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In continuous variable, smooth, nonconvex nonlinear programming, we analyze the complexity

of checking whether

(a) a given feasible solution is not a local minimum, and

(b) the objective function is not bounded below on the set of feasible solutions. )
We construct a special class of indefinite quadratic programs, with simple constraints and integer
data, and show that checking (a) or (b} on this class is NP-complete. As a corollary, we show
that checking whether a given integer square matrix is not copositive, is NP-complete.

Key words: Nonconvex nonlinear programming, local minimum, global minimum, copositive

matrices, NP-complete.

1. Introduction

Consider the smooth nonlinear program (NLP)

minimize 6(x)

subject to gi(x)=0, i=1tom (1)

where each of the functions is a real valued function defined on R", with high degree
of differentiability. This NLP is called

a convex NLP, if #(x) is convex, and g:(x) is concave for all i,

a nonconvex NLP, otherwise.
Under some constraint qualifications, necessary and sufficient optimality conditions
are known for convex NLPs [2, 4, 7]. Using them, it is possible to check efficiently
whether a given feasible solution satisfying the constraint qualifications is a (global)

optimum solution or not.

* Research partially supported by NSF Grants No. ECS-8401081 and ECS-8521183.
** Research partially supported by NSERC (Canada) Grant No. AB085.
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We will use the following abbreviations in this paper.

NLP -Nonlinear Program

CQ  -Constraint Qualifications

PSD -Positive Semidefinite

QP  -Quadratic Program

LCP -Linear Complementarity Problem
BFS -Basic Feasible Solution

For nonconvex NLPs, under some CQ, necessary conditions for a local minimum
are known, and there are some sufficient conditions {2, 4, 7). There are no known
simple conditions, which are both necessary and sufficient for a given point to be
a local minimum. The complexity of checking whether a given feasible solution is
a local minimum is not usually addressed in the literature. In fact, many text books
in nonlinear programming leave the reader with the impression that algorithms
converge to a global minimum in convex NLPs, and to a local minimum in nonconvex
NLPs. The documentation for many professional NLP software packages also creates
the same impression, which could be quite erroneous.

In this paper, we examine the computational complexity of determining whether
a given feasible solution is not a local minimum, and that of determining whether
the objective function is not bounded below on the set of feasible solutions, in this
class of problems. For this purpose, we analyze an indefinite QP with integer data,
which may be considered as the simplest nonconvex NLP. On this problem, the
above questions can be studied using the discrete techniques of computational
complexity theory, and in fact we will show that these questions are NP-complete.
This clearly shows that on a general smooth nonconvex NLP, the questions men-
tioned above are “hard problems”, as defined in computational complexity theory.
Thus, in nonconvex minimization, even the down-to-earth goal of guaranteeing that
a local minimum will be obtained by an algorithm (as opposed to the lofty goal of
finding the global minimum) may be hard to attain. We make some more comments
on this issue at the end of the paper.

2. Finding a global minimum in a smooth nonconvex NLP is a hard problem

Computing a global minimum, or checking whether a given feasible solution is
a global minimum, for a smooth nonconvex NLP, may be hard problems in general.
We provide two examples. Example 1 is an interesting digression. It refers to a
famous unsolved problem in mathematics, but one which has not been formally
shown to be a “hard problem” in the usual complexity sense. In Example 2 we
formally establish that finding a global minimum in a nonconvex NLP is a hard
problem, by showing that a well known NP-complete problem can be posed as a
special case of it.
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s Last Theorem. Some of the most difficult unsolved problems

problems of finding a global minimum in a smooth
t theorem, unresolved since the year 1637.
on (x,y, z) to the equation

Example 1. Fermat’
in mathematics can be posed as
nonconvex NLP. Consider Fermat’s las .
It states that there exists no positive integer soluti

n n

x"+y'=z
h this conjecture has been

=3 ( zeR'). Even thoug
s 1, it remains open.

everal individual values of n, in genera mali
m is not true iff the global minimum objective value
here « is a positive penalty parameter.

when n is an in
shown to be true for s
Obviously, Fermat’s last theore
in the following NLP is 0 and attained w

minimize (x"+y"-— z")?
+a((1- cos(2mx))’+(1 1oomﬁd3v~+ (1 —cos(2mz))
+(1—cos(2mn))’)

subjectto x,y,z=1, n =3.
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a nonconvex eru 1t QOOw not Bm:dosnwﬂ:um:—w @mﬁmvrms ﬁ:m.ﬂ

matics into : .
- m is a hard problem, since Fermat’s last theorem is not

computing a global minimu
known to be complete for any class.

s a problem in discrete optimization which

Example 2. Subset Sum Problem. This 1 d.: is there a

is known to be NP-complete [3]: given positive integers do; di,- -+

solution to

mMu,., dyy; = do, AB
y=0orl for all j.

Now consider the following QP:
minimize AM &S,tkov + ¥ (1=

T; a (3)

subjectto 0=y, =<1, j=1ton

bjective function, (3) is a nonconvex QP. .Qam:v\
imum objective value in (3) is zero.
-complete, and hence, computing
onconvex NLP, is an

Because of the second term in the o .
{2) has a feasible solution iff the global min
. T,

Checking whether (2) has a feasible solution is ZM "
ini i special case of a smooth n

the global minimum in (3), a very specia : ~ : o
Zw.ﬂma problem. This formally establishes that in general, computing 2 globa

minimum in a smooth nonconvex NLP is a hard problem.
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3. Can we compute efficiently a local minimum for a smooth nonconvex NLP?

We will now study the question of whether it is possible to efficiently
(a) compute a local minimum, or

(b) check whether a given feasible solution for such a problem is not a local
minimum.

To do this, we first review the known optimality conditions for a given feasible
solution x of (1) to be a local minimum. Let A = {i: gi(X) = 0}. Optimality conditions

are derived under the assumption that some CQ [2,4, 7] are satisfied at %, which
we assume.

First order necessary conditions for x to be a local minimum Jfor (1)

There must exist a g, = (4i;: i€ A) such that
Vo(x)— ¥ a;Vg(x)=0,

icA
) ) (4)
a;=0 forall ic A.
Here VO(x), Vg;(x) are the gradient vectors (row vectors) of these functions evalu-
ated at x. Given the feasible solution % it is possible to check efficiently whether

(4) holds, using any of the available polynomial time algorithms for linear program-

ming. A feasible solution % is called a KKT point for (1) if these first order necessary
conditions hold at x.

Second order necessary conditions for % 1o be a local minimum Jor (1)

These conditions include (4). Given i, satisfying (4) together with %, let
L(x, fis) = 8(x)— % agi(x).

€A
In addition to (4), in these conditions we require
y'Hy=0 forall yel{y: Vg (%)y =0 for each ic A}, (5)

where H is the Hessian matrix (the matrix of second partial derivatives) of L(x, ji,)
with respect to x at x = %. Condition (5) requires the solution of a quadratic program
involving only equality constraints. It is equivalent to checking the positive semi-
definiteness of a matrix which can be carried out efficiently {7, 8, 9].

Sufficient conditions for % to be a local minimum for (1)

Given the feasible solution % for (1), and the multiplier vector /1,4, which together
satisfy (4) and (5), define H as above and let T be the set of feasible solutions of

y#0,
Vgi(%)y =0 for each i A such that i, >0,
Vgi(x¥)=0 for each ic A such that i, = 0.
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The most general sufficient optimality condition known states that if
6
yTHy>0 forall yeT' A )
then % is a local minimum for (1). Unfortunately when H is not PSD, n:wow_:m
whether (6) holds is equivalent to a nonconvex QP which may be hard to solve, as

we will see later (Theorem 4). .
Aside from the question of the difficulty of checking whether (6) holds, we can

verify that the gap between conditions (5) and (6) is very wide, particularly aw,\mrn:
the set {i: i€ A and g, =0} # 0. In this case, condition (5) may hold, and even if we
are able to check (6), if it is not satisfied, present theory does not enable us to
determine whether x is a local minimum for (1).

The questions investigated
We will now study the following questions: . o
(i) Given a smooth nonconvex NLP, can we check efficiently whether a given

. .. .. not?
feasible solution is a local minimum or . . y
(if) At least in the simple case when the constraints are linear, can we che

. f
efliciently whether the objective function is bounded below or not on the set o

feasible solutions? . o -
We will use a simple indefinite QP for our investigation. Let D be an integer

square matrix of order n. D is PSD iff xTDx =0 for all x e R". So, checking whether
D is PSD involves the decision problem

is there an x e R" satisfying x"Dx <0? |
It is well known that this question can be settled by performing ﬁ.BomH xmmmcmmmmh
pivot steps along the main diagonal of D, requiring a computational eflort o

most O(n*) [7 or 8]. .
The matrix D is said to be copositive if x" Dx =0 for all x=0. All PSD matrices

i i trix
are copositive, but the converse may not be true. Testing whether the given ma
D is not copositive involves the decision problem
is there an x = 0 satisfying x"Dx < 0?

If D is not PSD, no efficient algorithm is known for this EoEwE (some o:cBmMMMMM
methods are available [7], but the computational effort required by :Sm.o Mooommmo:
grows exponentially with n in the worst case). ﬁ: fact we show later thatt Hm: N
problem is NP-complete. To study this decision problem, we are naturally

the following QP.
minimize Q(x)=x"Dx -
subjectto x=0.

i i i - blem.
We will show that this QP is an NP-hard pro .
We assume that D is not PSD, so Q(x) is nonconvex and (7) _m.m :o:oos;mwx @m,
in fact is can be considered the simplest nonconvex NLP. We consider the following

decision problems.
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Problem 1. Is x =0 not a local minimum for (7)?
Problem 2. Is Q(x) not bounded below on the set of feasible solutions of (7)?

Clearly, the answer to Problem 2 is in the affirmative iff the answer to Problem
1 is. We will show that both these problems are NP-complete. To study Problem !,
we can replace (7) by the QP.
minimize Q(x)=x"Dx
(8)

subjectto 0=x;<1, j=1to n.

Lemma 1. The decision problem “is there an x feasible to (8) which satisfies Q(x)<0”,
is in the class NP.

Proof. Given an x feasible to (8), checking whether Q(x) <0 can be done by
computing Q{x) which takes O(n?) time. If the answer to the decision problem is
in the affirmative, an optimum solution x of (8} satisfies Q(x) < 0. There is an LCP
corresponding to (8), and an optimum solution for (8) must correspond to a BFS
for this LCP. There are only a finite number of BFSs for this LCP, and they are all
rational vectors of polynomial length relative to the input size of (8). So, a nondeter-
ministic algorithm can find one of them satisfying Q(x) <0 (if such a BFS exists),
in polynomial time. Hence this problem is in the class NP. [

Lemma 2. The optimum objective value in (8) is either 0 or <—2"" where L is the
size of D.

Proof. Since the set of feasible solutions of (8) is a compact set and Q(x) is
continuous, (8) has an optimum solution.

By well known results, the necessary optimality conditions for (8) lead to the
following LCP [7 or 8].

u D : I x 0

- - = ¢ AOV
D |N O ¥y e
u X

=0, =0, (10)
v y
U T X

=0, (11)

v y

where y is the column vector of Lagrange multipliers associated with the constraints
“x;<1 for all j”; u, v, are the column vectors in R” of dual and primal slack
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variables; and e is the column vector of all 1’s in R™. For every optimum solution

x of (8), there exist vectors u, v,y such that (1, v, x, y) solves (9), (10) m:aqﬁ:v.
Also, it can be verified that whenever (u, v, x, y) satisfies (9), (10) and (11), x Dx=
—e'y. Thus, there exists an optimum solution of (8) which is a BFS of (9), (10). w«
the results under the ellipsoid algorithm [6, 7], in every BFS of (9), (10), each y; is
either 0 or =25 If the optimum objective value in (8) is not zero, it must be <0,
and this together with the above facts implies that an ova:w:B solution x of (8)
corresponds to a BFS (u, v, x,y) of (9), (10) in which —e y<0. All HW_Mmo facts
clearly imply that the optimum objective value in (8) is either Qor=-2"" 0
We now make a list of several decision problems, some of which we have m_wamav\
seen, and some new ones which we need to establish our results. Problem 5 is the

subset sum problem with data dy; di,...,d, (all positive integers) defined earlier.

Problem 3. Is there an x =0 satisfying Q(x)<0?

. . . T, __
Problem 4. For any positive integer ao, is there an x € R" satisfying e'x=ap, x=0

and Q(x)<07?

Problem 5. Subset sum problem. s there an integer vector y = (y;)e R" satisfying

Y dy=d,, 0=y=<1 j=lton
i=1

Let & be a positive integer satislying

n 2
mVAA&oA Y. &_vv n.
i=1
s, the total number of digits in

Let I be the size of this subset sum problem, that i er ¢
all the data for the problem. Let £ be a positive rational number <277 .
everal functions that will be needed in the proofs to follow. They

Now we define s
vy and s=(sy,...,S,)", related to the

involve nonnegative variables y=(y,, .
subset sum problem.

ExanAm %\.\&DVMWAM Q_;kzwv*w Yisi

j=1 j=1

n 2 H n J)
HAM d, qv + Y ys+o Y A$+@,vwlw&cﬂ.y &Ev
A , j=1 j=

ji=t J=1
—28 VL A.s+@_v+=m+&,
=1
£y, 8) =1, 3+N&QA x &ECIKVV
j=1

i=1 j=1

HAM u&v +8 Y (yts)+ L x;,nN&A Z @Wv
=1 j j j=
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—28 ¥ (y;+s)+né+d2,
j=1

n 2 n n n
hQ,&uA.M_ &&.v 8 L s+ X ys-2d, ¥ dyl+dl-nd
j= j=1 j=1 j ’

Jj=1

n N n n n
Sa(y, &HA\M. &.&.v 8 X ()’ + T oys—2d, Y dy:
= j=1 j=1 j=1

()
n? PR @.vv ,

Ss(y, 8) = Ja(y, s) - Amwv AM_ i+ @_vvw

Let

P= TN $):y=0)=0,5s=(s5)=0, M (y+s)= :%
=
These allow/stating the following additional decision problems.
Problem 6. Is there an (y, s) € P satisfying f,(y, s) <0?
Problem 7. Is there an (y, s) € P satisfying f,(y, 5) < 0?
Problem 8. Is there an (y, s) € P satisfying fi(y, s)<0?

Problem 9. Is there an (y, s) € P satisfving f5(y, 5) <0?

Ioaa. is a summary of what we will prove next. In Theorem 1 we show that
Problem 4 is NP-hard. In Theorem 2 we combine the results from Theorem 1 and
Lemma 1 and show that Problems 1, 2, 3, 4 are all NP-complete. In Theorem 3 we
establish that checking whether an integer square matrix D is not copositive is
.Zw-ooEEoE. Phrasing this in the affirmative, this shows that checking whether an
Integer square matrix D is copositive, is in the co-NP-complete class.

Theorem 1. Problem 4 is an NP-hard problem.

Wz.vcw. Since fi(y, s) is a sum of nonnegative terms whenever (v,s)e P if (},5)e P
mm.:mmom \._Q, wvﬂ.\o, then we must have f,(p, §) =0. From the definition of fily, s),
this clearly implies that the following conditions must hold. ‘

n
K.W_ dy;=d,, 75=0 and y+s5=1 forallj=1ton
These conditions clearly imply that 7 is a solution of the subset sum problem and
that the answer to Problem 5 is in the affirmative. Conversely if § = (#,) is a solution
to the mcvmmw sum problem, define §=(§;) where §, =1~ for each j=1 to n, and
it can be verified that f,(5, §) = 0. This verifies that Problems 5 and 6 are equivalent.
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Whenever 7 is a 0-1 vector, we have &Hﬂ for all j, and this implies that

1,(3, )= f>(#, s) for any s. So, from the above arguments, we see that if (y,5)e P

satisfies f,(7, 5) <0, then f,(F, §) = fo(7, §) = 0. If 0< y; <1, we have 2d,dy,(1—y;)=0.
If (y, s)e P, and y;>1, then (8/2)(y,+5,—1)*+2d,dy;(1-y;) =0, since 8 is large.
Using this and the definitions of f,(y, s), f2(y, 5), it can be verified that for (y, s)e P,
if f,(y, s)=<0 then fi(y, s)<0 too. These facts imply that Problems 6 and 7 are

equivalent.
Clearly, Problems 7 and 8 are equivalent. From the definition of & and using

Lemma 2, one can verify that Problems 8 and 9 are equivalent.
Problem 9 is a special case of Problem 4. Since Problem 5 is NP-complete, from
the above chain of arguments we conclude that Problem 4 is NP-hard. [

Theorem 2. Problems 1, 2, 3, 4 stated above are all NP-complete problems.

Proof. The answer to Problem 4 is in the affirmative, iff the answer to the decision
problem in the statement of Lemma 1 is in the affirmative. From Lemma 1 we
conclude that Problem 4 is in NP. From Theorem 1, this shows that Problem 4 is

NP-complete.
Problems 3 and 4 are clearly equivalent, so Problem 3 is NP-complete too.

Problems 1, 2 are both equivalent to Problem 3, so Problems 1, 2 are also NP-
complete. [

Theorem 3. Given an integer square matrix D, the decision problem “is D not

copositive”? is NP-complete.

"Proof. The decision problem “is D not copositive”? is equivalent to Problem 1,

hence this result follows from Theorem 2. O

Theorem 4. Let X be a given feasible solution of (1), and A={i: g,(x)=0}. If H, and
Vg, (%) for each i€ A, are rational, checking whether the sufficient optimality condition
(6) holds, is co-NP-complete.

Proof. Let P, B, E be given rational matrices of orders n xn,mXn, pxn respectively.
Consider the following decision problem.

Problem 10. Is there an x € R satisfying Bx =0, Ex=0, x' Px<0?

Using arguments similar to those in Lemmas 1, 2, it can be shown that Problem
10 is in the class NP. Also, Problem 4 is a special case of Problem 10. So,
by Theorem 2, Problem 10 is NP-complete. Under the hypothesis of the theorem,
checking whether (6) holds is the complementary problem of Problem 10, and is
therefore co-NP-complete. [
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4, Can we efficiently check local minimality in unconstrained minimization preblems?

In Section 3 we discussed constrained optimization problems. In this section, we
will show that results corresponding to those proved in Section 3, hold o<o:, for
unconstrained optimization problems.

Let 0(x) be a real valued smooth function defined on R". Let H(#(x)) denote
the Hessian matrix of #(x) at x. Consider the unconstrained NLP

minimize 6(x). (12)
A necessary condition for a given point X€R" to be a local minimum for (12) is

Vo{x)=0 and H(H(X))is PSD. (13)
A sufficient condition for X to be a local minimum for (12) is

Vo(x)=0 and (H(8(xX)) is positive definite. (14)

Both conditions (13) and (14) can be checked very efficiently. If (13) is satisfied,
but (14) is violated, there are no known simple conditions to check whether or not
% is a local minimum for (12). Here, we investigate the complexity of checking
whether or not a given point ¥ is a local minimum for (12), and that of checking
whether 6(x) is bounded below over R".

As before, let D = (d;;) be an integer square symmetric matrix of order n. Consider
the unconstrained problem,

minimize h(w)={u% ..., u2)DW3, ..., u)". (15)

Clearly, (15) is an instance of the general unconstrained minimization problem (12).
Consider the following decision problems.

Problem 11. Is i =0 not a local minimum for (15)?
Problem 12. Is h{u) not bounded below on R"?

We have, for i,j=1 to n,

dh(u)

ﬂﬂhﬁﬁzwv coes :UC,L“

Elm d | # f

™ m:&.l ud;, 17#j

o*h{u)

——=4(u}, ..., us)D;+8u;dy,
ou;

where D is the jth column vector of D. So, @ =0 satisfies the necessary conditions
for being a local minimum for (15), but not the sufficient condition given in (14).
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Using the transformation x; = :WL.HH to n, we see that (15) is equivalent to (7).
So Problems 1 and 11 are equivalent. Likewise, Problems 2 and 12 are equivalent.
By Theorem 2, we conclude that both Problems 11 and 12 are NP-hard. Thus, even
in unconstrained minimization, to check whether the objective function is not
bounded below, and to check whether a given point is not a local minimum, may
be hard problems in general. This also shows that checking whether a given smooth
nonlinear function (even a polynomial) is or is not locally convex at a given point,
may be a hard problem in general.

5. What are suitable goals for algorithms in nonconvex NLP?

Much of the nonlinear programming literature stresses that the goal for algorithms
for solving nonconvex NLPs should be to obtain a local minimum. Our results here
show that in general, this may be hard to guarantee.

Many nonlinear programming algorithms are iterative in nature, that is, beginning
with an initial point x°, they obtain a sequence of points {x": r=0,1,.. .}. For some
of the algorithms, under certain conditions, it can be shown that the sequence
converges to a KKT point for the original problem. Unfortunately, there is no
guarantee that a KKT point will be a local minimum, and our results point out that
in general, checking whether or not it is a local minimum may be a hard problem.

There are several algorithms in the nonlinear programming literature which are
based purely on the first order necessary conditions for a local minimum. These
algorithms never use the objective value to guide them towards more desirable
points. Instead, they concentrate purely on finding a solution to the system of first
order necessary conditions. The class of complementary pivot methods or simplicial
methods for NLP [1,5,7,10] are examples of algorithms in this class (these
algorithms convert the system of first order necessary conditions into a Kakutani
fixed point problem, which is then solved by complementary pivoting on a triangula-
tion of the space). These algorithms may at best lead to a KKT point. However,
since the objective value is never even computed at any point, we do not have any
circumstantial or neighborhood information that the KKT point obtained may be
a local minimum. Thus, these algorithms may not be desirable algorithms to use on
nonconvex NLPs.

Descent algorithms for NLPs are iterative algorithms with the property that the
sequence of points generated is a descent sequence: either the objective function,
or a measure of the infeasibility of the current solution, or some merit function
which is a combination of both, strictly decreases along the sequence. Given the
current point x’, these algorithms generate y"#0 such that x"+Ay’, A=0, is a
descent direction for the functions discussed above. The next point in the sequence,
x"*1_is usually taken to be the one that approximately minimizes the objective (or
merit) function on the half-line {x"+Ay": A =0}, and is obtained by using a line
minimization algorithm. For general nonconvex problems these methods suffer from
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the same difficulties: they cannot theoretically guarantee that the point obtained at
termination is a local minimum. However, it seems reasonable to expect that a
solution obtained through a descent process is more likely to be a local minimum,
than a solution based purely on necessary optimality conditions. Thus, a suitable
goal for algorithms for solving nonconvex NLPs seems to be a descent sequence
converging to a KKT point. Several descent algorithms in the nonlinear programming
literature do reach this goal, which suggests that descent algorithms may be the
most desirable practical algorithms for tackling nonconvex NLPs.

One final note. Nowadays the probabilistic analysis of various aspects of optimiz-
ation algorithms is a popular area of study. Consider the case where D = (dy) is a
random square matrix of order n with unit diagonal elements, and with a probability
distribution for off-diagonal entries which is symmetric around 0, and so the marginal
expectation of each d; is zero (i #j). Simple instances of this occur if each off-
diagonal d; is a random variable independent and identically and uniformly dis-
tributed on the interval [—1, +1]; or when the vector of off-diagonal entries in each
column of D) is generated by the uniform distribution on the boundary of the unit
sphere in R""! with its center at the origin. Such probabilistic models have been
used extensively in the study of the average computational complexity of complemen-
tary and simplex-type pivot methods for linear programming. Here is a research
problem. Under this probabilistic model, calculate the probability, g, that 0 is not
a local minimum for the function h(u) defined in (15). This g is the probability
that the answer to Problem 11 in Section 4 is “yes”.

The probability g is a measure on the possibility that existing NLP algorithms
reach a wrong conclusion for problems generated by the above probabilistic mechan-
ism. Our suspicion is that 1~ g is small.
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