
CS726 - Nonlinear Optimization I - Homework 9
November 26, 2012

This assignment is due at 5PM on Friday, December 14.

Note that this assignment is worth two homework grades. But you have 3 weeks to complete
it. This is a programming assignment and should be submitted electronically using learn@uw.
The assignment name is hwk9 and your code should be runnable from exactly one script called
run hwk9.m (or run hwk9.py if running python). That is, I should be able to type run hwk9.m
(or python run hwk9.py) and have all of your experiments executed and appropriate plots
produced. Also, make a file hwk9 commentary.pdf with all of the plots and write-ups of
your findings. In the pdf report, describe your implementation methodology. You will be partially
graded on the computation time required to achieve the desired accuracy. Describe in detail what
optimizations you implement to reduce computation time.

1. Comparing classifiers. Write an algorithm, based on ADMM, to solve the general risk
minimization problem

minimize
∑n

k=1 loss(w
Txk + b, yk) + λ‖w‖22

Use the splitting based on introducing the equality constraint zk = wTxk + b. Implement the
following three loss functions:

(a) loss(z, y) = max(1− yz, 0).
(b) loss(z, y) = 1

2
(y − z)2.

(c) loss(z, y) = log(1 + exp(z))−
(
y+1
2

)
z.

In your code use the stopping criteria proposed by Boyd et al in Equation (3.12) (page 19).

Test your classification code on theiris, breast cancer.dat, adult.dat data sets,
available for download on the class website. In all cases, each row indexes an example. The
first column corresponds to the label y, and the remaining columns are the x data.

In each case, tune the ADMM algorithm and regularization parameter λ to get the best error
over ten-fold cross-validation: break the data set up into 10 random chunks of equal size. For
each chunk, use the other 90% of the data to train an SVM and then evaluate its performance
on the held out chunk. The cross-validation error is the average number of misclassified data
points over these 10 runs.

How do the different loss-functions compare to one another after tuning? Describe how the
different loss functions fare on each data set.

2. Compressed Sensing. Write an algorithm, based on projected gradient or ADMM to solve
the `p regularized problem

minimize ‖Ax− b‖22 + µ‖x‖p

1



Where A is m × n for p = 1, 2. You may use whatever tricks you would like to make this
algorithm as fast as possible. The goal will be to see how this optimization fares on random
compressed sensing problems.

Generate your data as
bi = Ai,·x0 + ωi

where ωi ∼ N (0, σ2). Generate x0 to be the sparse vector equal to 1 in s randomly selected
locations and 0 everywhere else.

Test your algorithm on the following four random matrices

(a) Aij ∼ N (0, 1/n).

(b) Aij =
√

3/nwith probability 1/6,−
√
3/nwith probability 1/6, and 0 with probability

2/3.

(c) A equals m random rows from the discrete cosine transform, normalized so that each
row has norm 1.

Record the prediction error ‖Ax̂− b‖2 and recovery error ‖x0− x̂‖2 where x̂ is the estimate
returned by your algorithms for `2 and `1.

For n = 1000, m = 250 and s = 50, find the value of µ that achieves the lowest errors
possible, plotting the errors and computation time as a function of µ. Make these plots using
the values σ = 0, 0.001, 0.1 for the noise. When does `1 outperform `2 and vice versa?

2


