
525 Computing Project 1, Fall 2011∗

It’s a small world, after all

In the 1960s, Stanley Milgram conducted an experiment to determine the
diameter of the social network of the united states. Beginning with a few
people in Kansas and Nebraska, participants were asked to mail a package
to someone in Boston, but they could only do so by mailing it to people they
new. Surprisingly, most of the packages only had to be mailed three times
to reach their end point. Later experiments found that to reach a foreign
country, the number of hops was usually at most six. This gave rise to the
expression “six degrees of separation.”

In this project, we will study shortest path problems and see how loosely
connected graphs can have very small diameter.

Recall that a graph G is just a collection of nodes N and links between
them which we call edges, E . There are two matrices of interest. I is the
node-incidence matrix and A is the adjacency matrix. K will denote the
average degree of a vertex and N will denote the number of nodes. Use the
values N = 1000 and K = 10 throughout.

1. Write a general program called shortest path which takes three argu-
ments: an adjacency matrix of an undirected graph A, and two nodes
i1 and i2 in the range 1, . . . , N and returns the shortest path from node
i1 to node i2. Use a linear programming solver of your choice, but
do this with linear programming, not using a combinatorial algorithm.
The syntax should be

path = shortest_path(A,i,j);

Note that in this case, you should convert your adjacency matrix into
an edge incidence matrix in your code.

∗Due in class, November 21, 2011

1

2. Generate a graph G0 = (N , E) by the following rule: node i is connected
to node j if |i− j| < K

2
or |i− j| > N − K

2
. What is the degree of each

node in this graph?

Plot the resulting graph as follows: place node k at the point(
cos

(
2πk

N + 1

)
, sin

(
2πk

N + 1

))
draw an edge between adjacent nodes using the Matlab function line.

3. Compute the length of the shortest path from node 1 to node N/2 and
from node N/4 to node 3N/4. Plot the resulting path using the same
drawing scheme as in Problem 2.

4. Let’s now modify the graph to shorten the average path length. For
each edge in the graph G0 rewire it with probability β (here you should
assume that i is less than j. Rewiring is done by replacing (i, j) with
(i, k) where k is chosen uniformly at random from {1, . . . , N} \ {i}.
For this step, you need to be able to choose random numbers. The Mat-
lab function rand will generate random numbers uniformly distributed
in [0, 1]. When you need to generate an action with probabilty β,
this is the same as performing the action if rand < β. If you need
to generate a random integer between 1 and M , you can use the call
ceil(M ∗ rand). ceil is the ceiling function and returns the smallest
integer greater than or equal to its argument.

For the values of β ∈ {0.001, 0.01, 0.05, 0.1, 0.2}, compute a modified
graph Gβ. For each β, plot the graph Gβ as in Problem 2. Compute
the lengths of the shortest paths from node 1 to node N/2 and from
node N/4 to node 3N/4. Plot these paths as in problem 3. Compute
the shortest path 10 times and return the average length shortest path
for each value of β.

5. Now generate a completely random graph, Gr, where each node has
exactly K neighbors. That is, for node i, pick K points uniformly at
random from {1, . . . , N} \ {i} and assign edges from i to each of these
points. For this problem, you may use the function randperm(N) which
generates a random ordering of the integers between 1 and N . Again,
plot this graph. Compute the lengths of the shortest paths from node

2

1 to node N/2 and from node N/4 to node 3N/4. Plot these paths
as in problem 3. Compute the shortest path 10 times and return the
average length shortest path in both cases.

For more information on small world graphs, consult the paper

[1] Watts, D.J. and Strogatz, S.H. “Collective dynamics of ’small-world’ net-
works.” Nature 393 (6684) pp 40910. 1998

3

