
OpenSAFE: Hardware-Based Network Monitoring Using Software Control

Aaron Gember, Jeffrey R. Ballard, Brian Kroth and Aditya Akella
University of Wisconsin–Madison

Abstract

Administrators of today’s networks are highly interested
in monitoring traffic for purposes of collecting statistics,
detecting intrusions, and providing forensic evidence.
Unfortunately, network size and complexity can make
this a daunting task. Aside from the problems in ana-
lyzing the network traffic itself for this information—an
extremely difficult task on its own—a more fundamental
problem exists: how to direct the traffic for network anal-
ysis and measurement in a flexible, high performance
manner.

Current solutions fail to fully address the challenges
of directing traffic for both on- and off-path monitor-
ing. In this paper, we propose OpenSAFE, a system
for enabling the arbitrary direction of traffic for security
monitoring applications at line rates. Flexible policies
are specified in ALARMS, a flow specification language
that greatly simplifies management of network monitor-
ing appliances. Finally, we demonstrate our OpenSAFE
implementation using both live network traffic and re-
played traces. Analysis shows that our OpenSAFE im-
plementation handles higher traffic volumes than our ex-
isting monitoring infrastructure.

1 Introduction
Networks are traditionally monitored for many purposes
including performance optimization, usage tracking, se-
curity and intrusion detection, compliance verification,
and forensic analysis. There are two common ap-
proaches to monitoring and measurement today: 1) on-
path middleboxes and 2) off-path traffic mirrors. The for-
mer set of approaches directly receive and affect network
traffic before forwarding it on to its destination, whereas
the latter employs a copy or span of network traffic at in-
teresting points in the network to monitor without affect-
ing it. In addition, growing link speeds and network fan-
out are making effective network monitoring even more
challenging. Unfortunately, both sets of approaches suf-
fer from key issues pertaining to performance and flexi-
bility.

Firstly, achieving complex on- or off-path monitor-
ing functionality is quite tricky today. Each of the
above application domains places different constraints
on monitoring techniques. Unfortunately the constraints
can work against each other, making the monitoring
functions ill-suited for one underlying platform. Fur-
thermore, hardware limitations often prevent the abil-
ity to provide multiple traffic monitoring ports on a

single router. Thus, operators are often forced to
daisy-chain multiple monitoring devices to achieve com-
plex monitoring functionality, which is a rigid and
failure-prone configuration. The introduction of new
monitoring mechanisms often requires difficult physi-
cal rewiring and complex reconfiguration of monitoring
hardware/software, resulting in outages. Secondly, the
arriving network traffic can quickly overwhelm the mon-
itoring computer, rendering it useless. To overcome these
two problems, network administrators can deploy special
purpose load-balancing or traffic-splitting mechanisms.
Hardware traffic-splitters (e.g., SPANIDS [20] and Xini-
dis et al. [25]) are fast, but they are expensive and difficult
to program. Software-based load-balancers (e.g., those
based on Click [15]) are inexpensive and flexible as they
are easy to reprogram based on observed traffic patterns,
but they impose latency and throughput penalties.

Our goal is to design a monitoring framework that
has the flexibility and ease of configuration realizable
through software-based control along with the speed
of approaches based on hardware forwarding. To this
end, we introduceOpenSAFE, which uses a commodity
software-programmable switch to direct traffic in flexible
ways to meet complex monitoring requirements.

Several inexpensive unoptimized monitoring devices,
subsets of which may be performing a given monitor-
ing function, can be “plugged into” OpenSAFE to pro-
cess programmatically-defined substreams of data. We
also introduce a high-level language, ALARMS, to en-
able network administrators to flexibly express rich poli-
cies to control how traffic is distributed to various mon-
itoring devices. The policy is expressed at a logically
central monitoring controller which then instantiates pol-
icy constraints in the form of forwarding entries in the
programmable switch’s flow table. In effect, Open-
SAFE couples a high-performance hardware-based mon-
itoring dataplane with a flexible software-based configu-
ration/control plane, resulting in a highly effective, yet
low-cost, monitoring framework.

OpenSAFE introduces design abstractions for moni-
toring elements and functionality, such as mirror ports,
monitoring devices of different kinds, and various mech-
anisms for controlling traffic. Our ALARMS language
expresses OpenSAFE’s abstractions in a simple pol-
icy language syntax. OpenSAFE and ALARMS are
designed to allow operators to instantiate and/or up-
date very sophisticated monitoring setups with relative
ease. The abstractions and policy language in Open-

1

SAFE/ALARMS are motivated by those in Click [15],
but are more monitoring-specific. In theory, Click can
also enable software-programmable network monitoring,
but OpenSAFE offers key flexibility and performance
advantages. OpenSAFE’s architecture allows it to or-
chestrate traffic distribution amongst multiple monitor-
ing locations via a simple policy specified at the (lone)
controller, enabling richer and more flexible monitoring
functionality. In contrast, Click and other solutions re-
quire configuration at each monitoring point in the net-
work. Click’s reliance on CPU processing of packets im-
poses significant latency penalty, whereas OpenSAFE’s
hardware fast path removes this overhead for an over-
whelming fraction of packets.

We conduct a thorough evaluation of OpenSAFE us-
ing both live production traffic and replayed traces.
We implement OpenSAFE and ALARMS using the
NOX/OpenFlow platform [12, 17]. We show that it out-
performs an existing, highly-optimized monitoring de-
vice in a multiple day head to head test. We examine
54% more packets and generate 30% more security alerts
during our four day test using anunoptimizedteam of
machines and OpenSAFE. Furthermore, we show that
OpenSAFE scales with increasing bandwidth and signif-
icantly outperforms an in-kernel Click configuration.

2 Challenges and Design Requirements
Modern networks may employ both on-path or off-path
monitoring. On-path middleboxes are used commonly
because of their ability to manipulate live traffic. Un-
fortunately, additions, deletions or modifications of mid-
dleboxes lead to outages and reconfiguration of network
gear. This results in network interruptions and perfor-
mance loss. On-path middleboxes also need to be ca-
pable of processing all traffic traversing a particular net-
work link, even if the processing of some packets only
involves simple forwarding. High traffic volumes can in-
undate on-path middleboxes and degrade network per-
formance. OpenSAFE can help address all of these chal-
lenges in on-path monitoring.

The alternative to on-path middleboxes is to take a
mirror (or tap) of traffic at a border point and examine
the traffic off-path. While an off-path monitoring de-
vice does not impact production traffic due to reconfig-
uration outages or traffic overload, hardware limitations
often prevent the ability to provide multiple traffic mir-
rors. This limits the number of monitoring devices that
can effectively participate. For example, the Cisco Cat-
alyst 6000 series is limited to two mirror ports per de-
vice. Making it worse, enabling multicast on a Cisco
FireWall Services Module (FWSM), consumes one of
the mirror ports–leaving only one for monitoring. Com-
monly, network operators connect this single mirror port
into an expensive computer that has been heavily opti-

mized to move traffic very fast (for example, by using
PF RING [7]), leaving little room for error. The heavy
tuning often results in brittle software configurations. At
times even slightly different revisions of software make a
huge impact in these monitoring computers.1 Even with
high tuning, a single off-path monitoring device can be-
come overwhelmed with traffic and lose large amounts of
data by randomly dropping packets. A random drop pol-
icy affects the ability for the monitoring device to both
fully examine all traffic and accurately reassemble net-
work flows. OpenSAFE can address these challenges in
off-path monitoring as well.

2.1 Design Requirements
To address the challenges discussed above, OpenSAFE
must meet the following design requirements:

• The ability to handle high-speed linksensures the
monitoring infrastructure can processall traffic at
contemporary link speeds of 1 Gbps, 10 Gbps, or
higher. The system must also support multiplexing
traffic amongst multiple parallel monitoring devices
which process traffic at slower link speeds.

• Support for flexible configurations is required to
meet the diverse, and often conflicting constraints,
of multiple monitoring domains. The ability to
monitor specific subsets of traffic and process traffic
with multiple monitoring devices is essential.

• No service interruptionsshould be caused by con-
figuration changes or monitoring device failures.
Production traffic should remain unaffected.

• Compatibility with existing monitoring solutions
ensures admins can integrate their existing intrusion
detection, traffic capture, packet counting, and other
monitoring tools into the monitoring infrastructure.

• Easy managementavoids the configuration com-
plexities of todays highly tuned systems, allowing
admins to focus on analyzing monitoring output in-
stead of managing monitoring infrastructure.

2.2 Existing Systems
Many commercial and research systems have been devel-
oped for monitoring enterprise networks in either an on-
path or off-path fashion. However, as shown in Table 1,
existing systems still lack some key design features.

The NIDS Cluster by Vallentin et al. [24] and the state-
ful intrusion detection system by Kruegel et al. [16] both
use commodity PCs and flow-based hashing to distribute
traffic from a mirror or a link to a set of parallel moni-
toring devices all performing the same function. How-
ever, the link speed both systems can handle is limited

1For example, in our initial tests we found that a minor revision of
our IDS software dropped almost 50% more packets on our production
monitoring system.

2

System Forwarding Hardware Data Plane Control Plane Monitoring Devices Distribution Basis
OpenSAFE Programmable network fabric Hardware Software Any configuration Flows (see Section 3.2)
NIDS Cluster [24] Commodity PCs Software Software Parallel sensors Flows (hashing)
Stateful Intrusion Detection [16] Commodity PCs Software Software Parallel sensors Flows (filters)
SPANIDS [20] FPGA Hardware Hardware Parallel sensors Flows (hashing)
Active Splitter [25] Programmable network processor Hardware Hardware Parallel sensors Flows (hashing)
Click Modular Router [18] Commodity PC Software Software Any configuration Packets

Table 1: Existing systems for multi-device on- or off-path monitoring

by the software-based data planes they employ. Addi-
tionally their use is limited to a set of monitoring devices
performing the same function in parallel.

SPANIDS by Schaelicke et al. [20] and the active split-
ter architecture by Xinidis et al. [25] employ a hardware-
based data plane. SPANIDS employs FPGA hardware
and Xinidis et al. use programmable network processors.
Fields in the packet headers are hashed to load balance
flows amongst multiple monitoring devices operating in
parallel. Unfortunately, both systems are still limited to
parallel identical monitoring devices. Additionally, both
the data plane and control plane must be programmed
into hardware using low-level assembly, making it diffi-
cult to modify the systems’ behavior.

The Click Modular Router [18] is most similar to
OpenSAFE because of its ability to support arbitrary
configurations of monitoring devices. Its element-based
model and simple specification language is similar to
ALARMs, except that ALARMS is more narrowly fo-
cussed on monitoring and includes constructs that are
missing in Click. Despite the similarity, new challenges
arise in realizing OpenSAFE/ALARMS because of the
fundamental difference in the platforms over which for-
warding (of traffic to various monitoring devices) is re-
alized: at a powerful CPU in Click, vs. directly at the
forwarding tables of dumb switches in OpenSAFE (see
next section).

A Click based approach has key disadvantages as well.
A crucial disadvantage of Click is its use of a software-
based data plane which can be overwhelmed by the high-
speed links present in contemporary enterprise networks.
In particular, even with recent enhancements [9], CPU-
based packet processing in Click imposes undesirably
high per-packet latencies. Another downside is that Click
does not allow easy simultaneous control over multiple
monitoring locations, as each location needs to be inde-
pendently configured. In contrast, by design, OpenSAFE
allows a single network controller to use simplistic poli-
cies to centrally orchestrate multiple network monitoring
locations, thereby enabling richer and more flexible mon-
itoring functionality.

2.3 Using programmable network fabrics
The key problem in monitoring is not being able to ex-
ercise fine-grained control over network traffic. We ob-
serve that by inserting a programmable network fabric
at the monitoring point we can dramatically increase the

...

Network B

Network A

Programmable
Network Layer

Network B
Firewall

Middlebox
2

Middlebox
1

Middlebox
n

Central
Controller

(a) Monitoring live traffic on-path.

...

Network B

Network A

Programmable
Network Layer

Network B
Firewall

Monitoring
Device 2

Monitoring
Device 1

Monitoring
Device n

Filtering
Device(s)

Central
Controller

(b) Monitoring mirrored traffic off-path.

Figure 1: The desired dynamic layer.

utility of network traffic and the flexibility of monitoring,
while at the same time dramatically reducing the effort
needed to engineer and manage the monitoring function-
ality. An on-path and off-path example of this are shown
in Figure 1. The framework, which we call OpenSAFE,
demultiplexes high-bandwidth packet streams into sev-
eral lower-bandwidth flows that are directed to different
monitoring devices. A central controller determines how
the fabric is configured. We briefly outline the key ad-
vantages of OpenSAFE.

(1) Our approach allows forflexible, fast and scalable
monitoring. This has at least two different aspects to it.
First, when applied to off-path monitoring, our approach
allows for flexible sharing of a single mirror port across
multiple devices. Second, with a programmable network
fabric, network flows are directed on demand, and new
monitoring functions can easily be added/reconfigured
without incurring outages. Ideally this will leverage the
support of an intuitive declarative language to control
traffic. Related to this is the issue of scaling the through-
put of monitoring functions, particularly those that are
very intensive. In such cases, OpenSAFE allows multi-
ple devices to work on disjoint subsets of traffic in paral-

3

lel thereby improving the throughput significantly.
(2) Another benefit of using a programmable network

fabric is that it worksper-flow. Since decisions are made
per-flow in hardware—unlike other packet distribution
techniques [15, 21, 22]—the scale-up of network mon-
itoring is facilitated in an more manageable way. Fun-
damentally, software performing intrusion detection or
deep packet inspection will reassemble out of order pack-
ets to correctly process streams. This process is dramat-
ically streamlined, however, by having per-flow opera-
tions in the programmable switch fabric. In addition,
when seeing all the packets from a flow as opposed to
a random subset of packets (e.g. due to some round-
robin policy), the monitoring software is generally able
to more accurately collect useful data.

(3) Our approach iscost-effective. Programmable
network fabrics have become available for commodity
prices today; for example, OpenFlow[17]—an approach
to program a switch’s flow table—is supported on com-
modity networking hardware via a firmware upgrade. In
addition, the ability to demultiplex traffic into multiple
low-bandwidth flows has the immediate advantage of al-
lowing the use of commonly-available, inexpensive, and
easy to manage 1 Gbps NICs on the monitoring devices
rather than 10 Gbps NICs.

3 OpenSAFE
We propose OpenSAFE (Open Security Auditing and
Flow Examination), a unified system for network mon-
itoring and measurement. Leveraging a programmable
network fabric, our system can direct network traffic in
a flexible (programmable) fashion without sacrificing la-
tency or throughput. OpenSAFE consists of three com-
ponents: a set of design abstractions for codifying the
flow of network traffic; ALARMS, a policy language
for easily specifying traffic paths (Section 4); and a con-
troller that implements the policy using OpenFlow (Sec-
tion 5). Unless otherwise specified, we describe Open-
SAFE assuming an off-path monitoring configuration;
the same design can be applied for on-path setups.

3.1 Paths
OpenSAFE is designed around several simple primitives
to make the direction of network flows for network mon-
itoring both flexible and easy. We use the notion of a
path as the basic abstraction for describing the selec-
tion of traffic flows and the direction these flows should
take. Fundamentally, we wish to support the construc-
tion of paths that allow desired traffic to enter the system
on a particular network port and be directed to one or
more network monitoring systems, regardless of physical
configuration. A basic example of this is shown in Fig-
ure 2, where mirrored HTTP traffic is sent first through a
counter appliance and then to a TCP dump appliance.

Mirror
Port: 80

Counter TCP
Dump

Figure 2: A basic monitoring path.

Input SinksSelect Filters

Figure 3: Abstractions to describe monitoring paths.

Paths are composed of several components:inputs, se-
lects, filters, andsinks. At a high level, each path begins
with an input, applies an optional select criteria to select
a desired subset of network flows, directs matching traf-
fic through zero or more filters, and ends in one or more
sinks (Figure 3). Inputs can only produce traffic, sinks
can only receive traffic, and filters must do both.

If we take Figure 2 and view it with these abstractions,
it becomes Figure 4. This shows traffic entering on a
mirror port (input) matching our criteria of port 80 (se-
lect), passing through a counter (filter), and ending at a
TCP dump (sink). The same abstractions apply when
OpenSAFE is used on-path: live traffic enters through
an input and returns to the production network at a sink.
Figure 5 shows a more complicated on-path example in-
volving multiple filters, demonstrating how paths can be
extended and applied to live traffic. A typical OpenSAFE
configuration consists of multiple paths treated in aggre-
gate.

3.2 Parallel Filters and Sinks
To monitor large networks at line rates it is possible (and
quite likely) that a single middlebox or monitoring de-
vice will not be able to cope with all the network traf-
fic. To address this problem, we allow traffic to be sent
to multiple filters or sinks operating in parallel within
a path. Figure 6 shows such a path for a mirror-based
setup, with HTTP traffic sent to multiple IDS appliances.

The division of traffic between multiple filters or sinks
is handled usingdistribution rules. Rules are applied on
a per-flow basis. Existing parallel monitoring systems
(e.g. [20, 24, 25]) only support distribution based on
hashing. OpenSAFE supports five methods of distribu-
tion amongst a set of parallel components:

• ALL—send a flow to every component in the set
• RR—alternate flows between components of the set

using Round Robin
• ANY—randomly select a component from the set
• HASH—apply a hash function on the first packet of

a flow to select a component
• PROB—apply a probability function to load bal-

ance flows amongst components

Distribution rules (except forALL rules) are consid-
ereddynamic—the path a particular flow follows is de-

4

Mirror Counter TCP DumpPort 80

Figure 4: A basic logical monitoring path (Figure 2) with
coded abstractions.

Live
Traffic Counter Production

NetworkPort 443 Decryption

Figure 5: A logical monitoring path with multiple filters.

termined at runtime when the first packet of a flow tra-
verses the distribution rule. Hooks, described below, are
also dynamic. In contrast, the other portions of a path
are consideredstatic—the path taken by all flows is con-
stant. The difference betweenstatic anddynamicrules
has implications for how paths are implemented in the
programmable network fabric, as described in Section 5.

3.3 Hooks
One issue that can arise when splitting monitoring traf-
fic among multiple devices is that flows from a particular
host (or a potential adversary) can be directed to separate
machines. While information about the flows can be ag-
gregated after the fact, it may be useful for monitoring
software to examine all future traffic from a host after
suspicious activity is detected. This requires the capabil-
ity to add new paths at runtime. In OpenSAFE,hooks
provide this functionality.

Monitoring devices can make hook requests at runtime
to have new paths added to the current OpenSAFE con-
figuration. A hook request effectively duplicates the path
containing the hook and appends the path specified by
the monitoring device. For example, Figure 7 shows a
path with a hook and Figure 2 shows a potential result-
ing path based on a hook request to send HTTP traffic to
counterfollowed byTCP dump.

3.4 Overall Design
The overall design of OpenSAFE is shown in Figure 8.
The input is a connection from the chosen network ag-
gregation point to a port on our programmable switch.
Some number of filters (i.e. middleboxes) are used, at-
tached to various switch ports. Finally, output is directed
to some number of sinks.2 Optionally, multiple switches
can be used, assuming they are directly connected; paths
can be defined between ports on any of the switches.

All switches are controlled by a logically central con-
troller. This allows administrators to manage the en-
tire monitoring infrastructure from a single point. In
contrast, Click [15] and existing load balancing tech-
niques [20, 25] require configuration changes to be made

2An on-path setup typically has a single sink to return traffic to the
production network.

Mirror

TCP
Dump 1

Port 80

TCP
Dump 2

Figure 6: A monitoring path with parallel sinks.

Mirror hook1

TCP DumpPort 80

Mirror TCP DumpPort 80

hook1

Original:

Request:

Result:

Figure 7: An example of a hook (top line). The middle
line is a hook request made by a device and the bottom
line is the resulting path implemented by OpenSAFE.

at each Click router or load balancer. A single policy at
the controller not only eases management, but also helps
ensure consistent monitoring across the network. Install-
ing backup controllers helps avoid a single failure point.

4 ALARMS: A Language for
Arbitrary Redirection for
Measuring and Security

To enable network administrators to easily manage and
update their monitoring infrastructure, we introduce
ALARMS, a language to enable the arbitrary redirection
of network flows for measurement and security purposes.
ALARMS represents the abstractions mentioned in Sec-
tion 3 in a simple policy language syntax. Each compo-
nent is defined with a name and parameters, and paths
are defined between the named components. In this sec-
tion we present the syntax of ALARMS; details about the
implementation of policies are described in Section 5.

Most of the examples in this section and Section 5 are
intended for mirror-based off-path monitoring. However,
the same language constructs and implementation details
apply to on-path monitoring, unless otherwise noted.

4.1 Component Declarations
In ALARMS, all components of a path are given unique
types and names. Specifically, the policy file declares the
following components:Switches, Inputs, Sinks, Selects,
Hooks, andWaypoints. We describe the language speci-
fication and parameters for each of these below.

SwitchesEach switch is declared with a unique name
and the identifier of the programmable switch fabric:

switch sw = 0x00000021;

5

OpenFlow
Switch

Input
Sink1

Filter1 Filterm

Sinkn

...

...

OpenFlow
Controller

Figure 8: The overall design of OpenSAFE, using our
abstractions.

Inputs and Sinks Inputs and sinks are simply named
switch ports (as in Figure 8), declared like so:

input mirror = sw:0;
sink tcpdump = sw:1;

Since inputs can only transmit traffic and sinks can only
receive traffic, each named input or sink is restricted to
a single port. Traffic can be directed to multiple sinks
using distribution rules (Section 4.2.2). A special default
sink nameddiscard drops all traffic sent to it. For on-
path monitoring, an input provides live traffic and a sink
sends live traffic back into the production network.

Filters Middleboxes within an OpenSAFE network are
called filters. A filter is a combination of an input and
a sink, shown as the third item in Figure 3. As such,
filters are declared with a singletofrom switch port (to
both receive and transmit on the same port) or both ato

and afrom port (to delegate receiving and transmitting,
respectively, to separate ports):

filter to counter = sw:2;
filter from counter = sw:3;

SelectsSelects are named criteria used to limit traf-
fic flows based on fields in packet headers. ALARMS
supports selecting on any of 9-different header fields:
Ethernet source and destination addresses, EtherType,
VLAN identifier, network source and destination ad-
dresses, transport protocol, and transport source and des-
tination ports. Additionally, an arbitrary number of bits
can be declared as wildcards for network source and
destination addresses to provide for CIDR-like address
ranges. Limited boolean logic (AND, OR) can be used in
a select definition to specify criteria on multiple header
fields. Any header fields not specified in the select are
treated as wildcards. The example select below yields
only traffic whose source or destination port is 80:

select http = tp_src: 80 || tp_dst: 80;

Hooks Path requests made at runtime are facilitated via
hooks. In ALARMS they are declared with only a name:

hook hook1;

Mirror Port 80

Mirror

Counter TCP Dump

Port 443 Decryption

Web

Figure 9: A logical monitoring path with a waypoint.

Waypoints In a system of reasonable size, it is proba-
ble to have multiple paths configured with common at-
tributes. For instance, suppose an administrator wants to
perform some degree of processing on one of two sets
of traffic, then send the results of both to the same filter
and sink. This quickly becomes a maintenance problem
as modifying the common end-components of the paths
may involve editing many paths.

The final component type in ALARMS is an abstrac-
tion added as a convenience to ease the creation and man-
agement of multiple, semi-redundant paths.Waypoints
serve as “virtual destinations” and “virtual sources” al-
lowing administrators to aggregate paths and reduce rep-
etition. A path using a waypoint is displayed in Figure 9,
where HTTP and HTTPS traffic is sent to aweb waypoint
before being passed to a counter filter and TCP dump
sink. Declaring waypoints requires only a name:

waypoint web;

4.2 Paths
After all named components have been declared, we can
connect these components to form paths. The declaration
of paths is similar to the language used in Click [15], ex-
cept OpenSAFE paths are designed to direct flows rather
than individual packets. Paths in ALARMS must con-
form to the following specification:

1. Paths begin with an input, waypoint, or filter.

2. Paths end with a sink, waypoint, filter, hook, or rule.

3. Selects can be applied to any connection between
components.

The path in Figure 4 can be written in ALARMS as:

mirror[http] -> counter -> tcpdump;

4.2.1 Paths with Selects
A select limits the traffic seen by all components in the
path downstream from the select. In the path above, the
filter (counter) will only see HTTP traffic coming from
the input (mirror) and the sink (tcpdump) will only see
HTTP traffic leaving the filter. Each connection in the
path is limited to having one select.

If a path has multiple selects, the selects downstream
further restrict upstream selects, with the downstream se-
lect taking precedence in the case where both specify cri-
teria for the same header field(s). For example, a revised
path with an additional select will result in the filter still

6

seeing all HTTP traffic from the mirror port, while the
sink now sees only HTTP traffic for a particular server:

select webserver = nw_src: 10.0.0.1
|| nw_dst: 10.0.0.1;

mirror[http] -> counter[webserver] -> tcpdump;

4.2.2 Distribution Rules
The distribution of traffic between multiple components
(excluding inputs) is handled by distribution rules, ap-
plied on a per-flow basis.

The first three distribution methods,ALL, RR, andANY,
each take a list of components to act on. In the on-
path example below, the rule will round-robin new HTTP
flows between two counter middleboxes before returning
traffic to the production network:

live[http] -> {RR, counter1, counter2}
-> production;

HASHandPROBrules take an additional argument—the
name of the hash or probability function—and rely on
the output of this function to determine the destination.
Probability rules are designed to allow OpenSAFE to dis-
tribute traffic based on the current load of distribution
components, so the user must also provide a way for the
function to receive load information from components.
For example, the following policy instructs OpenSAFE
to use a user defined hash functionmyhash to distribute
new flows between two counter filters before they pro-
ceed to a tcpdump sink. This could be more desirable
than aRRrule since it can be deterministic.

mirror[http]
-> {HASH(myhash), counter1, counter2}
-> tcpdump;

Distribution rules to distribute traffic amongst parallel
sinks should only be utilized in mirror-based monitoring
environments. Policies for on-path monitoring should, in
most cases, send all traffic to a single sink which reintro-
duces the traffic to the production network.

5 Programming the Fabric
Direction of traffic is realized by programming the net-
work fabric based on an ALARMS policy file. Program-
ming the fabric consists of three tasks:

1. Parse the policy file written in ALARMS.

2. Install static flows when a new switch connects to
the controller.

3. Install dynamic flows when a packet is received by
the controller, or upon hook request.

Our network fabric consists of an OpenFlow [17]
switch and NOX controller [12]. An OpenFlow switch
forwards packets in the data plane based on a pro-
grammable flow table. The flow table consists of entries
that contain values for up to ten different packet header

fields (known as theOpenFlow 10-tuple).3 Any fields
in the 10-tuple for which values are not specified are
treated as wildcards. Each entry also contains an action
that should be applied to packets matching that entry:
drop, output to one or more ports, or send to the con-
troller. When a packet arrives at an OpenFlow switch, it
is matched against the entries in the flow table. The ac-
tions of the highest priority matching entry are applied to
the packet. If the packet does not match any entry in the
flow table, it is forwarded to the controller for a decision
to be made. While other all-ASIC options exist (such as
ones from GigaMon[10]), OpenFlow is readily available
today on commodity hardware.

5.1 Policy Parsing
ALARMS policy parsing performs two key actions on
paths. First, each path is checked to verify it meets
the three criteria outlined in Section 4.2. Second, over-
lapping paths are identified and combined. Combin-
ing paths avoids overwriting the flow table entries for
an earlier path with flow table entries for an overlap-
ping path defined later in a policy. A set of paths with
the same first component and select criteria are inter-
nally combined by applying the following transforma-
tion rule: Given a set of pathsα → β1, ..., α → βn,
wheren ≥ 2, remove the existing paths and add new
pathswaypointα1 → β1, ..., waypointαn → βn, α →
{ALL, waypointα1 , ..., waypointαn}. For example,
the set of overlapping paths
mirror -> counter -> tcpdump1;
mirror -> counter -> tcpdump2;

are internally combined to form non-overlapping paths
counter -> {ALL, waypoint1, waypoint2};
waypoint1 -> counter -> tcpdump1;
waypoint2 -> counter -> tcpdump2;

5.2 Static Flow Installation
The process to program the network fabric based on an
ALARMS policy begins with a fundamental observation:
hardware is faster than software. In OpenFlow, forward-
ing a packet which matches an existing flow table entry
is faster than sending a packet to the controller. To pre-
serve high performance, we pre-compute as many routes
as possible and install them in the flow table of the Open-
Flow switch on startup. This avoids the need to con-
tact the controller for every new flow and prevents the
controller from being overloaded with traffic—a distinct
possibility when operating at high line rates. We call
these pre-computed flow table entriesstatic flowssince
they remain in the switch’s flow table the entire time
OpenSAFE is running. Static flow table entries are in-
stalled forstatic path components (see Section 3.2) and
to send traffic fordynamiccomponents to the controller.

3The allowable header fields are the nine fields specifiable in selects
defined in ALARMS, plus a field for incoming switch port.

7

5.2.1 Default Drop
By default, an OpenFlow switch automatically sends to
the controller any traffic for which there is no matching
flow table entry. In contrast, ALARMS specifies paths
for only certain traffic, assuming all other traffic is dis-
carded. To reconcile the differences between ALARMS
and OpenFlow, we install low-priority wildcard rules to
drop all traffic entering the switch from inputs or fil-
ters. These drop rules avoid the overhead of sending un-
wanted packets to the controller. All paths defined in the
ALARMS policy file are installed with higher priority so
desired traffic is not dropped.

When employing OpenSAFE on-path, traffic not ex-
amined by monitoring devices should simply be for-
warded. Since ALARMS assumes default drop, adminis-
trators need to include in the policy file a simple forward-
ing path from live traffic input to production network
sink. More specific paths (i.e. paths with selects) will
still take precedence over this simple forwarding path be-
cause OpenFlow gives precedence to matching flow table
entries with fewer wildcard fields before selecting an en-
try with more wildcard fields.

5.2.2 Input Paths
Static flow installation processes each path that begins
with an input. At the beginning of a path, it is assumed
that all flows (i.e. a 10-tuple of all wildcards) will tra-
verse the path. The 10-tuple becomes more specific as
each component and selection in the path is processed.
The input port (in port) field is updated when processing
an input or a filter. A selection adds new tuple items or
overrides existing values.

New flow table entries are typically installed at the
switch for each transition (i.e. arrow,->) in a path. For
example, the path in Figure 2, written in ALARMS as

mirror[http] -> counter -> tcpdump;

results in two flow entries for the first transition

{tp src=80, in port=0} → output:2
{tp dst=80, in port=0} → output:2

and two flow entries for the second transition

{tp src=80, in port=3} → output:1
{tp dst=80, in port=3} → output:1

5.2.3 Filters and Waypoints
Paths ending with a filter require “expanding” the path
to also process all paths succeeding from the filter. In
the example below, processing the path ending with the
counter filter prompts the processing of the second path:

mirror[http] -> counter;
counter -> tcpdump;

When processing filter paths, the 10-tuple that existed at
the end of the original path is used as the starting 10-
tuple for each filter path. If we did not use the 10-tuple

from the end of the original path, an incorrect flow table
entry would have been installed:

{in port=3} → output:1

The only traffic that should leavecounter is the HTTP
traffic that came in. Therefore, we start processing the
second path with a 10-tuple specifying port 80 traffic.

Paths ending in waypoints are treated similarly to
paths ending in filters. The waypoint is “expanded” and
processing continues along each path beginning with that
waypoint. The difference is that waypoints are merely
conceptual and do not correspond to any physical ports
on the OpenFlow switch. Flow entries are installed orig-
inating from the component preceding the waypoint in
the original path, to the component(s) following the way-
point in the waypoint path(s). For example, the paths

mirror[http] -> web;
web[webserver] -> tcpdump;

result in only one set of flow entries

{tp src=80, nwsrc=10.0.0.1, inport=0} → output:2
{tp src=80, nwdst=10.0.0.1, inport=0} → output:2
{tp dst=80, nwsrc=10.0.0.1, inport=0} → output:2
{tp dst=80, nwdst=10.0.0.1, inport=0} → output:2

It is important to note that the current 10-tuple is first
limited by thehttp select when the inputmirror is pro-
cessed, and the set of flows is further limited by the
webserver select when theweb waypoint is “expanded.”
If no path begins with a particular waypoint, uses of the
waypoint are “expanded” to have a destination of the im-
plicit discard sink.

5.2.4 Distribution Rules
The static flow table entries installed for distribution
rules vary depending on the distribution method. AnALL
rule can be treated statically—no packets need to be sent
to the controller and all flow table entries can be installed
at startup. For example, the path

mirror[http] -> {ALL, tcpdump1, tcpdump2};

results in the flow entries

{tp src=80, in port=0} → output:1, output:4
{tp dst=80, in port=0} → output:1, output:4

If more components exist in the path following the rule,
path processing continues along the path as normal.

The other methods of distribution (RR, ANY, HASH,
andPROB) require packets to be sent to the controller
for the appropriate dynamic flow entries to be installed.
For these rules, static flow entries are installed with the
action of sending to the controller. For example, the path

mirror[http] -> {RR, tcpdump1, tcpdump2};

results in the flow entries

{tp src=80, in port=0} → controller
{tp dst=80, in port=0} → controller

8

When packets matching these entries are sent to the con-
troller, it is necessary to know which rule should be ap-
plied. Therefore, we store the 10-tuple and the associated
distribution rule at the controller for later reference.

5.3 Dynamic Flow Installation
Dynamic flow entries are installed for distribution rules
(excludingALL rules) and upon receipt of a hook re-
quest. These flow entries cannot be pre-computed at
OpenSAFE startup because the destination switch ports
are unknown until flows arrive or requests are received.

5.3.1 Distribution Rules
Flow entries for dynamic rules are installed when a new
flow matches an entry whose action is “send to con-
troller.” The controller receives the first packet in the
flow and determines which rule should be applied to the
flow. Only the matching rule needs to be processed; the
rest of the path containing the rule is already processed
during static flow installation. ForHASHor PROBrules,
the controller calls user specified code to select one or
more destination components. A destination is selected
at random for anANY rule, and the next component
in the list of possible destinations is selected for aRR
rule. Dynamic flow entries for distribution rules contain
a fully-specified 10-tuple with all values populated from
the packet headers. Entries are also installed for flows
going in the reverse direction to ensure that both halves
of a flow traverse the same path. OpenSAFE uses a de-
fault timeout of 30 seconds for dynamic flow entries.

5.3.2 Hooks
The controller listens on a network socket for hook re-
quests. Monitoring devices send an XML fragment
which contains the name of the hook, the name of the
component to which traffic should be sent, values for one
or more fields in the10-tuple, and the duration the hook
entry should last. The controller installs a high-priority
flow entry with the appropriate10-tuple, timeout, and
output action. Thein port value in the flow table entry
is determined based on the component that precedes the
hook component in the hook path.

Dynamic flow entries installed for hooks do not con-
sider the rest of the paths specified in an ALARMS pol-
icy. If a hook request overlaps with an existing path, the
hook request takes precedence. For example, assume the
following set of paths:

mirror[http] -> tcpdump1;
mirror -> hook1;

A request forhook1 to send all HTTP traffic totcpdump2

will result in all HTTP traffic going totcpdump2 instead
of tcpdump1 for the duration of the request. After the
hook request times out, the flow entry for the first path
will again take effect.

50/50 LR
optical split

NEC 8800
switch

Current IDS
server

Bench test
servers

OpenSAFE
team

3 additional
(not shown)

Figure 10: The head-to-head test platform.

6 Evaluation
OpenSAFE needs to handle traffic volumes at high line
rates to be able to serve as a feasible network monitor-
ing system. We verify OpenSAFE meets this require-
ment by measuring its performance using both live and
replayed real-world traffic. First, we compare our im-
plementation against an existing monitoring infrastruc-
ture and show that OpenSAFE loses less traffic (Section
6.1). Second, we run our implementation with varying
rules sets using a constant set of traffic traces (Section
6.2). We demonstrate that OpenSAFE handles sustained
amounts of high traffic volume and scales with increas-
ing path sizes. Lastly, we compare OpenSAFE against
an in-kernel Click [15] configuration (Section 6.3).

Our OpenSAFE implementation uses an OpenFLOW
0.8.9 enabled NEC IP8800 10 gigabit switch. The con-
troller is written as a Python module for NOX 0.6.0.

6.1 Comparison to Existing Infrastructure
In this section, we compare OpenSAFE against an ex-
isting mirror-based monitoring system. We describe the
existing setup in the College of Engineering at the Uni-
versity of Wisconsin—Madison, present our OpenSAFE
setup, and discuss the test results. We observe that Open-
SAFE analyzes more traffic and generates more security
alerts than the existing system.

6.1.1 Test Setup
The existing production monitoring setup has been
highly optimized with technologies such as PFRING [7]

9

0 K

10 K

20 K

30 K

40 K

50 K

60 K

Sun
00:00

Sun
12:00

Mon
00:00

Mon
12:00

Tue
00:00

Tue
12:00

Wed
00:00

Wed
12:00

P
ac

k
et

s/
s

re
ce

iv
ed

Production
OpenSAFE

Figure 11: Packets per second received by the optimized
production IDS system compared versus the OpenSAFE
IDS team.

and TNAPI [8]. PFRING is a special network socket
that avoids excessive kernel memory copy operations,
reducing packet loss during high bandwidth captures.
TNAPI is a threaded network device polling method that
makes interrupt handling more efficient on multi-cored
machines. Both technologies require special kernel and
application modifications that can make the system quite
brittle. However, both have been shown to improve stan-
dard packet capture techniques by up to 100% [6, 7, 8].

The existing production system runs three pieces of
monitoring software: Suricata [23], Barnyard2 [3], and
nProbe [19], each compiled with PFRING support.
Suricata is a multi-threaded content matching IDS like
Snort that uses the same rules and logging. Barnyard2
reads IDS alert logs and consolidates them in a remote lo-
cation like a BASE [4] database. nProbe is a tool for col-
lecting flow data in a distributed sensor fashion and re-
porting the data back to a collector. The production sys-
tem’s hardware is comprised of a single Dell PowerEdge
2950 with a 2.0 GHz Dual Core Xeon 5130 CPU and a
10-Gigabit Intel 82598EB XF LR server fiber adapter.

Our OpenSAFE monitoring setup was composed of
six old or spare desktop machines attached to the NEC
OpenFlow switch. The six machines’ hardware specs in-
cluded two HP xw4300s (Pentium 4 3.4 GHz), one Dell
GX620 (Pentium 4 3.4 GHz), two Dell Optiplex 755s
(3.0 GHz Core2 E8400), and one HP dc5800 (2.6 GHz
Core2 Q9400). We refer to this group of machines as
the ”OpenSAFE team.” Each machine was setup with the
same monitoring software, configurations, and rules sets
as the production system with the exception that we did
not use PFRING or TNAPI. While the comparative data
we present comes solely from Suricata, we included the
other monitoring software to maintain a fair test and to
illustrate the diversity in monitoring techniques.

All traffic from the border router was sent to both the
production machine and OpenSAFE using a 50/50 op-
tical splitter on the single mirror port available on the

router. Figure 10 is a picture of the head-to-head test-
ing platform in the MDF in one of our buildings. We
configured OpenSAFE to further split the traffic amongst
our IDS desktops by statically partitioning the college’s
local subnets between the machines. Since neither our
machines nor subnets are of equal capacity we used the
traffic counts at configuration time as well as the load av-
erage of the individual IDS machines to attempt to man-
ually balance the traffic. Given that traffic fluctuates over
time this configuration was almost certainly suboptimal.
A portion of our ALARMS policy file is below.
define switches
switch switch1 = 0x12f2c720cc;

define input ports
input mirror = of1:0;

define sink ports
sink ids1 = of1:1;
...
sink ids6 = of1:6;

define selects
select vlan1 = nw_dst: 10.0.1.0 && nw_dst_n_wild: 8

|| nw_src: 10.0.1.0 && nw_dst_n_wild: 8;
...
select vlan36 = nw_dst: 10.0.36.0 && nw_dst_n_wild: 8

|| nw_src: 10.0.36.0 && nw_dst_n_wild: 8;

define rules
mirror[vlan1] -> ids1;
mirror[vlan2] -> ids1;
...
mirror[vlan31] -> ids6;
mirror[vlan36] -> ids6;

We initially hoped to use a CPU load reporting tool
with aPROBdistribution rule to dynamically load-balance
the traffic. However, the NEC switch’s flow table is lim-
ited to 3000 entries. The college border sees an aver-
age of 330 new flows/second, so we rapidly overflow
the NEC’s flow table in a matter of seconds. As noted
above, we avoided this issue by using a limited set of
solely static rules. An alternative solution is to decrease
the timeout for dynamic rule entries. State is reclaimed
faster allowing the flow table to keep pace with the fre-
quency of new flows. However, if flow entries are re-
moved too quickly, packets will frequently need to be
directed to the controller, increasing latency and result-
ing in poor performance. This remains an open issue in
OpenSAFE (Section 7.1).

According to Antonatos et al. [1, 2], drop count (i.e.
the number of packets received versus the number of
packets examined) is the most useful comparison metric
for content matching IDS software. We compare Suri-
cata’s reports of the number of packets it processed to
the number and of packets the device or PFRING saw.
We combine the counts from all of the OpenSAFE team
and summarize the data into 30 minute averages.

6.1.2 Results
We ran our test over four days including one weekend.
Figure 11 shows the average number of packets/second

10

0 K

5 K

10 K

15 K

20 K

25 K

30 K

Sun
00:00

Sun
12:00

Mon
00:00

Mon
12:00

Tue
00:00

Tue
12:00

Wed
00:00

Wed
12:00

P
ac

k
et

s/
s

ex
am

in
ed

Production
OpenSAFE

Figure 12: Packets per second examined by the pro-
duction IDS system software versus the OpenSAFE IDS
team.

0 %

20 %

40 %

60 %

80 %

100 %

Sun
00:00

Sun
12:00

Mon
00:00

Mon
12:00

Tue
00:00

Tue
12:00

Wed
00:00

Wed
12:00

P
er

ce
n

t
o

f
p

ac
k

et
s

ex
am

in
ed

Production
OpenSAFE

Figure 13: Percentage of packets received that were ac-
tually examined by the IDS software (note: the IDS does
not examine all types of packets).

received by the existing system compared with the Open-
SAFE team. Here we see a typical diurnal traffic pattern.
The OpenSAFE team received almost the same amount
of traffic as the existing system (96% in total). The ma-
jor exception occurs on Sunday afternoon when one of
the older desktops (an HP xw4300) missed a large subset
of traffic. On Monday evening we examined the data, de-
termined the machine was experiencing hardware prob-
lems and replaced it with an HP dc7900 (3.0 GHz Core2
E8400) on Tuesday evening. During our replacement we
simply updated the ALARMS policy file to direct those
subnets to the new machine. We include this event in part
to illustrate the flexibility of our system in action.

Figure 12 shows the average number of pack-
ets/second examined by the IDS software. Unlike the
OpenSAFE team, which is able to closely follow the
number of packets received, their is a clear threshold
past which the production system cannot keep up. The
OpenSAFE team examined 54% more packets in to-
tal. In addition, we saw that after only the first day the
OpenSAFE team had registered 4,926 more alerts, 30%
more than the production system registered during the
same time. This demonstrates that the additional paral-

lelism obtained through multiple lower bandwidth IDS
machines allows OpenSAFE to scale better.

Figure 13 shows the number of a packets examined
as a percentage of all those received. Here we note that
although the OpenSAFE team outperforms the existing
system, it still does not reach 100%. We believe this
is caused by the IDS software only considering certain
packets for examination (e.g. only TCP, UDP, ICMP).

6.2 Synthetic Loads
To verify that OpenSAFE does not introduce excessive
latency, we replayed multiple real-world traces from our
previous comparison in a hypothetical on-path setting.
We are able to show that increased network load has al-
most no effect on individual packet latency.

6.2.1 Test Setup
We used six Dell PowerEdge R210 servers to generate
synthetic traffic loads and measure per-packet latency.
The servers were equipped with 2.4 GHz Quad-core
Xeon CPUs and two 1 Gbps NICs. Each machine re-
played traffic using a user-level Click [15] configuration.
We modified packet payloads in our trace data to assign
each packet a unique identifier, allowing us to match sent
and received packets for calculating the time required to
pass each packet through OpenSAFE.

We configured OpenSAFE for a typical on-path moni-
toring setup. The replayed traces sent by each server rep-
resented live traffic input. Flows were directed through a
patch cable connecting two switch ports—a setup simi-
lar to passing flows through a middlebox but without any
latency overhead. Lastly, packets were directed back to
their originating server, similar to employing a sink to
direct packets back to a production network. Figure 14
shows this setup. The corresponding ALARMS policy
fragment used for each server is below.

input poweredge2out = of:2;
sink poweredge2in = of:2;
filter to patch2 = of:0;
filter from patch2 = of:1;
poweredge2out -> patch2 -> poweredge2in;

OpenFlow
Controller

OpenFlow Switch

Port 0
Port 1

Port 2

Testing Server
Traffic

Generator

Traffic
Sink

tap eth1

Figure 14: Synthetic traffic generation and measurement
setup

Directing packets back to their originating server al-
lowed us to capture both the send and receive time of
packets on the same server, which increases our timing
accuracy since we avoid clock skew between machines.

11

 0

 200

 400

 600

 800

 1000

 0 1 2 3 4 5

L
at

en
cy

 i
n

 µ
s

Gbps of cross traffic

Figure 15: Gigabits per second of cross traffic versus av-
erage individual packet latency in microseconds.

We ran tcpdump on each server to capture the time
packets were sent and received. Usingtcpdump allows
us to measure the overall system latency from kernel to
kernel without any userspace queuing effects.

6.2.2 Results
We replayed 18.6 million packets from one of the
servers, with between zero and five other servers replay-
ing cross traffic. Each test was run for three iterations.
Figure 15 shows the average per-packet latency, and stan-
dard deviation, for each test. As can be seen from the
graph, there is almost no change in the average latency
or jitter as cross-traffic volume increases. From this we
see that when used with static rules OpenSAFE does not
impose any additional performance overhead, making it
suitable for both on- and off-path monitoring.

6.3 Comparison to Click
We verify the benefit of using a programmable net-
work fabric by comparing OpenSAFE to an in-kernel
Click [15] configuration. We show that OpenSAFE’s
hardware-based forwarding yields lower per-packet la-
tencies than Click’s software-based forwarding.

6.3.1 Test Setup
We used an in-kernel Click setup to provide a fair com-
parison of a software-based monitoring setup. The ma-
chine was a Dell Precision T5500 workstation with a
2.26 GHz Dual-socket Quad-core Nehalem CPU, 12 GB
of RAM, and three 1 Gbps Ethernet ports. We installed
Click 1.7.0 in the 2.6.24. 7 Linux kernel running in Cen-
tOS 5.3.

Our Click configuration was a combination of our
setup from our head-to-head comparison test and syn-
thetic load latency test. Traffic was received from one or
more NICs, passed to an IP classifier to divide traffic by
subnet, and queued for output on the appropriate NIC. A
portion of the Click configuration file is below.

define elements

inEth1 :: FromDevice(eth1, PROMISC true);
classify :: IPClassifier (net 10.0.1.0/24,

...
net 10.0.36.0/24,
-);

outQueue1 :: Queue(1000);
outEth1 :: ToDevice(eth1);

define paths
inEth1 -> classify;
classify[0] -> outEth1;
...
classify[36] -> Discard;
outQueue1 -> outEth1;

Our comparative OpenSAFE configuration used the
same division of traffic by subnets. The ALARMS policy
used inputs, sinks, and selects to define similar paths.

The same R210 Dell servers from our previous test
were used to replay the same real-world traces and to
measure packet send and receive times usingtcpdump .
The subnet divisions and paths in both Click and Open-
SAFE were carefully chosen to ensure packets were di-
rected to the same server from which they originated.4

6.3.2 Results

Click OpenSAFE
1 Gbps 837µs 664µs
2 Gbps 855µs 694µs

Table 2: Average per-packet latency in microseconds us-
ing similar configurations in Click and OpenSAFE.

We ran the same two tests with both OpenSAFE and
Click: one test with one server generating 1 Gbps traffic
and a second test with two servers generating traffic. Ta-
ble 2 shows the average per-packet latency for each test.
We observe that using Click incurs on average over 150
µs of extra latency per-packet. This extra latency can re-
sult in dropped packets on high-speed links.

We attempted to measure Click’s performance with
more than 2 Gbps of traffic but encountered kernel panics
when using more than one NIC. This experience high-
lights Click’s fragility. Furthermore, one NIC typically
has at most four ports, so high fanout would require many
interconnected Click routers. In comparison, our Open-
Flow switch is equipped with 48 x 1 Gbps ports and 2 x
10 Gbps ports. In summary, employing Click yields sub-
optimal monitoring performance and requires significant
additional hardware for high fanout setups.

7 Discussion
OpenSAFE is designed for both flexibility and high per-
formance. As our results show, it outperforms an ex-
isting monitoring infrastructure and scales with increas-
ing bandwidth. Our major concerns are state exhaus-

4A null filter, implemented as a patch cable between two switch
ports, was included in the paths in our OpenSAFE setup because Open-
Flow does not allow immediately sending a packet back to the same
port from which it originated.

12

tion, matching ability, and flow insertion latency. Further
performance improvements and extensibility depends on
new capabilities in the programmable switch and resolu-
tion of some unique implementation quirks.

7.1 Dynamic Rule Latency
Latency to send packets to the controller is an important
concern for dynamic rules. The OpenFlow version 0.8.9
specification does not have explicit hashing functions, re-
quiring OpenSAFE to utilize the controller for emulating
certain ALARMS rules. Packets destined for anANY, RR,
HASH, or PROBrule need to be sent to the controller for
the appropriate function to be applied. After computing
the destination, the controller needs to send messages to
the switch to install flow entries based on the outcome of
the function. This results in a relatively long round-trip
time to the controller for each new flow that traverses a
dynamic rule. In addition, the controller has the poten-
tial of being overwhelmed if large numbers of packets
are sent for dynamic flow installation.

As we have stated, we avoid these problems by care-
fully constructing OpenFlow entries that minimize the
number of flows that are sent to the controller. Additional
study should be done in the area of pre-computing more
dynamic distribution rules. It is possible that a particular
hash function could be covered by a specific set of static
OpenFlow rules; this is obviously not general to all hash
functions, but it could be used to improve performance
in some cases. Additionally, simple distribution methods
that do not require state, likeANY, could be added to the
OpenFlow specification to reduce controller activity.5

Click’s dynamic programmability allows hashing and
other distribution methods to be calculated directly at the
router, without the need to contact another machine. This
provides the benefit of faster processing of new flows
traversing dynamic distribution rules. However, Click
will incur the cost of computing the hash for all subse-
quent packets in the flow because it does not maintain
any per-flow state. A custom Click element could be
written to maintain flow tables similar to OpenFlow, but
OpenFlow’s hardware-based flow lookup will likely still
exceed the performance of a software-based element.

7.2 The Packet Ordering Problem
When employing OpenSAFE on-path with dynamic
rules, the first packet of a new flow is held at the switch
while the controller makes a decision on its destination.
The packet is not forwarded until flow entries have been
installed, effectively delaying all subsequent packets for
the flow. We will letRTTcontroller denote the time from
packet arrival to flow entry installation time.

5Some dynamic distribution support is expected to be included in
the OpenFlow 1.1 specification.

RTT 1 RTT 2 RTT 3

Time

Incoming
packets to
controller.

Incoming
packets

follow flow
table. Also,

packets
returning

from RTT1.

Steady state.
Incoming
packets

follow flow
table.

Figure 16: For a particular flow, packets may arrive out
of order.

When using OpenSAFE with dynamic rules in a
mirror-based setting, the first packet of a new flow incurs
the sameRTTcontroller delay. However, since Open-
SAFE is handling a copy of network traffic when used
off-path, the subsequent packets of a flow are not de-
layed. More packets from the flow may arrive at the
switch regardless of whether flow entries are installed
and the first packet has been forwarded. If packets arrive
before the flow entry is installed, these packets will also
be sent to the controller. As shown in Figure 16, during
the first RTTcontroller all packets are sent to the con-
troller. During the secondRTTcontroller packets from
the first RTT return from the controllerwhilenew incom-
ing packets are routed per the flow table in the switch.
Beginning with the thirdRTTcontroller, packets will be
forwarded directly.

During the secondRTTcontroller packets may be for-
warded out of order. Some newly arriving packets are
forwarded per the flow table in the switch, while older
packets may still be being processed by the controller.
This issue is minimized in two ways. The easiest way is
to minimize theRTTcontroller and thereby drastically re-
ducing the number of packets sent to the controller while
the first packet is still being processed. The other mini-
mizing factor is that monitoring software already grace-
fully handles unassisted reordering of packets. In par-
ticular, to correctly decode a TCP stream, reassembly is
required. If desired a filter could be added that could
provide the reassembly.

It is important to note this problem does not occur
when employing OpenSAFE on-path or when all flows
are precomputed (asRTTcontroller is effectively zero).

8 Related Work
Some existing systems for on- and off-path monitoring
were already discussed in Section 2.2. In this section,
we discuss works featuring alternative network policy
languages and mechanisms for distributing monitoring
infrastructure throughout the network.

Casado et al. describe using Ethane [5] switches to en-
force middlebox policies and propose a language,Pol-
Eth, for describing these policies. However, their work
onPol-Eth is primarily designed around reachability and
the idea that middleboxes can be placed anywhere along

13

the logical path of a flow. In Our work differs in that our
policy language, ALARMS, is geared toward directing
monitoring traffic at a specific point in the network.

Joseph et al. propose an architecture similar to Ethane
in their work on policy-aware switching [14]. However,
they do away with OpenFlow’s concept of a centralized
controller, instead relying on each switch to individually
determine the next hop and forward packets immediately.
This improves throughput, especially with large quanti-
ties of brief flows (where the overhead of contacting the
controller is significant), but makes some network man-
agement more difficult, as no single entity has a complete
view of the network. Additionally, the policy specifica-
tion language in their work is still centered around decid-
ing appropriate paths for a flow, rather than a higher-level
concept of what network monitoring needs to be applied.

A Flow-Based Security Language (FSL) [13] for ex-
pressing network policy has been suggested by Hinrichs
et al. FSL, a variant of Datalog, allows specification of
policies such as access controls, isolation, and commu-
nication paths. This specification is flexible and fast, ca-
pable of performing lookup and enforcement at high line
rates. Again, however, the language is generally focused
on end-to-end reachability and path selection, without
specific thought to network monitoring.

Flowstream, proposed by Greenhalgh et al [11] con-
siders using OpenFlow as the connecting fabric on a mid-
dlebox. Conceptually, Flowstream has similar ideas to
OpenSAFE, however, it does not described a high-level
policy language.

9 Conclusion
Network security monitoring in today’s large-scale net-
works is a difficult task. Rather than attempting to solve
all parts of the problem, including how to analyse net-
work traffic, we focused on how to route traffic to mon-
itoring appliances. Current solutions for routing moni-
tored traffic are expensive, difficult to manage, and have
problems scaling to high line rates.

OpenSAFE is a cost-effective approach which allows
for flexible, fast, and scalable monitoring. It uses widely
available OpenFlow-enabled switches to direct traffic
through the monitoring infrastructure and scale to line
rates. Management is facilitated by ALARMS, a lan-
guage to enable the arbitrary redirection of network flows
for measuring and security purposes. We showed Open-
SAFE outperforms an existing, finely-tuned monitoring
setup, examining 54% more packets. We also showed
OpenSAFE scales to meet the demands of increasing
bandwidth and outperforms an in-kernel Click router.

OpenSAFE makes monitoring large scale networks
easier than before. It can be combined with other se-
curity monitoring improvements to efficiently and effec-
tively monitor high traffic volumes. Most importantly,

it lays the groundwork for monitoring infrastructures to
meet the changing and growing demands of enterprise
networks.

References
[1] S. Antonatos, K. Anagnostakis, and E. Markatos. Generating realistic

workloads for network intrusion detection systems.ACM SIGSOFT Soft-
ware Engineering Notes, 29(1):207–215, 2004.

[2] S. Antonatos, K. Anagnostakis, E. Markatos, and M. Polychronakis. Per-
formance analysis of content matching intrusion detection systems. In
IEEE/IPSJ Symposium on Applications and the Internet (SAINT), 2004.

[3] Barnyard2: Snort Output Spool Reader.http://www.securixlive.
com/barnyard2/index.php .

[4] BASE: Basic Analysis and Security Engine. http://base.
secureideas.net/ .

[5] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and S. Shenker.
Ethane: Taking Control of the Enterprise. InSIGCOMM, 2007.

[6] G. Cascallana and E. Lizarrondo. Collecting Packet Traces at High
Speed. InIEEE Workshop on Monitoring, Attack Detection and Mitiga-
tion (MonAM), 2006.

[7] L. Deri, N. S. P. A, V. D. B. Km, and L. L. Figuretta. Improving passive
packet capture: Beyond device polling. InInternational System Adminis-
tration and Network Engineering Conference (SANE), 2004.

[8] L. Deri and F. Fusco. Exploiting Commodity Multicore Systems for Net-
work Traffic Analysis, 2009.

[9] M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun, K. Fall, G. Iannaccone,
A. Knies, M. Manesh, and S. Ratnasamy. Routebricks: exploiting paral-
lelism to scale software routers. InSOSP, 2009.

[10] GigaMon GigaVue Switch. http://www.gigamon.com/
gigavue-2404.php .

[11] A. Greenhalgh, F. Huici, M. Hoerdt, P. Papadimitriou, M. Handley, and
L. Mathy. Flow processing and the rise of commodity network hardware.
ACM SIGCOMM Computer Communication Review, 39(2):20–26, 2009.

[12] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and
S. Shenker. NOX: Towards an Operating System for Networks.ACM SIG-
COMM Computer Communication Review, 38(3):105–110, 2008.

[13] T. Hinrichs, N. Gude, M. C. andJ ohn Mitchell, and S. Shenker. Expressing
and Enforcing Flow-Based Network Security Policies. Technical report,
University of Chicago, 2008.

[14] D. A. Joseph, A. Tavakoli, and I. Stoica. A Policy-aware Switching Layer
for Data Centers. InSIGCOMM, pages 51–62, 2008.

[15] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. The click
modular router.ACM Transactions on Computer Systems (TOCS), 18:263–
297, August 2000.

[16] C. Kruegel, F. Valeur, G. Vigna, and R. Kemmerer. Stateful intrusion detec-
tion for high-speed networks. InIEEE Symposium on Security and Privacy,
pages 285 – 293, 2002.

[17] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner. OpenFlow: Enabling Innovation in
Campus Networks.ACM SIGCOMM Computer Communication Review,
38(2):69–74, 2008.

[18] R. Morris, E. Kohler, J. Jannotti, and M. F. Kaashoek. The Click Modular
Router.ACM SIGOPS Operating Systems Review, 33(5):217–231, 1999.

[19] nProbe: An Extensible NetFlow/IPFIX Network Probe.http://www.
ntop.org/nProbe.html .

[20] L. Schaelicke, K. Wheeler, and C. Freeland. Spanids: a scalable network
intrusion detection loadbalancer. InComputing Frontiers (CF), pages 315–
322, New York, NY, USA, 2005.

[21] S. Snapp, J. Brentano, G. Dias, T. Goan, L. Heberlein, C. Ho, K. N. Levitt,
B. Mukherjee, S. Smaha, T. Grance, et al. DIDS (distributed intrusion
detection system)-motivation, architecture, and an early prototype. InNa-
tional Computer Security Conference, pages 167–176, 1991.

[22] T. Sproull and J. Lockwood. Distributed Instrusion Prevention in Active
and Extensible Networks.Lecture Notes in Computer Science, 3912:54,
2007.

[23] Suricata Open Source Intrusion Detection and Prevention Engine.http:
//www.openinfosecfoundation.org/ .

[24] M. Vallentin, R. Sommer, J. Lee, C. Leres, V. Paxson, and B. Tierney. The
NIDS Cluster: Scalable, Stateful Network Intrusion Detection on Com-
modity Hardware. InRecent Advances in Intrusion Detection (RAID),
Berlin, Heidelberg, 2007.

[25] K. Xinidis, I. Charitakis, S. Antonatos, K. Anagnostakis, and E. Markatos.
An active splitter architecture for intrusion detection and prevention.IEEE
Transactions on Dependable and Secure Computing, 3(1):31 – 44, 2006.

14

http://www.securixlive.com/barnyard2/index.php
http://www.securixlive.com/barnyard2/index.php
http://base.secureideas.net/
http://base.secureideas.net/
http://www.gigamon.com/gigavue-2404.php
http://www.gigamon.com/gigavue-2404.php
http://www.ntop.org/nProbe.html
http://www.ntop.org/nProbe.html
http://www.openinfosecfoundation.org/
http://www.openinfosecfoundation.org/

	Introduction
	Challenges and Design Requirements
	Design Requirements
	Existing Systems
	Using programmable network fabrics

	OpenSAFE
	Paths
	Parallel Filters and Sinks
	Hooks
	Overall Design

	ALARMS: A Language for Arbitrary Redirection for Measuring and Security
	Component Declarations
	Paths
	Paths with Selects
	Distribution Rules

	Programming the Fabric
	Policy Parsing
	Static Flow Installation
	Default Drop
	Input Paths
	Filters and Waypoints
	Distribution Rules

	Dynamic Flow Installation
	Distribution Rules
	Hooks

	Evaluation
	Comparison to Existing Infrastructure
	Test Setup
	Results

	Synthetic Loads
	Test Setup
	Results

	Comparison to Click
	Test Setup
	Results

	Discussion
	Dynamic Rule Latency
	The Packet Ordering Problem

	Related Work
	Conclusion

