Projected Gradient Methods

Benjamin Recht
Department of Computer Sciences, University of Wisconsin-Madison
1210 W Dayton St, Madison, WI 53706
email: brecht@cs.wisc.edu

November 9, 2012

1 Proximal Point Mappings Associated with Convex Functions

Let P be an extended-real-valued convex function on \mathbb{R}^{n}. Define the operator

$$
\begin{equation*}
\operatorname{prox}_{P}(x)=\arg \min _{y} \frac{1}{2}\|x-y\|_{2}^{2}+P(y) \tag{1.1}
\end{equation*}
$$

Since the optimized function is strongly convex, it must have a unique optimal solution. Therefore, we can conclude that $\operatorname{prox}_{P}(x)$ is a well-defined mapping from \mathbb{R}^{n} to \mathbb{R}^{n}. By the first order optimality conditions, we conclude that $\operatorname{prox}_{P}(x)$ is the unique point satisfying

$$
\begin{equation*}
x-\operatorname{prox}_{P}(x) \in \partial P\left(\operatorname{prox}_{P}(x)\right) . \tag{1.2}
\end{equation*}
$$

The definition of prox_{P} also reveals that it is well-defined for all $x \in \mathbb{R}^{n}$, and maps onto the set $\operatorname{dom}(P):=$ $\left\{z \in \mathbb{R}^{n}: P(z)<\infty\right\}$. The mapping prox_{P} is called the proximity operator or proximal point mapping associated with P.

Let's look at some examples.

1. If \mathbb{I}_{C} is an indicator function for a convex set C

$$
\mathbb{I}_{C}(x)= \begin{cases}0 & x \in C \tag{1.3}\\ \infty & \text { otherwise }\end{cases}
$$

then $\operatorname{prox}_{\mathbb{I}_{C}}$ is the Euclidean projection onto C. That is, $\operatorname{prox}_{\mathbb{I}_{C}}(x)$ is the closest point in the set C to x in Euclidean distance.
2. For $\mathbb{I}_{\mathbb{R}_{+}}$, this proximity mapping takes on the trivial form:

$$
\begin{equation*}
\mathbb{I}_{\mathbb{R}_{+}}(x)_{i}=\max \left(x_{i}, 0\right) \tag{1.4}
\end{equation*}
$$

3. For $P(x)=\frac{\mu}{2}\|x\|_{2}^{2}, \operatorname{prox}_{P}(x)=\frac{1}{1+\mu} x$. That is, $\operatorname{prox}_{P}(x)$ is equal to a multiple of x, shrunk towards the origin.
4. For $P(x)=\mu\|x\|_{1}$,

$$
\operatorname{prox}_{P}(x)_{i}= \begin{cases}x_{i}+\mu & x_{i}<-\mu \tag{1.5}\\ 0 & -\mu \leq x_{i} \leq \mu \\ x_{i}-\mu & x_{i}>\mu\end{cases}
$$

This function is called the shrinkage operator and has many applications in signal processing. To see that this is the correct form, one needs only to analyze the optimality conditions of the one dimensional problem

$$
\begin{equation*}
\operatorname{minimize} \frac{1}{2}(x-y)^{2}+\mu|y| \tag{1.6}
\end{equation*}
$$

2 The Proximal Point Algorithm

Proximity operators have many algorithmic applications. As a warm up, consider the following simple iteration: pick $x_{0} \in \mathbb{R}^{n}$ and $\nu>0$ and define the iteration $x_{k+1}=\operatorname{prox}_{\nu P}\left(x_{k}\right)$. This simple iteration can be shown to converge to a minimizer of the function P. To prove this, we need the following two lemmas. The first is a simple consequence of the convexity of P.

Lemma 2.1 Let P be convex on X. Let $x, y \in X$, and let $g_{y} \in \partial P(y)$ and $g_{x} \in \partial P(y)$. Then $\left\langle g_{x}-g_{y}, x-y\right\rangle \geq 0$.

Proof By the definition of the subdifferential, we have

$$
\begin{align*}
& P(x)-P(y) \geq\left\langle g_{y}, x-y\right\rangle \tag{2.1}\\
& P(y)-P(x) \geq\left\langle g_{x}, y-x\right\rangle
\end{align*}
$$

Adding these two equations gives $-\left\langle g_{x}-g_{y}, x-y\right\rangle \leq 0$.
The second lemma uses this key inequality to establish several facts about the proximity operator. This lemma is proven in [1].

Lemma 2.2 Let $Q_{\nu}(x):=x-\operatorname{prox}_{\nu P}(x)$. Then we have
(i) $\nu^{-1} Q_{\nu}(x) \in \partial P\left(\operatorname{prox}_{\nu P}(x)\right)$
(ii) $\left\langle\operatorname{prox}_{\nu P}(x)-\operatorname{prox}_{\nu P}(z), Q_{\nu}(x)-Q_{\nu}(z)\right\rangle \geq 0$
(iii) $\left\|\operatorname{prox}_{\nu P}(x)-\operatorname{prox}_{\nu P}(z)\right\|^{2}+\left\|Q_{\nu}(x)-Q_{\nu}(z)\right\|^{2} \leq\|x-z\|^{2}$
(iv) $\|x-z\|=\left\|\operatorname{prox}_{\nu P}(x)-\operatorname{prox}_{\nu P}(z)\right\|$ if and only if $x-z=\operatorname{prox}_{\nu P}(x)-\operatorname{prox} \nu P(z)$

Proof The first assertion follows from the definitions. The second assertion follows from (i), and Lemma 2.1. The third assertion follows from (ii) after expanding the identity

$$
\|x-z\|^{2}=\left\|\left[P_{\nu}(x)-P_{\nu}(z)\right]+\left[Q_{\nu}(x)-Q_{\nu}(z)\right]\right\|^{2} .
$$

(iv) follows immediately from (iii).

By Lemma 2.2 (iii), we have

$$
\begin{equation*}
\left\|\operatorname{prox}_{\nu P}(x)-\operatorname{prox}_{\nu P}(z)\right\|^{2} \leq\|x-z\|^{2} \tag{2.2}
\end{equation*}
$$

and we say that the proximity operator is nonexpansive. This is the essential property needed to prove the convergence of the proximal point method. That the proximity operator is nonexpansive also plays a role in the projected gradient algorithm, analyzed below.

Using the nonexpansive property of the proximity operator, we can now verify the convergence of the proximal point method. Since $\operatorname{prox}_{\nu P}$ is non-expansive, $\left\{z_{k}\right\}$ lies in a compact set and must have a limit point \bar{z}. Also for any z_{*} with $0 \in \partial P\left(z_{*}\right)$,

$$
\begin{equation*}
\left\|z_{k+1}-z_{*}\right\|=\left\|\operatorname{prox}_{\nu P}\left(z_{k}\right)-\operatorname{prox}_{\nu P}\left(z_{*}\right)\right\| \leq\left\|z_{k}-z_{*}\right\| \tag{2.3}
\end{equation*}
$$

which means that the sequence $\left\|z_{k}-z_{*}\right\|$ is monotonically non-increasing. Therefore

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|z_{k}-z_{*}\right\|=\left\|\bar{z}-z_{*}\right\| . \tag{2.4}
\end{equation*}
$$

where \bar{z} is any limit point of z_{k}. By continuity we have $\operatorname{prox}_{\nu P}(\bar{z})$ is also a limit point of z_{k}. Therefore, we must have

$$
\begin{equation*}
\left\|\operatorname{prox}_{\nu P}(\bar{z})-\operatorname{prox}_{\nu P}\left(z_{*}\right)\right\|=\left\|\operatorname{prox}_{\nu P}(\bar{z})-z_{*}\right\|=\left\|\bar{z}-z_{*}\right\| \tag{2.5}
\end{equation*}
$$

But this means that $\operatorname{prox}_{\nu P}(\bar{z})-\operatorname{prox}_{\nu P}\left(z_{*}\right)=\bar{z}-z_{*}$, and in turn that $\operatorname{prox}_{\nu P}(\bar{z})=\bar{z}$ and $0 \in \partial P(\bar{z})$. Now using \bar{z} for z_{*} in (2.4) shows that

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|z_{k}-\bar{z}\right\|=0 \tag{2.6}
\end{equation*}
$$

In other words, the sequence z_{k} converges to \bar{z}.

3 The projected gradient algorithm

The projected gradient algorithm combines a proximal step with a gradient step. This lets us solve a variety of constrained optimization problems with simple constraints, and it lets us solve some non-smooth problems at linear rates.

We will aim to analyze a function h which admits a decomposition

$$
\begin{equation*}
h(x)=f(x)+P(x) \tag{3.1}
\end{equation*}
$$

where f is smooth and P is a convex extended real valued function. Let us assume that ∇f is Lipschitz so that $\|\nabla f(x)-\nabla f(y)\| \leq L\|x-y\|$.

Let us define a projected gradient scheme to solve this problem. Let $\alpha_{0}, \ldots, \alpha_{T}, \ldots$, be a sequence of positive step sizes. Choose $x_{0} \in X$, and iterate

$$
\begin{equation*}
x_{k+1}=\operatorname{prox}_{\alpha_{k} P}\left(x_{k}-\alpha_{k} \nabla f\left(x_{k}\right)\right) . \tag{3.2}
\end{equation*}
$$

The algorithm alternates between taking gradient steps and then taking proximal point steps.
The key idea behind this algorithm is summed up by the following proposition
Proposition 3.1 Let f be differentiable and convex and let P be convex. x_{*} is an optimal solution of

$$
\begin{equation*}
\text { minimize }_{x} f(x)+P(x) \tag{3.3}
\end{equation*}
$$

if and only if $x_{*}=\operatorname{prox}_{\nu P}\left(x_{*}-\nu \nabla f\left(x_{*}\right)\right)$ for all $\nu>0$.

Proof x_{*} is an optimal solution if and only if $-\nabla f\left(x_{*}\right) \in \partial P\left(x_{*}\right)$. This is equivalent to

$$
\left(x_{*}-\nu \nabla f\left(x_{*}\right)\right)-x_{*} \in \nu \partial P\left(x_{*}\right),
$$

which is equivalent to $x_{*}=\operatorname{prox}_{\nu P}\left(x_{*}-\nu \nabla f\left(x_{*}\right)\right)$.
For non-convex f, we see that a fixed point of the projected gradient iteration is a stationary point of h. We first analyze the convergence of this projected gradient method for arbitrary smooth f, and then focus on strongly convex f.

3.1 General Case

Let h_{*} denote the optimal value of (3.1). Suppose we set $\alpha_{k}=1 / M$ for all k with $M \geq L$. Then we have

$$
\begin{equation*}
\left\|x_{k+1}-x_{k}\right\| \leq \sqrt{\frac{2\left(h\left(x_{0}\right)-h_{*}\right)}{M(k+1)}} . \tag{3.4}
\end{equation*}
$$

This expression confirms that x_{k} will converge to some fixed point.
To verify this inequality, note that for any x, y,

$$
\begin{equation*}
h(x)=f(x)+P(x) \leq f(y)+\nabla f(y)^{T}(x-y)+\frac{M}{2}\|x-y\|^{2}+P(x)=: u(x ; y) \tag{3.5}
\end{equation*}
$$

for any $M \geq L$. This is just Taylor's series. Note that the minimizer of $u(x ; y)$ (with respect to x) is equal to

$$
\begin{equation*}
\operatorname{prox}_{P / M}(y-1 / M \nabla f(y)) . \tag{3.6}
\end{equation*}
$$

and also note that $u(x ; y)$ is strongly convex with parameter M.
Now we have the chain of inequalities

$$
\begin{align*}
h\left(x_{k}\right)-h\left(x_{k+1}\right) & \geq h\left(x_{k}\right)-u\left(x_{k+1} ; x_{k}\right) \tag{3.7}\\
& =u\left(x_{k} ; x_{k}\right)-u\left(x_{k+1} ; x_{k}\right) \tag{3.8}\\
& \geq \frac{M}{2}\left\|x_{k+1}-x_{k}\right\|^{2} \tag{3.9}
\end{align*}
$$

Summing these inequalities up for $k=1, \ldots, n$, we have

$$
\begin{equation*}
\sum_{k=0}^{n}\left\|x_{k+1}-x_{k}\right\|^{2} \leq \frac{2}{M}\left(h\left(x_{0}\right)-h_{*}\right) \tag{3.10}
\end{equation*}
$$

and the conclusion follows

3.2 Strongly Convex Case

Let's now assume that f is strongly convex with strong convexity parameter ℓ :

$$
\begin{equation*}
f(z) \geq f(x)+\nabla f(x)^{*}(z-x)+\frac{\ell}{2}\|z-x\|^{2} . \tag{3.11}
\end{equation*}
$$

Let x_{*} denote the optimal solution of (3.1). x_{*} is unique because of strong convexity. Observe that

$$
\begin{align*}
\left\|x_{k+1}-x_{*}\right\| & =\| \operatorname{prox}_{\alpha_{k} P}\left(x_{k}-\alpha_{k} \nabla f\left(x_{k}\right)-\operatorname{prox}_{\alpha_{k} P}\left(x_{*}-\alpha_{k} \nabla f\left(x_{*}\right)\right) \|\right. \tag{3.12}\\
& \left.\leq\left\|x_{k}-\alpha_{k} \nabla f\left(x_{k}\right)-x_{*}+\alpha_{k} \nabla f\left(x_{*}\right)\right\|\right] \tag{3.13}
\end{align*}
$$

Here, the first equality follows by the definition of x_{k+1} and because x_{*} is optimal (see Proposition 3.1). (3.13) follows from Proposition 2.2.

Since f is strongly convex and has a Lipschitz continuous gradient, it follows that for all vectors x and y and all positive scalars t

$$
\begin{equation*}
\|x-\nu \nabla f(x)-(y-\nu \nabla f(y))\| \leq \max \{|1-\nu L|,|1-\nu \ell|\}\|x-y\| . \tag{3.14}
\end{equation*}
$$

To see this, note that

$$
\begin{align*}
\|x-t \nabla f(x)-(y-t \nabla f(y))\| & \leq \| \int_{0}^{1}\left(I-t \nabla^{2} f(x+t(y-x))(y-x) d t \|\right. \tag{3.15}\\
& \leq \sup _{z}\left\|I-t \nabla^{2} f(z)\right\|\|y-z\| . \tag{3.16}
\end{align*}
$$

Note that the minimum eigenvalue of $\nabla^{2} f(z)$ is at least ℓ and the maximum eigenvalue is at least L. Therefore the eigenvalues of $I-t \nabla^{2} f(z)$ are at $\operatorname{most} \max (1-t L, 1-t \ell)$ and at least $\min (1-t L, 1-t \ell)$. Therefore, $\left\|I-t \nabla^{2} f(z)\right\| \leq \max (|1-t L|,|1-t \ell|)$.

In particular, using this upper bound in (3.13), we have

$$
\begin{equation*}
\left\|x_{k+1}-x_{*}\right\| \leq \max \left\{\left|1-\alpha_{k} L\right|,\left|1-\alpha_{k} \ell\right|\right\}\|x-y\| . \tag{3.17}
\end{equation*}
$$

Note that $\alpha_{k}=\frac{2}{L+\ell}$ minimizes the right hand side for all k. Setting α_{k} to this value, we find that

$$
\begin{equation*}
\left\|x_{k+1}-x_{*}\right\| \leq\left(\frac{L-\ell}{L+\ell}\right)\left\|x_{k}-x_{*}\right\| \tag{3.18}
\end{equation*}
$$

or, denoting $\kappa=\frac{L}{\ell}$ and $D_{0}=\left\|x_{0}-x_{*}\right\|$,

$$
\begin{equation*}
\left\|x_{k}-x_{*}\right\| \leq\left(\frac{\kappa-1}{\kappa+1}\right)^{k} D_{0} \tag{3.19}
\end{equation*}
$$

That is, for strongly convex f and arbitrary P, the projected gradient algorithm converges at a linear rate under a constant step-size policy.

4 Constrained Optimization

Let C be a convex set and let \mathbb{I}_{C} denote its indicator function. What's the subdifferential of $\mathbb{I}_{C}(x)$ for $x \in C$? By definition $g \in \partial \mathbb{I}_{C}(x)$ if and only if

$$
\begin{equation*}
\mathbb{I}_{C}(y) \geq \mathbb{I}_{C}(x)+g^{T}(y-x) \tag{4.1}
\end{equation*}
$$

for all y. This is equivalent to

$$
\begin{equation*}
\partial \mathbb{I}_{C}(x)=\left\{g: g^{T}(x-y) \geq 0 \forall y \in C\right\} \tag{4.2}
\end{equation*}
$$

for $x \in C$. This set is often called the normal cone of C at x.
Consider the constrained optimization problem

$$
\begin{equation*}
\operatorname{minimize}_{x \in C} f(x) \tag{4.3}
\end{equation*}
$$

for smooth, convex f. Then x_{*} is optimal if and only if $-\nabla f\left(x_{*}\right) \in \partial \mathbb{I}_{C}\left(x_{*}\right)$. We can find such an x_{*} via the projected gradient algorithm.

References

[1] R. T. Rockafellar. Monotone operators and the proximal point algorithm. SIAM Journal on Control and Optimization, 14(5):877-898, 1976.

