CS726-Nonlinear Optimization I - Homework 8

November 7, 2012

This assignment is due at the beginning of class on November 19.

1. Compute the subdifferentials of the following functions
(a) $f_{1}(x)=\max _{1 \leq i \leq m}\left|a_{i}^{T} x+b_{i}\right|$.
(b) $f_{2}(x)=\sup _{0 \leq t \leq 1} p(t)$, where $p(t)=x_{1}+x_{2} t+\cdots+x_{n} t^{n-1}$.
(c) $f_{3}(x)=\|x\|_{2}$
2. Suppose we are minimizing the convex function f by the subgradient method:

$$
x_{k+1}=x_{k}-\alpha_{k} g_{k}
$$

where $g_{k} \in \partial f\left(x_{k}\right)$. Let f_{*} denote the optimal value of f. After N iterations, let

$$
f_{\text {best }}=\min _{1 \leq i \leq N} f\left(x_{i}\right)
$$

We then have the estimate

$$
f_{\mathrm{best}}-f_{*} \leq \frac{D^{2}+G^{2} \sum_{i=1}^{N} \alpha_{i}^{2}}{2 \sum_{i=1}^{N} \alpha_{i}}
$$

where D denotes the distance from x_{1} to the optimal region and G is an upper bound on the norm of the subgradients of f. Prove that if you choose $\alpha_{k}=\rho / k^{\beta}$ for $\beta \geq 1 / 2$, then $f_{\text {best }}-f_{*} \leq C N^{\beta-1}$ for some $C>0$. What is the best value of ρ ?
3. Write down the dual ascent updates for the solving the linear program

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x=b \\
& x \in[0,1]^{n}
\end{array}
$$

In your solution, only dualize with respect to the equality constraint. Then, at each step, you will minimize the resulting Lagrangian over $[0,1]^{n}$.
4. Compute the proximal point mappings associated with the following convex functions
(a) $P_{1}(x)=\frac{1}{2} \min _{\|z\|_{2} \leq B}\|x-z\|_{2}^{2}$
(b) $P_{2}(x)=-\sum_{k=1}^{n} \log \left(x_{k}\right)$
(c) $P_{3}(x)=\mathbb{I}_{[-1,1]^{d}}(x)$. (The indicator function for the set $[-1,1]^{d}$.

