastically re-

Click’s dynamic programmability allows hashing and ,ing the number of packets sent to the controller while
other distribution methods to be calculated directly at thethe first packet is still being processed. The other mini-
router, W'tT]OUt the rfl.ee? th contact another m?chlneﬁ Th'?‘nizing factor is that monitoring software already grace-
provides the benefit of faster processing of new flowsg,y handles unassisted reordering of packets. In par-
traversing dynamic distribution rules. However, Click ticular, to correctly decode a TCP stream, reassembly is

will incur the cost of computing the hash for all subse- o4 ired. I desired a filter could be added that could
qguent packets in the flow because it does not mamta”ﬂ)rovide the reassembly.

any per-flow state. A custom Click element could be
written to maintain flow tables similar to OpenFlow, but
OpenFlow’s hardware-based flow lookup will likely still
exceed the performance of a software-based element.

It is important to note this problem does not occur
when employing OpenSAFE on-path or when all flows
are precomputed (BT T oniroer 1S effectively zero).

8 Related Work

Wh loving OPenSAFE h with d . Some existing systems for on- and off-path monitoring
I en hemfp oylngk pefn ﬂon‘PaL I;’jv't h ynar'nlzwere already discussed in Sect[on|2.2. In this section,
rules, the first packet of a new flow is held at the switch, ¢ giscss works featuring alternative network policy

while the controller makes a decision on its destination.Ianguages and mechanisms for distributing monitoring
The packet is not forwarded until flow entries have beeqnfrastructure throughout the network

installed, effectively delaying all subsequent packets for
the flow. We will let RTT,otro11er dEnote the time from
packet arrival to flow entry installation time.

7.2 The Packet Ordering Problem

Casado et al. describe using Ethare [5] switches to en-

force middlebox policies and propose a languagd;

Eth, for describing these policies. However, their work
5Some dynamic distribution support is expected to be included inoN POI'EthIS p”_manly designed around reachability and

the OpenFlow 1.1 specification. the idea that middleboxes can be placed anywhere along

13

the logical path of a flow. In Our work differs in that our it lays the groundwork for monitoring infrastructures to
policy language, ALARMS, is geared toward directing meet the changing and growing demands of enterprise

monitoring traffic at a specific point in the network.

networks.

Joseph et al. propose an architecture similar to Ethanﬁieferences

in their work on policy-aware switchin [14]. However,
they do away with OpenFlow’s concept of a centralized
controller, instead relying on each switch to individually 2
determine the next hop and forward packets immediately.
This improves throughput, especially with large quanti- 3]
ties of brief flows (where the overhead of contacting the
controller is significant), but makes some network man- t4]
agement more difficult, as no single entity has a completels]
view of the network. Additionally, the policy specifica- (6]
tion language in their work is still centered around decid-
ing appropriate paths for a flow, rather than a higher-level 7]
concept of what network monitoring needs to be applied.

A Flow-Based Security Language (FSL).[13] for ex- (g,
pressing network policy has been suggested by Hinrichs
et al. FSL, a variant of Datalog, allows specification of [
policies such as access controls, isolation, and commu-
nication paths. This specification is flexible and fast, cal™®
pable of performing lookup and enforcement at high line[11]
rates. Again, however, the language is generally focused
on end-to-end reachability and path selection, without12]
specific thought to network monitoring.

Flowstream, proposed by Greenhalgh et al [11] con{13]
siders using OpenFlow as the connecting fabric on a mid-
dlebox. Conceptually, Flowstream has similar ideas td14]
OpenSAFE, however, it does not described a high-levej;s
policy language.

[1

. [16]
9 Conclusion
Network security monitoring in today’s large-scale net-17]
works is a difficult task. Rather than attempting to solve
all parts of the problem, including how to analyse net-
work traffic, we focused on how to route traffic to mon- 18]
itoring appliances. Current solutions for routing moni- [19]
tored traffic are expensive, difficult to manage, and haquO]
problems scaling to high line rates.

OpenSAFE is a cost-effective approach which aIIows[21
for flexible, fast, and scalable monitoring. It uses widely
available OpenFlow-enabled switches to direct traffic
through the monitoring infrastructure and scale to line[22]
rates. Management is facilitated by ALARMS, a lan-
guage to enable the arbitrary redirection of network flows[23]
for measuring and security purposes. We showed Oper@]
SAFE outperforms an existing, finely-tuned monitoring
setup, examining 54% more packets. We also showed
OpenSAFE scales to meet the demands of increasings)
bandwidth and outperforms an in-kernel Click router.

OpenSAFE makes monitoring large scale networks
easier than before. It can be combined with other se-
curity monitoring improvements to efficiently and effec-
tively monitor high traffic volumes. Most importantly,

14

S. Antonatos, K. Anagnostakis, and E. Markatos. Generating realistic
workloads for network intrusion detection system#sCM SIGSOFT Soft-
ware Engineering Note29(1):207-215, 2004.

S. Antonatos, K. Anagnostakis, E. Markatos, and M. Polychronakis. Per-
formance analysis of content matching intrusion detection systems. In
IEEE/IPSJ Symposium on Applications and the Internet (SAIRODA4.
Barnyard2: Snort Output Spool Readettp://www.securixlive.
com/barnyard2/index.php |

BASE: Basic Analysis and Security Engine. http://base.
secureideas.net/ |

M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and S. Shenker.
Ethane: Taking Control of the Enterprise. ShGCOMM 2007.

G. Cascallana and E. Lizarrondo. Collecting Packet Traces at High
Speed. INEEE Workshop on Monitoring, Attack Detection and Mitiga-
tion (MonAM) 2006.

L. Deri, N. S. P. A, V. D. B. Km, and L. L. Figuretta. Improving passive
packet capture: Beyond device polling. Imternational System Adminis-
tration and Network Engineering Conference (SANE)04.

L. Deri and F. Fusco. Exploiting Commodity Multicore Systems for Net-
work Traffic Analysis, 2009.

] M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun, K. Fall, G. lannaccone,

A. Knies, M. Manesh, and S. Ratnasamy. Routebricks: exploiting paral-
lelism to scale software routers. 8DOSP2009.

GigaMon GigaVue Switch. http://www.gigamon.com/
gigavue-2404.php

A. Greenhalgh, F. Huici, M. Hoerdt, P. Papadimitriou, M. Handley, and
L. Mathy. Flow processing and the rise of commodity network hardware.
ACM SIGCOMM Computer Communication Revi&#(2):20-26, 2009.

N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and
S. Shenker. NOX: Towards an Operating System for NetwokidM SIG-
COMM Computer Communication Revie®8(3):105-110, 2008.

T. Hinrichs, N. Gude, M. C. andJ ohn Mitchell, and S. Shenker. Expressing
and Enforcing Flow-Based Network Security Policies. Technical report,
University of Chicago, 2008.

D. A. Joseph, A. Tavakoli, and I. Stoica. A Policy-aware Switching Layer
for Data Centers. I8IGCOMM pages 51-62, 2008.

E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. The click
modular routerACM Transactions on Computer Systems (TQC8&R63—
297, August 2000.

C. Kruegel, F. Valeur, G. Vigna, and R. Kemmerer. Stateful intrusion detec-
tion for high-speed networks. IEEE Symposium on Security and Privacy
pages 285 — 293, 2002.

N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner. OpenFlow: Enabling Innovation in
Campus Networks ACM SIGCOMM Computer Communication Review
38(2):69-74, 2008.

R. Morris, E. Kohler, J. Jannotti, and M. F. Kaashoek. The Click Modular
Router.ACM SIGOPS Operating Systems Reyig8(5):217-231, 1999.
nProbe: An Extensible NetFlow/IPFIX Network Prokbttp://www.
ntop.org/nProbe.html

L. Schaelicke, K. Wheeler, and C. Freeland. Spanids: a scalable network
intrusion detection loadbalancer. @omputing Frontiers (CF)pages 315—
322, New York, NY, USA, 2005.

] S. Snapp, J. Brentano, G. Dias, T. Goan, L. Heberlein, C. Ho, K. N. Levitt,

B. Mukherjee, S. Smaha, T. Grance, et al. DIDS (distributed intrusion
detection system)-motivation, architecture, and an early prototypiain
tional Computer Security Conferengeages 167-176, 1991.

T. Sproull and J. Lockwood. Distributed Instrusion Prevention in Active
and Extensible NetworksLecture Notes in Computer Scien@912:54,
2007.

Suricata Open Source Intrusion Detection and Prevention Enpite.
/lwww.openinfosecfoundation.org/ |

M. Vallentin, R. Sommer, J. Lee, C. Leres, V. Paxson, and B. Tierney. The
NIDS Cluster: Scalable, Stateful Network Intrusion Detection on Com-
modity Hardware. InRecent Advances in Intrusion Detection (RAID)
Berlin, Heidelberg, 2007.

K. Xinidis, I. Charitakis, S. Antonatos, K. Anagnostakis, and E. Markatos.
An active splitter architecture for intrusion detection and preventi6RE
Transactions on Dependable and Secure Compu8(it):31 — 44, 2006.

http://www.securixlive.com/barnyard2/index.php
http://www.securixlive.com/barnyard2/index.php
http://base.secureideas.net/
http://base.secureideas.net/
http://www.gigamon.com/gigavue-2404.php
http://www.gigamon.com/gigavue-2404.php
http://www.ntop.org/nProbe.html
http://www.ntop.org/nProbe.html
http://www.openinfosecfoundation.org/
http://www.openinfosecfoundation.org/

	Introduction
	Challenges and Design Requirements
	Design Requirements
	Existing Systems
	Using programmable network fabrics

	OpenSAFE
	Paths
	Parallel Filters and Sinks
	Hooks
	Overall Design

	ALARMS: A Language for Arbitrary Redirection for Measuring and Security
	Component Declarations
	Paths
	Paths with Selects
	Distribution Rules

	Programming the Fabric
	Policy Parsing
	Static Flow Installation
	Default Drop
	Input Paths
	Filters and Waypoints
	Distribution Rules

	Dynamic Flow Installation
	Distribution Rules
	Hooks

	Evaluation
	Comparison to Existing Infrastructure
	Test Setup
	Results

	Synthetic Loads
	Test Setup
	Results

	Comparison to Click
	Test Setup
	Results

	Discussion
	Dynamic Rule Latency
	The Packet Ordering Problem

	Related Work
	Conclusion

