CS726 - Nonlinear Optimization I - Homework 6 October 24, 2012

This assignment is due at the beginning of class on October 31 (boo!).

1. Consider the optimization problem

minimize
$$f_0(x_1, x_2)$$

subject to $2x_1 + x_2 \ge 1$
 $x_1 + 3x_2 \ge 1$
 $x_1 \ge 0, x_2 \ge 0$

Make a sketch of the feasible set. For each of the following objective functions, give the optimal set and the optimal value.

- (a) $f_0(x_1, x_2) = x_1 + x_2$
- (b) $f_0(x_1, x_2) = -x_1 x_2$
- (c) $f_0(x_1, x_2) = x_1$
- (d) $f_0(x_1, x_2) = \max\{x_1, x_2\}$
- (e) $f_0(x_1, x_2) = x_1^2 + 9x_2^2$
- 2. Consider the linear program

 $\begin{array}{ll} \text{minimize} & c^T x\\ \text{subject to} & Ax \leq b \end{array}$

where A is nonsingular and square. Show that the optimal value is given by

$$p^{\star} = \begin{cases} c^T A^{-1} b & \text{if } (A^{-1})^T c \le 0\\ -\infty & \text{otherwise} \end{cases}$$

3. For a norm $\|\cdot\|$, the dual norm is the function

$$||z||_* = \sup\{x^T z : ||x|| \le 1\}$$

- (a) Prove that $\|\cdot\|_*$ is a norm if $\|\cdot\|$ is a norm.
- (b) Prove that the dual norm of the ℓ_2 norm is the ℓ_2 norm by computing the dual problem of

minimize
$$-z^T x$$

subject to $\sum_{i=1}^n x_i^2 \le 1$.

(c) Prove that the dual norm of the ℓ_1 norm is the ℓ_∞ norm by first showing that $||x||_1 \le s$ if and only if there exists a vector t satisfying

$$-t_i \le x_i \le t_i \quad i = 1, \dots, n$$

$$\sum_{i=1}^n t_i \le s \qquad ,$$

and then computing the dual problem of

minimize_(x,t)
$$-z^T x$$

subject to $-t_i \le x_i \le t_i$ for $i = 1, ..., n$.
 $\sum_{i=1}^n t_i \le 1$

4. Derive the dual problem of

minimize_(x,y)
$$-\sum_{i=1}^{m} \log(y_i)$$

subject to $a_i^T x - b_i + y_i = 0$ $i = 1, \dots, m$
 $y_i \ge 0$ $i = 1, \dots, m$.