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1 Proximal Point Mappings Associated with Convex Functions

Let P be an extended-real-valued convex function on Rn. Define the operator

proxP (x) = arg min
y

1
2‖x− y‖

2
2 + P (y) (1.1)

Since the optimized function is strongly convex, it must have a unique optimal solution. Therefore, we can
conclude that proxP (x) is a well-defined mapping from Rn to Rn. By the first order optimality conditions,
we conclude that proxP (x) is the unique point satisfying

x− proxP (x) ∈ ∂P (proxP (x)) . (1.2)

The definition of proxP also reveals that it is well-defined for all x ∈ Rn, and maps onto the set dom(P ) :=
{z ∈ Rn : P (z) < ∞}. The mapping proxP is called the proximity operator or proximal point mapping
associated with P .

Let’s look at some examples.

1. If IC is an indicator function for a convex set C

IC(x) =

{
0 x ∈ C
∞ otherwise

(1.3)

then proxIC is the Euclidean projection onto C. That is, proxIC (x) is the closest point in the set C to
x in Euclidean distance.

2. For IR+ , this proximity mapping takes on the trivial form:

IR+(x)i = max(xi, 0) (1.4)

3. For P (x) = µ
2‖x‖

2
2, proxP (x) = 1

1+µx. That is, proxP (x) is equal to a multiple of x, shrunk towards
the origin.
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4. For P (x) = µ‖x‖1,

proxP (x)i =


xi + µ xi < −µ
0 −µ ≤ xi ≤ µ
xi − µ xi > µ

(1.5)

This function is called the shrinkage operator and has many applications in signal processing. To see
that this is the correct form, one needs only to analyze the optimality conditions of the one dimensional
problem

minimize 1
2(x− y)2 + µ|y| (1.6)

2 The Proximal Point Algorithm

Proximity operators have many algorithmic applications. As a warm up, consider the following simple
iteration: pick x0 ∈ Rn and ν > 0 and define the iteration xk+1 = proxνP (xk). This simple iteration can
be shown to converge to a minimizer of the function P . To prove this, we need the following two lemmas.
The first is a simple consequence of the convexity of P .

Lemma 2.1 Let P be convex on X . Let x, y ∈ X , and let gy ∈ ∂P (y) and gx ∈ ∂P (y). Then
〈gx − gy, x− y〉 ≥ 0.

Proof By the definition of the subdifferential, we have

P (x)− P (y) ≥ 〈gy, x− y〉
P (y)− P (x) ≥ 〈gx, y − x〉

(2.1)

Adding these two equations gives −〈gx − gy, x− y〉 ≤ 0.

The second lemma uses this key inequality to establish several facts about the proximity operator. This
lemma is proven in [1].

Lemma 2.2 Let Qν(x) := x− proxνP (x). Then we have

(i) ν−1Qν(x) ∈ ∂P (proxνP (x))

(ii) 〈proxνP (x)− proxνP (z), Qν(x)−Qν(z)〉 ≥ 0

(iii) ‖proxνP (x)− proxνP (z)‖2 + ‖Qν(x)−Qν(z)‖2 ≤ ‖x− z‖2

(iv) ‖x− z‖ = ‖ proxνP (x)− proxνP (z)‖ if and only if x− z = proxνP (x)− prox νP (z)

Proof The first assertion follows from the definitions. The second assertion follows from (i), and Lemma 2.1.
The third assertion follows from (ii) after expanding the identity

‖x− z‖2 = ‖[Pν(x)− Pν(z)] + [Qν(x)−Qν(z)]‖2 .

(iv) follows immediately from (iii).

By Lemma 2.2 (iii), we have

‖ proxνP (x)− proxνP (z)‖2 ≤ ‖x− z‖2 (2.2)
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and we say that the proximity operator is nonexpansive. This is the essential property needed to prove the
convergence of the proximal point method. That the proximity operator is nonexpansive also plays a role in
the projected gradient algorithm, analyzed below.

Using the nonexpansive property of the proximity operator, we can now verify the convergence of the
proximal point method. Since proxνP is non-expansive, {zk} lies in a compact set and must have a limit
point z̄. Also for any z∗ with 0 ∈ ∂P (z∗),

‖zk+1 − z∗‖ = ‖ proxνP (zk)− proxνP (z∗)‖ ≤ ‖zk − z∗‖ (2.3)

which means that the sequence ‖zk − z∗‖ is monotonically non-increasing. Therefore

lim
k→∞

‖zk − z∗‖ = ‖z̄ − z∗‖ . (2.4)

where z̄ is any limit point of zk. By continuity we have proxνP (z̄) is also a limit point of zk. Therefore, we
must have

‖ proxνP (z̄)− proxνP (z∗)‖ = ‖proxνP (z̄)− z∗‖ = ‖z̄ − z∗‖ (2.5)

But this means that proxνP (z̄) − proxνP (z∗) = z̄ − z∗, and in turn that proxνP (z̄) = z̄ and 0 ∈ ∂P (z̄).
Now using z̄ for z∗ in (2.4) shows that

lim
k→∞

‖zk − z̄‖ = 0 (2.6)

In other words, the sequence zk converges to z̄.

3 The projected gradient algorithm

The projected gradient algorithm combines a proximal step with a gradient step. This lets us solve a va-
riety of constrained optimization problems with simple constraints, and it lets us solve some non-smooth
problems at linear rates.

We will aim to analyze a function h which admits a decomposition

h(x) = f(x) + P (x) (3.1)

where f is smooth and P is a convex extended real valued function. Let us assume that ∇f is Lipschitz so
that ‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖.

Let us define a projected gradient scheme to solve this problem. Let α0, . . . , αT , . . . , be a sequence of
positive step sizes. Choose x0 ∈ X , and iterate

xk+1 = proxαkP
(xk − αk∇f(xk)) . (3.2)

The algorithm alternates between taking gradient steps and then taking proximal point steps.
The key idea behind this algorithm is summed up by the following proposition

Proposition 3.1 Let f be differentiable and convex and let P be convex. x∗ is an optimal solution of

minimizex f(x) + P (x) (3.3)

if and only if x∗ = proxνP (x∗ − ν∇f(x∗)) for all ν > 0.
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Proof x∗ is an optimal solution if and only if −∇f(x∗) ∈ ∂P (x∗). This is equivalent to

(x∗ − ν∇f(x∗))− x∗ ∈ ν∂P (x∗) ,

which is equivalent to x∗ = proxνP (x∗ − ν∇f(x∗)).

For non-convex f , we see that a fixed point of the projected gradient iteration is a stationary point of h.
We first analyze the convergence of this projected gradient method for arbitrary smooth f , and then focus
on strongly convex f .

3.1 General Case

Let h∗ denote the optimal value of (3.1). Suppose we set αk = 1/M for all k with M ≥ L. Then we have

‖xk+1 − xk‖ ≤

√
2(h(x0)− h∗)
M(k + 1)

. (3.4)

This expression confirms that xk will converge to some fixed point.
To verify this inequality, note that for any x, y,

h(x) = f(x) + P (x) ≤ f(y) +∇f(y)T (x− y) +
M

2
‖x− y‖2 + P (x) =: u(x; y) (3.5)

for any M ≥ L. This is just Taylor’s series. Note that the minimizer of u(x; y) (with respect to x) is equal
to

proxP/M (y − 1/M∇f(y)) . (3.6)

and also note that u(x; y) is strongly convex with parameter M .
Now we have the chain of inequalities

h(xk)− h(xk+1) ≥ h(xk)− u(xk+1;xk) (3.7)

= u(xk;xk)− u(xk+1;xk) (3.8)

≥ M

2
‖xk+1 − xk‖2 (3.9)

Summing these inequalities up for k = 1, . . . , n, we have

n∑
k=0

‖xk+1 − xk‖2 ≤
2

M
(h(x0)− h∗) (3.10)

and the conclusion follows

3.2 Strongly Convex Case

Let’s now assume that f is strongly convex with strong convexity parameter `:

f(z) ≥ f(x) +∇f(x)∗(z − x) +
`

2
‖z − x‖2 . (3.11)
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Let x∗ denote the optimal solution of (3.1). x∗ is unique because of strong convexity. Observe that

‖xk+1 − x∗‖ = ‖ proxαkP
(xk − αk∇f(xk)− proxαkP

(x∗ − αk∇f(x∗))‖ (3.12)

≤ ‖xk − αk∇f(xk)− x∗ + αk∇f(x∗)‖] (3.13)

Here, the first equality follows by the definition of xk+1 and because x∗ is optimal (see Proposition 3.1).
(3.13) follows from Proposition 2.2.

Since f is strongly convex and has a Lipschitz continuous gradient, it follows that for all vectors x and
y and all positive scalars t

‖x− ν∇f(x)− (y − ν∇f(y))‖ ≤ max{|1− νL|, |1− ν`|}‖x− y‖ . (3.14)

To see this, note that

‖x− t∇f(x)− (y − t∇f(y))‖ ≤
∥∥∥∥∫ 1

0
(I − t∇2f(x+ t(y − x))(y − x)dt

∥∥∥∥ (3.15)

≤ sup
z
‖I − t∇2f(z)‖‖y − z‖ . (3.16)

Note that the minimum eigenvalue of ∇2f(z) is at least ` and the maximum eigenvalue is at least L.
Therefore the eigenvalues of I − t∇2f(z) are at most max(1− tL, 1− t`) and at least min(1− tL, 1− t`).
Therefore, ‖I − t∇2f(z)‖ ≤ max(|1− tL|, |1− t`|).

In particular, using this upper bound in (3.13), we have

‖xk+1 − x∗‖ ≤ max{|1− αkL|, |1− αk`|}‖x− y‖ . (3.17)

Note that αk = 2
L+` minimizes the right hand side for all k. Setting αk to this value, we find that

‖xk+1 − x∗‖ ≤
(
L− `
L+ `

)
‖xk − x∗‖ (3.18)

or, denoting κ = L
` and D0 = ‖x0 − x∗‖,

‖xk − x∗‖ ≤
(
κ− 1

κ+ 1

)k
D0 (3.19)

That is, for strongly convex f and arbitrary P , the projected gradient algorithm converges at a linear rate
under a constant step-size policy.

4 Constrained Optimization

LetC be a convex set and let IC denote its indicator function. What’s the subdifferential of IC(x) for x ∈ C?
By definition g ∈ ∂IC(x) if and only if

IC(y) ≥ IC(x) + gT (y − x) (4.1)

for all y. This is equivalent to

∂IC(x) = {g : gT (x− y) ≥ 0 ∀y ∈ C} (4.2)
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for x ∈ C. This set is often called the normal cone of C at x.
Consider the constrained optimization problem

minimizex∈Cf(x) (4.3)

for smooth, convex f . Then x∗ is optimal if and only if −∇f(x∗) ∈ ∂IC(x∗). We can find such an x∗ via
the projected gradient algorithm.

References
[1] R. T. Rockafellar. Monotone operators and the proximal point algorithm. SIAM Journal on Control and Optimiza-

tion, 14(5):877–898, 1976.

6


