CS726 - Nonlinear Optimization I - Homework 4

October 3, 2012

This assignment is due at the beginning of class on October 10.
In all of these problems, you can check your results on a computer, but your solution to this problem should be analytic.

1. Consider the function $f(x)=\frac{1}{2} x_{1}^{2}+\frac{\gamma}{2} x_{2}^{2}$ where $0<\gamma<1$.
(a) What is the largest condition number of the Hessian of $f(x)$ for $x \in \mathbb{R}^{2}$?
(b) Perform gradient descent with exact line search starting at the point $x^{(0)}=(\gamma, 1)$. Determine a closed form expression for the k th iterate, $x^{(k)}$.
(c) Determine a tight bound for $f\left(x^{(k)}\right)$ in terms of γ, k, and $f\left(x^{(0)}\right)$. What is the convergence rate?
2. Consider the functions $f_{k}: \mathbb{R}^{n} \rightarrow \mathbb{R}, f_{k}(x)=\frac{1}{2}\left(x_{1}^{2}+\sum_{i=1}^{k-1}\left(x_{i}-x_{i+1}\right)^{2}+x_{k}^{2}\right)-x_{1}$.
(a) Compute the set of minimizers of f_{k} for $k=1, \ldots, n$. Also compute the function value at these minimizers.
(b) Suppose we wish to minimize $f=f_{n}$ by the gradient method with $x^{(0)}=0$. Show that after k iterations $x_{j}^{(k)}$ is equal to zero if $j>k$.
(c) Show that $f_{n}\left(x^{(k)}\right)=f_{k}\left(x^{(k)}\right)$.
(d) Show that $f\left(x^{(k)}\right)-f_{*}$ does not converge linearly to 0 .
3. Let f be a smooth function.
(a) Show that if f is strongly convex, then the Netwon direction is a descent direction.
(b) Find a convex function for which the Newton direction does not exist for some nonminimizing x.
4. Apply Newton's method with a constant stepsize to minimize the function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ given by

$$
f(x):=\frac{1}{3}\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{3 / 2}
$$

Identify the range of stepsizes for which this method converges. Show that for any stepsize within this range, the iterates converge linearly to $x_{\mathrm{opt}}=0$. Explain why the method does not converge quadratically to the optimal solution.

