
525 Computing Project 2, Fall 2011∗

DMTF with Compressed Sensing:
The Past Meets the Future

Way back in the day when we all had land lines, the phone company
figured out who you were calling using a clever scheme called dual-tone multi-
frequency signaling (DTMF). When pressed, each key would trigger tones
corresponding to the row and a key corresponding to the column. This would
give a total of 12 different sounds but only 7 different frequencies (remember,
there are the “*” and “#” keys). The tones for keys 1-9 are given in Figure 1.

Much more recently, the signal processing community has been enamored
with compressed sensing, a technique to recover sparse signals from highly
incomplete and noisy information. In this project, we’ll combine both of
these ideas, trying to recover DTMF signals from very few noisy samples.
Since each DTMF signal is 2-sparse in a basis of 6 sine waves, let’s explore
the limits of sensing DTMF signals in noise.

A sine wave is given by

s(t) = sin (2πft)

where f is the frequency of the sine wave. To make a discrete time approx-
imation, you pick a sampling frequency Fs and define a discrete time vector
with components

tk = k/Fs

the units of this vector are in seconds. Then a discrete sine wave sk is given
by

sk = sin(2πftk)

∗Extra Credit. Due in my office by 5PM, Dec 22, 2011.

1



1209 1336 1447
697 1 2 3
770 4 5 6
852 7 8 9

Figure 1: The DTMF pattern, each digit triggers the sum of two sine waves.
The frequencies are the corresponding column and row headers.

To make a DTMF tone, we have 6 frequencies:

f lo
1 = 697, f lo

2 = 770, f lo
3 = 852

fhi
1 = 1209, fhi

2 = 1336, fhi
3 = 1447

Each key of the DTMF signal table produces the signal

s
(1)
k = 1

2
sin
(

2πf
(lo)
1 tk

)
+ 1

2
sin
(

2πf
(hi)
1 tk

)
s
(2)
k = 1

2
sin
(

2πf
(lo)
1 tk

)
+ 1

2
sin
(

2πf
(hi)
2 tk

)
s
(3)
k = 1

2
sin
(

2πf
(lo)
1 tk

)
+ 1

2
sin
(

2πf
(hi)
3 tk

)
s
(4)
k = 1

2
sin
(

2πf
(lo)
2 tk

)
+ 1

2
sin
(

2πf
(hi)
1 tk

)
s
(5)
k = 1

2
sin
(

2πf
(lo)
2 tk

)
+ 1

2
sin
(

2πf
(hi)
2 tk

)
s
(6)
k = 1

2
sin
(

2πf
(lo)
2 tk

)
+ 1

2
sin
(

2πf
(hi)
3 tk

)
s
(7)
k = 1

2
sin
(

2πf
(lo)
3 tk

)
+ 1

2
sin
(

2πf
(hi)
1 tk

)
s
(8)
k = 1

2
sin
(

2πf
(lo)
3 tk

)
+ 1

2
sin
(

2πf
(hi)
2 tk

)
s
(9)
k = 1

2
sin
(

2πf
(lo)
3 tk

)
+ 1

2
sin
(

2πf
(hi)
3 tk

)
To phrase this as a matrix, define a T × 6 matrix with rows

Skj = [sin (2πfjtk)]

where
f =

[
f

(lo)
1 f

(lo)
2 f

(lo)
3 f

(hi)
1 f

(hi)
2 f

(hi)
3

]

2



Then we can rewrite the DTMF signals for all of the digits as

s
(1)
k = Sk·

(
1
2
e1 + 1

2
e4
)

s
(2)
k = Sk·

(
1
2
e1 + 1

2
e5
)

s
(3)
k = Sk·

(
1
2
e1 + 1

2
e6
)

s
(4)
k = Sk·

(
1
2
e2 + 1

2
e4
)

s
(5)
k = Sk·

(
1
2
e2 + 1

2
e5
)

s
(6)
k = Sk·

(
1
2
e2 + 1

2
e6
)

s
(7)
k = Sk·

(
1
2
e3 + 1

2
e4
)

s
(8)
k = Sk·

(
1
2
e3 + 1

2
e5
)

s
(9)
k = Sk·

(
1
2
e3 + 1

2
e6
)

where ei are the standard basis vectors
Thus, we can model a DTMF signal as a length T vector, y, given by the

expression
y = Sx+ n .

Here S is the signalling matrix, and x is a vector with 2 components equal
to 1/2 and all other components equal to zero. n is a vector of noise.

We are going to compare the performance of two different regularization
problems:

minimizex‖y − Sx‖22 + µ‖x‖1 (1)

versus
minimizex‖y − Sx‖22 + λ‖x‖22 (2)

In all of the problems, use FS = 22050.

1. Generate signals y for each digit with T = 2000. Plot your signals over
time. (for fun, try the command sound(y,Fs)). Now generate and
plot the same signals but add a noise vector n = sigma*randn(T,1)

with σ = 10.

2. We consider a signal “decoded” if the two largest components of x
correspond to the true DTMF components. For example, if the true
signal is an 8, the correct DTMF components are 3 and 5.

3



For each digit, run `1 minimization (Problem 1) with the following
parameter settings:

T = 10, 20, 40, 80, 160

σ = 0, 0.1, 1, 10, 100

For each instance, determine a value of the parameter µ that gives
you the most correct decodings. In all of the cases, report the average
number of correct decodings for your best value of µ (over ten instances
of the random noise). Is there a difference between the digits?

3. Repeat Problem 1, but now use `2 decoding (Problem 2). Are there
any regimes where `2 performs better than `1?

4. Repeat Problem 1, but this time us the simpler decoding scheme x =
STy. Note that in this case, you do not have to choose a regularization
parameter. How often does this scheme succeed for the given values of
T and σ?

This project was inspired by the Matlab article “‘Magic’ Reconstruc-
tion: Compressed Sensing” by Cleve Moler, http://www.mathworks.com/

company/newsletters/articles/clevescorner-compressed-sensing.html.

4


