This assignment is due at the beginning of class on November 7.

1. Consider the linear program

$$\begin{array}{ll} \text{minimize} & c^T x\\ \text{subject to} & Ax \leq b \end{array}$$

Here, A is $m \times n$. Let p^* denote the optimal value.

(a) Let $w \in \mathbb{R}^m$ have nonnegative components. Show that the feasible set is contained in the half space

$$H_w = \{x : w^T A x \le w^T b\}.$$

- (b) Let $p_w = \inf\{c^T x : x \in H_w\}$. Show that $p_w \le p^*$.
- (c) Derive an expression for p_w .
- (d) Relate the problem of maximizing p_w with respect to $w \ge 0$ to the dual of the original linear program.
- 2. Consider the equality constrained problem

minimize
$$f_0(x)$$

subject to $Ax = b$

where f_0 is convex and differentiable and $A \in \mathbb{R}^{m \times n}$ has rank m. The quadratic penalty method solves the unconstrained problem

minimize
$$\phi(x) = f_0(x) + \alpha ||Ax - b||^2$$

where $\alpha > 0$ is a penalty parameter. The idea is that a minimizer of the auxiliary function, \tilde{x} , should be an approximate solution of the original problem. Intuition suggests that the larger the penalty weight α , the better the approximation \tilde{x} will be to a solution of the original problem. Suppose \tilde{x} is a minimizer of ϕ . Show how to find, from \tilde{x} , a dual feasible point for the original equality constrained problem. Find the corresponding lower bound on the optimal value of the original problem.

3. Consider the equality constrained least-squares problem

minimize
$$||Ax - b||^2$$

subject to $Gx = h$

Where A is $m \times n$, $m \ge n$, and the rank of A is n. G is $p \times n$, $p \le n$, and the rank of G is p. Write down the KKT conditions and derive expressions for the optimal primal and dual solutions.

4. Given two, finite sets of points $X = \{x_1, \ldots, x_p\}$ and $Z = \{z_1, \ldots, z_m\}$, suppose we wish to find a hyperplane such that X lies on one side of the hyperplane and Z lies on the other. One way to find such a hyperplane would be to solve the quadratic program

minimize_(a,b)
$$||a||_2^2$$

subject to
 $a^T x_k + b \ge 1$ for $k = 1, \dots, p$
 $a^T z_j + b \le -1$ for $j = 1, \dots, m$

Show that the optimal a^* has the form

$$a^{\star} = \sum_{k=1}^{p} \beta_k x_k - \sum_{j=1}^{m} \gamma_j z_j$$

where $\beta \ge 0$, $\gamma \ge 0$, and $\sum_{k=1}^{p} \beta_k = \sum_{j=1}^{m} \gamma_j$.