CS726-Nonlinear Optimization I - Homework 7

October 31, 2012

This assignment is due at the beginning of class on November 7.

1. Consider the linear program

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x \leq b
\end{array}
$$

Here, A is $m \times n$. Let p^{\star} denote the optimal value.
(a) Let $w \in \mathbb{R}^{m}$ have nonnegative components. Show that the feasible set is contained in the half space

$$
H_{w}=\left\{x: w^{T} A x \leq w^{T} b\right\} .
$$

(b) Let $p_{w}=\inf \left\{c^{T} x: x \in H_{w}\right\}$. Show that $p_{w} \leq p^{\star}$.
(c) Derive an expression for p_{w}.
(d) Relate the problem of maximizing p_{w} with respect to $w \geq 0$ to the dual of the original linear program.
2. Consider the equality constrained problem

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & A x=b
\end{array}
$$

where f_{0} is convex and differentiable and $A \in \mathbb{R}^{m \times n}$ has rank m. The quadratic penalty method solves the unconstrained problem

$$
\operatorname{minimize} \quad \phi(x)=f_{0}(x)+\alpha\|A x-b\|^{2}
$$

where $\alpha>0$ is a penalty parameter. The idea is that a minimizer of the auxiliary function, \tilde{x}, should be an approximate solution of the original problem. Intuition suggests that the larger the penalty weight α, the better the approximation \tilde{x} will be to a solution of the original problem. Suppose \tilde{x} is a minimizer of ϕ. Show how to find, from \tilde{x}, a dual feasible point for the original equality constrained problem. Find the corresponding lower bound on the optimal value of the original problem.
3. Consider the equality constrained least-squares problem

$$
\begin{array}{ll}
\operatorname{minimize} & \|A x-b\|^{2} \\
\text { subject to } & G x=h
\end{array}
$$

Where A is $m \times n, m \geq n$, and the rank of A is $n . G$ is $p \times n, p \leq n$, and the rank of G is p. Write down the KKT conditions and derive expressions for the optimal primal and dual solutions.
4. Given two, finite sets of points $X=\left\{x_{1}, \ldots, x_{p}\right\}$ and $Z=\left\{z_{1}, \ldots, z_{m}\right\}$, suppose we wish to find a hyperplane such that X lies on one side of the hyperplane and Z lies on the other. One way to find such a hyperplane would be to solve the quadratic program

$$
\begin{array}{ll}
\operatorname{minimize}_{(a, b)} & \|a\|_{2}^{2} \\
\text { subject to } & a^{T} x_{k}+b \geq 1 \text { for } k=1, \ldots, p \\
& a^{T} z_{j}+b \leq-1 \text { for } j=1, \ldots, m
\end{array}
$$

Show that the optimal a^{\star} has the form

$$
a^{\star}=\sum_{k=1}^{p} \beta_{k} x_{k}-\sum_{j=1}^{m} \gamma_{j} z_{j}
$$

where $\beta \geq 0, \gamma \geq 0$, and $\sum_{k=1}^{p} \beta_{k}=\sum_{j=1}^{m} \gamma_{j}$.

