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1 Heavy Ball Method

The Heavy Ball Method is a two-step procedure defined by the following state transitions:

pk = −∇f(xk) + βkpk−1 (1.1a)

xk+1 = xk + αkpk (1.1b)

for some initial points x0 and p0, and some positive sequences αk and βk. Typically, we just set p0 = 0.
This algorithm can be re-written as the iteration

xk+1 = xk − αk∇f(xk) + βk(xk − xk−1). (1.2)

where the term xk − xk−1 is referred to as momentum. The iteration is equivalent to a discretization of the
second order ODE

ẍ+ aẋ+ b∇f(x) = 0 (1.3)

which models the motion of a body in a potential field given by f with friction. This motivated the initial
naming of the algorithm by Polyak. In these notes, compare the Heavy Ball Method to Steepest descent on
quadratic functions, showing that the former achieves an asymptotically optimal convergence rate.

2 Problem Set-up

We aim to minimize f : Rn → R given by

f(x) = 1
2x

TAx− bTx+ c

where A is an n×n positive definite matrix, b is a vector and c is a constant. We assume that `I � A � LI .
This problem has a unique minimizer given by x∗ = A−1b.
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3 Analysis of the Gradient Method

Consider the standard gradient method

xk+1 = xk − tk∇f(xk) (3.1)

for some starting point x0 and some sequence of steps tk.
Let x∗ denote the minimizer of f . x∗ is unique because of strong convexity. We will now show that the

iterates of the gradient method converge to x∗ at a linear rate. We will do this by examining the function
‖xk − x∗‖ and show that this function is monotonically decreasing if we select the proper step size t. A
function which decreases along the trajectory of an optimization algorithm is commonly called a Lyapunov
function.

Observe that

‖xk+1 − x∗‖ = ‖xk − tk∇f(xk)− x∗‖ (3.2a)

= ‖xk − tk(Axk − b)− x∗‖ (3.2b)

= ‖(I − tkA)(xk − x∗)‖ (3.2c)

≤ ‖I − tkA‖‖xk − x∗‖ (3.2d)

≤ max{|1− tkL|, |1− tk`|}‖x− x∗‖ . (3.2e)

Here, the first equality follows by the definition of xk+1, the second follows from plugging in the gradient,
and the third follows because b = Ax∗. Inequality (3.2d) follows from the definition of the operator norm.
The final inequality follows because

(1− tk`)I � I − tkA � (1− tkL)I .

Note that tk = 2
L+` minimizes (3.2e) for all k. Setting tk to this value, we find that

‖xk+1 − x∗‖ ≤
(
L− `
L+ `

)
‖xk − x∗‖ (3.3)

or, denoting κ = L
` and D0 = ‖x0 − x∗‖,

‖xk − x∗‖ ≤
(
κ− 1

κ+ 1

)k

D0 (3.4)

That is, a constant step-size policy converges at a linear rate.

4 Analysis of the Heavy Ball Method

We restrict our attention to the case where αk and βk are fixed constants. To prove this method converges,
we use a time-lagged version of the standard Lyapunov function. That is, instead of looking at ‖xk+1−x∗‖2,
we examine ‖xk+1 − x∗‖2 + ‖xk − x∗‖2. For this invariant, we have the chain of inequalities[

xk+1 − x∗
xk − x∗

]
=

[
xk − α∇f(xk) + β(xk − xk−1)− x∗

xk − x∗

]
(4.1a)

=

[
xk + β(xk − xk−1)− α(Axk − b)− x∗

xk − x∗

]
(4.1b)

=

[
(1 + β)I − αA −βI

I 0

] [
xk − x∗
xk−1 − x∗

]
. (4.1c)
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Again, we use the fact that Ax∗ = b. Define the matrix

T =

[
(1 + β)I − αA −βI

I 0

]
.

Iterating the above calculation we have that∥∥∥∥[ xk+1 − x∗
xk − x∗

]∥∥∥∥ = ‖T k‖
∥∥∥∥[ x1 − x∗x0 − x∗

]∥∥∥∥ . (4.2)

Hence, it suffices to bound the norm of T k to get a convergence rate. We use following theorem from matrix
anaylsis:

Proposition 4.1 Let M be an n × n matrix. Let ρ(M) = maxi |λi(M)|. Then there exists a sequence
εk ≥ 0 such that

‖Mk‖ ≤ (ρ(M) + εk)k and lim
k→∞

εk = 0 .

ρ(M) is called the spectral radius of M and is equal to the maximum magnitude of any eigenvalue of
M . We can bound the spectral radius using the following

Proposition 4.2 For β ≥ max{|1−
√
α`|, |1−

√
αL|}2, ρ(T ) ≤ β .

Proof Let UΛUT be an eigendecomposition of A. Let Π be the 2n× 2n matrix with entries

Πi,j =


1 i odd, j = i

1 i even, j = 2n+ i

0 otherwise

. (4.3)

Then, by conjugationm we have

Π

[
U 0
0 U

]T [
(1 + β)I − αA −βI

I 0

] [
U 0
0 U

]T
ΠT (4.4a)

=Π

[
(1 + β)I − αΛ −βI

I 0

]
ΠT (4.4b)

=


T1 0 · · · 0
0 T2 · · · 0
...

. . .
...

0 0 · · · Tn

 . (4.4c)

Where

Ti :=

[
1 + β − αλi −β

1 0

]
. (4.5)

That is, T is similar to the block diagonal matrix with 2× 2 diagonal blocks Ti. To compute the eigenvalues
of T , it suffices to compute the eigenvalues of all of the Ti. For fixed i, the eigenvalues of the 2× 2 matrix
are roots of the equation

u2 − (1 + β − αλi)u+ β = 0 (4.6)
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In the case that β ≥ (1 −
√
αλi)

2, the roots of the characteristic equations are imaginary, and both have
magnitude β. Note that by assumption

(1−
√
αλi)

2 ≤ max
{

(1−
√
α`)2, (1−

√
αL)2

}
(4.7)

and setting β equal to the right hand side completes the proof.

Setting α = 4
(
√
L+
√
`)2

and β =
√
L−
√
`√

L+
√
`

yields

∥∥∥∥[ xk+1 − x∗
xk − x∗

]∥∥∥∥ ≤
(√

L−
√
`√

L+
√
`

+ εk

)k ∥∥∥∥[ x1 − x∗x0 − x∗

]∥∥∥∥ (4.8)

Or, in other words

‖xk − x∗‖ ≤
(√

κ− 1√
κ+ 1

+ εk

)k

D0 (4.9)

which is the rate attainable by the nonlinear conjugate gradient method. Of course, we need to know L and
` to achieve such a rate.
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