1. Do Exercise 7-1-3
2. Do Exercise 7-2-2
3. (a) Write down the KKT conditions for the problem
\[
\begin{align*}
\text{minimize} & \quad x_1^2 + x_2^2 + x_3^2 \\
\text{subject to} & \quad x_1 + x_2 + x_3 \geq 1 \\
& \quad x_1 - x_2 - x_3 \geq 1 \\
& \quad x_1 + x_2 - x_3 \geq 1 \\
& \quad x \geq 0
\end{align*}
\]
(b) Find an optimal primal dual pair which solves the KKT conditions.
4. Consider the equality constrained least-squares problem
\[
\begin{align*}
\text{minimize} & \quad \|Ax - b\|_2^2 \\
\text{subject to} & \quad Gx = h
\end{align*}
\]
where \(A \in \mathbb{R}^{m \times n} \) with rank(A) = n and \(G \in \mathbb{R}^{p \times n} \) with rank(G) = p. Write down the the KKT conditions, and derive expressions for the optimal primal solution \(\bar{x} \) and dual solution \(\bar{u} \).
5. Consider the quadratic program
\[
\begin{align*}
\text{minimize}_x & \quad c_1 x_1 + c_2 x_2 + c_3 x_3 \\
\text{subject to} & \quad x_1^2 + x_2^2 + x_3^2 \leq 1
\end{align*}
\]
Here \(x \) is the variable and \(c_1, c_2, \) and \(c_3 \) are constants.
(a) Write down the Lagrangian for this problem. Be careful about the sign of the Lagrange multiplier!

(b) By minimizing with respect to x, write down the dual problem.

(c) Solve the dual problem.

(d) Use the dual optimal solution to solve the original quadratic program.