CS726-Nonlinear Optimization I - Homework 6 October 24, 2012

This assignment is due at the beginning of class on October 31 (boo!).

1. Consider the optimization problem

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}\left(x_{1}, x_{2}\right) \\
\text { subject to } & 2 x_{1}+x_{2} \geq 1 \\
& x_{1}+3 x_{2} \geq 1 \\
& x_{1} \geq 0, x_{2} \geq 0
\end{array}
$$

Make a sketch of the feasible set. For each of the following objective functions, give the optimal set and the optimal value.
(a) $f_{0}\left(x_{1}, x_{2}\right)=x_{1}+x_{2}$
(b) $f_{0}\left(x_{1}, x_{2}\right)=-x_{1}-x_{2}$
(c) $f_{0}\left(x_{1}, x_{2}\right)=x_{1}$
(d) $f_{0}\left(x_{1}, x_{2}\right)=\max \left\{x_{1}, x_{2}\right\}$
(e) $f_{0}\left(x_{1}, x_{2}\right)=x_{1}^{2}+9 x_{2}^{2}$
2. Consider the linear program

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x \leq b
\end{array}
$$

where A is nonsingular and square. Show that the optimal value is given by

$$
p^{\star}= \begin{cases}c^{T} A^{-1} b & \text { if }\left(A^{-1}\right)^{T} c \leq 0 \\ -\infty & \text { otherwise }\end{cases}
$$

3. For a norm $\|\cdot\|$, the dual norm is the function

$$
\|z\|_{*}=\sup \left\{x^{T} z:\|x\| \leq 1\right\}
$$

(a) Prove that $\|\cdot\|_{*}$ is a norm if $\|\cdot\|$ is a norm.
(b) Prove that the dual norm of the ℓ_{2} norm is the ℓ_{2} norm by computing the dual problem of

$$
\begin{array}{ll}
\operatorname{minimize} & -z^{T} x \\
\text { subject to } & \sum_{i=1}^{n} x_{i}^{2} \leq 1
\end{array}
$$

(c) Prove that the dual norm of the ℓ_{1} norm is the ℓ_{∞} norm by first showing that $\|x\|_{1} \leq s$ if and only if there exists a vector t satisfying

$$
\begin{aligned}
& -t_{i} \leq x_{i} \leq t_{i} \quad i=1, \ldots, n \\
& \sum_{i=1}^{n} t_{i} \leq s
\end{aligned}
$$

and then computing the dual problem of

$$
\begin{array}{ll}
\operatorname{minimize}_{(x, t)} & -z^{T} x \\
\text { subject to } & -t_{i} \leq x_{i} \leq t_{i} \text { for } i=1, \ldots, n \\
& \sum_{i=1}^{n} t_{i} \leq 1
\end{array}
$$

4. Derive the dual problem of

$$
\begin{array}{lll}
\operatorname{minimize}_{(x, y)} & -\sum_{i=1}^{m} \log \left(y_{i}\right) & \\
\text { subject to } & a_{i}^{T} x-b_{i}+y_{i}=0 & i=1, \ldots, m \\
& y_{i} \geq 0 & i=1, \ldots, m
\end{array}
$$

