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Abstract

Recently there has been active interest in accelerated proximal gradient methods for large-scale
convex-concave optimization, as studied by Nesterov, Nemirovski, and others. We present a unified
treatment of these methods, including new variants that perform either one or two projections per
iteration, and give simple analyses of their iteration complexity. These methods are compared on a
matrix game example.
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1 Introduction

Let £ be a real linear space endowed with a norm || - ||. Let £* be the vector space of continuous linear
functionals on &, endowed with the dual norm [|z*||. = sup|,<1{(z*, %), where (z*, ) denotes the value
of z* € £* at ¢ € £. Consider the nonsmooth convex optimization problem

min f*(z) := f(z) + P(a), (1)

where P : £ — (—o0,00] and f : &€ = (—00, 0] are proper, lower semicontinuous (Isc), convex [38, 39].
We assume that domP is closed, f is differentiable on an open set containing domP, and V f is Lipschitz
continuous on domP, i.e.,

IVf() = VWl < Lllz -yl Vz,y € domP, (2)

for some L > 0. This class of problems was studied in [2, 17] and by others; see [45] and references therein.
A well-known special case is smooth constrained convex optimization, for which P is the indicator function
for a nonempty closed convex set X C &, i.e.,

0 ifzeX;
P(z) ={ , 3

() oo else. 3)
A second special case that has received much attention lately is ¢;-regularization, for which P is the
1-norm, as in lasso and basis pursuit and sparse covariance selection; see [1, 12, 16, 22, 43, 45, 47] and
references therein. A third special case is the group lasso for regression, for which P is a sum of weighted
2-norms, i.e.,

P(z) = aifzalla + -+ + enllznl2, (4)
where 21,...,zn denote disjoint subvectors of x and ¢; > 0 for all j; see [25] and references therein.
While (1) can be transformed into a smooth constrained convex optimization problem

leign{f(w) +¢| P(z) <}, ()

we will see that this has undesirable consequences for computation.
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For any y € domP, consider the approximation of f¥ by replacing f with its linear approximation at

by (z3y) == f(y) +(VI(y),z —y) + P(a).
The convexity of f and (2) imply that

FP(@) > Ly () > f(x) - gllm —yl* Vz,y € domP. (6)

Choose a strictly convex function h : £ — (—o00, 00] that is differentiable on an open set containing
domP? and consider the corresponding “distance/proximity” function

D(z,y) == h(z) = h(y) = (VA(y),x —y) Vy € domP, Vz €,

which was studied by Bregman [10] and many others; see [4, 5, 18, 42] and references therein. By scaling
h if necessary, we assume that

1
D(z,y) > §||$ —y|? VY z,y € domP. (7)

Then, for any y,z € domP and any a > 0, the function z — £;(z;y) + aD(z, z) has a unique minimum
point and it lies in domP.

The classical gradient-projection method of Goldstein and Levitin, Polyak [9] naturally generalizes to
solve (1), with constant stepsize 1/L and with D used in the nearest-point projection:

Zp1 = argmin {s(z;2,) + LD (z,2r)}, k=0,1,..., (8)

where o € domP. In the case of a quadratic kernel h(-) = 1| - [|3, this method was studied early on
by Fukushima and Mine [17]. If P is the 1-norm or has the block-separable form (4), the new point
Zx4+1 can be found in closed form, which is one key advantage of this method for large-scale optimization;
see [45, 47] and references therein. This contrasts with applying the same method to the transformed
problem (5), which requires projecting onto epiP = {(z, () | P(z) < (} and is nontrivial even in the case
of P being the 1-norm. In the smooth constrained case (3), the method (8) is closely related to the mirror
descent method of Nemirovski and Yudin [27], as is discussed in [4, 6]. When X is the unit simplex, 41
can be found in closed form by taking h(z) to be the zln z-entropy function [6, Section 5], [32, Lemma
4]; see Section 7 on dealing with zIn z being nondifferentiable at 0. Moreover, the corresponding D(-,-)

satisfies (7) with || - || being the 1-norm [6, Proposition 5.1], [32, Lemma 3]. It can be shown that
P P L
) -t " <0 (5) vk

and hence O(L/e) iterations suffice to come within € > 0 of the optimal value; see, e.g., [31, Theorem
2.1.14], [36, page 166], [46]; also see [13] for a related analysis under certain local growth conditions on f.

In a series of work [28, 29, 32] (also see [36, page 171]), Nesterov proposed three methods for solving
the smooth constrained case (3) that, at each iteration, use either one or two projection steps together
with interpolation to accelerate convergence. These methods generate points x that achieve remarkably

@) -t 7 <0 () vk

so that O(y/L/e) iterations suffice to come within € > 0 of the optimal value. In [32], it is shown that
various large convex-concave optimization problems can be efficiently solved by applying these methods to
a smooth approximation with Lipschitz constant L = O(1/€). Nesterov’s second method [29] was further
studied in [4, Section 5] using Bregman functions (also see [31, Section 2.2]), and his third method [32] was

3This assumption can be further relaxed as is discussed in Section 7.



applied in [1, 22, 23, 30] to sparse covariance selection, rank reduction in multivariate linear regression,
and eigenvalue optimization; also see [37, Section 2.3]. It was further shown by Nesterov [32, Theorem 3]
and generalized by Lu [22, Theorem 2.2] that if £ is finite-dimensional, X in (3) is bounded, and f has
the form

f(z) = max ¢(z, ), (9)
then ;1 generated by Nesterov’s third method satisfies ¥ (zxy1) — ¢* (0x) = O(L/k?), where ¢ is the
dual function

¢" (v) := min {¢(z,v) + P(2)}, (10)

and Ty, is a weighted sum of dual vectors associated with xg,1,...,zx; also see Corollary 3(c). Here, V'
is a compact convex set in a finite-dimensional real vector space F, ¢ : £ x V — (—00, 0] is continuous
on domP x V', ¢(-,v) is convex and differentiable on an open set containing domP for every v € V, and
@(x,-) is strictly concave for every € domP. The above duality gap provides an effective termination
criterion [22, 23, 32]. The saddle structure (9) is further exploited in the primal-dual method of [33],
which combines gradient projection with dynamically adjusted primal-dual smoothing. A variant of
Nesterov’s second method [29] was recently proposed by Lan, Lu, and Monteiro [21], with comparable
iteration complexity and improved performance reported on random generated LP and SDP problems.
These gradient methods can be significantly faster than interior-point methods on large-scale problems.
Very recently, Nesterov extended his third method [32] with D(z,y) = ||z — y||* to solve (1) [35], while
Beck and Teboulle extended Nesterov’s first method to solve (1) [7]. Promising numerical results on
{;-regularized least square problems are reported. While the methods in [4, 7, 21, 28, 29, 32], [31, Section
2.2] are remarkably simple, their analyses can be surprisingly intricate and lacking a unified framework.

Motivated by the above work, we propose a unified framework and simpler analysis of the O(y/L/¢)
methods in [4, 7, 21, 28, 29, 31, 32], extended to solve (1). As a byproduct, we derive possibly new variants
and refinements of O(y/L/€) methods that use either one or two projections per iteration; see Corollaries
1, 2, 3. One variant uses a weighted sum of previous gradients as in [32], but uses one projection
instead of two at each iteration. Recently, Nemirovski [26] proved the O(L/e) iteration complexity for
a prox-type method applied to monotone variational inequality and convex-concave optimization; also
see [3, Section 4] for a closely related method using general proximity function, [34] for a related dual
extrapolation method, and [24] for an application to large-scale SDP. We extend this method to solve a
more general problem analogous to (1) (see (41)) and give a simple O(L/e) iteration complexity proof;
see Proposition 4 and the subsequent remarks. Key to our analyes are two basic properties of Bregman
distance (Properties 1 and 2) and re-interpretations of the methods in [4, 7, 21, 26, 28, 29, 31, 32]. The
aforementioned methods are compared on a matrix game example in Section 6. Extensions of these
results are discussed in Section 7.

2 Basic properties of Bregman functions

We have the following basic properties of h and D. Property 1 ([11, Lemma 3.2], [21, Lemma 6]) will be
used to prove Propositions 1 and 4, and Lemma 1. Property 2 will be used to prove Proposition 3.

Property 1 For any proper lsc convex function ¢ : £ — (—o0, 00| and any z € domP, if

Zy = argwmin {¢(z) + D(z,2)}

and h is differentiable at z, then

¥(x) + D(z,2) > ¥(2y) + D(24,2) + D(z,2y) Vz € domP.*

4This follows from the optimality condition for z4:

$(@) +(VaD(z+,2),2 — 24) 2 P(24) Ve



Property 2 For any proper lsc convex function ¢ : £ — (—o0, 00, if
z = argmin {¢(z) + h(z)}
and h is differentiable at z, then

¥(x) + h(z) > ¥(z) + h(z) + D(x,2) Vz € domP.S

3 l-memory O(y/L/e¢) methods for convex optimization

In this section we present a unified framework and analysis of Nesterov’s second O(/L/¢€) method [29, 31]
and its variants in [4, 7, 21], extended to solve (1). A similar analyis of Nesterov’s first method [28] and
its extension to solve (1) [7] is presented in the remainder of this section.

Algorithm 1  Choose 6y € (0,1], 2, 20 € domP. k «+ 0. Go to 1.
1. Choose a nonempty closed convex set X, C £ with Xy NdomP # (). Let

yr = (1 —6k)zk + Oz, (11)
zet1 = argmin{ls(z;yx) + 0, LD (2, 21)} (12)
rEXg
i'k-‘,—l = (1 — Hk);ck + szkH. (13)
Choose zj11 to be no worse than Exi1 in Ly (-5 yr) + 2| - —yxl|® value, i.e.,
L 2 ~ L ~ 2
ff($k+1;yk) + §||$Ck+1 —uykll” < Ef(xk-i-l;yk) + §||$k+1 — yell” (14)
Choose 011 € (0,1] satisfying
1—0py1 1
— < . (15)
Oin  ~ Ok

k< k+1, and go to 1.

The set X} should be chosen to contain a desired solution of (1); see Proposition 1. The simplest
choice is X = &£, but it may be desirable to use a smaller X, to accelerate convergence, at the expense
of more computation to solve (12). By (6), € + fF(w) > fF(x) > £;(x;w) for any w € domP and any
e-minimum point z of fF (i.e., fF(x) <inf f¥ + €) with € > 0. Thus, the choice

K= {2 | Y anlty@uwe - ) <o j=Lomy., (16)
i€l ;
with wi; € domP (e.g., wri € {Zo, 21, ", Tk, 20,21,---52k}), ki = 0, Djep ki = 1, Iy C

{1,2,...}, and ny > 0, contains all e-minimum points of f¥. If inf fF is attained, then we can re-
place “¢” by “0” in (16), in which case X} contains all minimum points of f¥. In the smooth constrained
case of (3), using (16) adds nj, cutting planes to (12) compared to using Xj = £.

One choice for zpyq is

) L
Tpy1 = argmm{éf(:v;yk)+§||x_yk||2}, (17)

and V3 D(z4,2) = Vh(z4) — Vh(z). Rearranging terms yields
P(x) = (Vh(2),2 — 2) > (24) = (Vh(2), 24 = 2) = (Vh(z4), 2 — 24).

Add h(z) — h(z) to both sides.
5This follows from the optimality condition for z: ¥(z) 4+ (Vh(2),z — 2) > ¥(z) Vaz.



In the case of (3), Algorithm 1 with X, = £ and this choice of 1 reduces to the Lan-Lu-Monteiro
variant [21, Section 3] of Nesterov’s method [32]. This choice requires two projection per iteration, but
seems to be efficient in practice, according to the numerical results in [21].
A second choice for 41 is
Thk4+1 = -'i'k—i-l- (18)

In the case of (3), Algorithm 1 with X = £ and this choice of zj; reduces to the Auslender-Teboulle
extension [4, Section 5] of Nesterov’s method from 1988 [29] (also see [31, page 90]), where the quadratic
proximal term is replaced by the Bregman function D. This method requires only one projection per
iteration. In his recent work [32, Section 3], Nesterov proposes an alternative method that uses a weighted
sum of past gradients and two projections per iteration, as will be discussed in Section 4.

To gain some intuition for the improved efficiency of Algorithm 1 over classical gradient projection
(8), suppose for simplicity that P =0, h(-) = 1||- 13, X = &, and 41 is given by (18). Then (11)—(13)
simplify to

1
Tht1 = Tk + O (2 — 21) — ZVf (zr + 0k (2 — 1)),
which is identical to (8) but for a key momentum term 6y (z, — zx) added to x.

Note 1: Since h is coercive, 241 exists and belongs to domP. Thus, h is differentiable at zgy1. If h is
separable quadratic, and P is the 1-norm or the indicator function for a box, then (12) and (17)
have closed-form solutions.

Note 2: The condition (15) allows {6} to decrease, but not too fast. For fastest convergence, {0}
should decrease as fast as possible, as Proposition 1 below suggests. The choice

2

b =112

(19)

satisfies (15). We can alternatively solve (15) with “<” replaced by “=,” yielding

N (20)
2 )

Op+1 =

which tends to zero somewhat faster.

Note 3: Algorithm 1 assumes L is known, but this can be relaxed by making an initial guess of L and
decreasing L by a constant factor and repeating the iteration whenever the condition (23) below is
violated. Under (2), the number of such decreases is finite; see [35] for bounds on this number.

Below we use Property 1 to give a simple proof of the O(y/L/¢) iteration complexity for Algorithm
1. Our proof is motivated by the proof of Theorem 5 in [21] for the case of (3), X = &, and 41 given
by (17), but with some simplification and generalization. To simplify notation, let

Ap(zsy) == fP (@) — Ly(a;9) = f(z) — fy) = (VI(y),x—y) Va,y € domP. (21)

Proposition 1 Let {(zk,yk, 2k, 0, Xr)} be generated by Algorithm 1. For any k = 0,1,... and any
z € X NdomP, if f¥(z) < f¥(xrs1) or (20) holds, then

L (12 (0) - 17 (@) + LD(@, z0) — 2L (39)
k

Lo (P (opga) = £7(2)) + LD (2, 2011) < O

2
ak—i-l

Proof. Fix any k € {0,1,...} and any z € X} NdomP. By the second inequality in (6),

L
fP@es1) < Lp(zrgrsye) + §||35k+1 — yil?

L
< Lp((1 = Op)op + Orzigrs i) + 5”(1 — O0)zk + Orkzr1 — vkl



L
Or) s (ks yr) + Only(2ry1; yk) + §9i||zk+1 — 2|2

(1 —6k)

(1= 0k)ls(mrs yr) + Ok (L (2kt1;Yk) + Ok LD (2k41, 21)) (23)
(1 —0k)Es(@hs yr) + Ok (Lp(z5yk) + 6k LD(z, 21,) — O LD (@, 2k+1))

(1 —6,) fF (z) + 0% (fp(w) — Ag(@;yr) + 0k LD (x, 2) — Ox LD (2, 2541))

where the second inequality uses (13), (14), the third inequality uses (11) and the convexity of £¢(-; yr),
the fourth inequality uses (7), the fifth inequality uses (12) and Property 1 with ¢ (x) = £ (z; yx)/(0sL) +

0x, (z), and the last inequality uses the first inequality in (6).
Subtracting f¥(x) from both sides and then dividing both sides by 6% yields

1 1-9 Aj(z:
@(fp(mlﬂ—l) - fP@) < Tk %

IANIN N IA

(fP(@r) = f7(x)) — + LD(;2) — LD (25 2641)-  (24)

If f(z) < f¥(wk41), then this together with (15) proves (22). If (20) holds, then the “<” in (15) holds
with equality and this again proves (22). [ ]
Corollary 1 Let {(zk,yk, 2k, 0%, Xi)} be generated by Algorithm 1 with 6y = 1.

(a) Fiz any € > 0. Suppose 0 < % and Xy, is given by (16) for all k. Then for any x € domP with
fF(z) <inf fF + ¢, we have

) 4LD(x, zo)
Po\l < fP h > ) 20
i:O,rlr,l.l.r.fk—i-l{ f(z))} < f(xz)+€e whenever k> —

- 2.

(b) Suppose & is finite-dimensional, domP is bounded, f has the form (9), 6y is given by (20), and
Xy =E&. Then

0 < fP(xrt1) - ¢ (@) < 6L max D(z,2), k=0,1,...,

zedomP

where q¥ is given by (10), and we let vy = argmax, ¢(yx,v), and

k k
Uy = ( %) / (Z 01> = (1= 0k)or—1 + Ovy (v-1=0). (25)
¢ i=0

Proof. (a) For each k, either min;—q 1, .. k+1{fF (%)} < fF(z) orelse f¥(z;) > fF(x),i=0,1,...,k+1,
in which case (22), (24), D(z,2zp+1) > 0,60 =1, and z € X N domP yield

k

(P nen) — £ + 30 ) < L ), (26)
k i=0 g

Since Af(z;y;) > 0, and 6 < 2/(k + 2), this implies f¥ (1) — fF(z) < 4LD(z,2)/(k + 2)?, whose

right-hand side is below € whenever k + 2 > /4LD(z, zg)/e.

(b) Since (20) holds and X = &, by Proposition 1, (22) holds for all k£ and all z € domP. Then,
analogous to the proof of (a), we have that (26) holds for all k¥ and all z € domP. Since £ is finite-
dimensional and f has the form (9), by Danskin’s theorem [9, Proposition B.25], V f(y;) = Vo(y:, vi)
and the convexity of ¢(-,v;) yields

Af(m;yi) = f(.’l;') - ¢(yiavi) - <Vm¢(yi:vi)=$ - y1> > f(.’l;') - ¢(:E,'Ui), i=0,1,... k.
Dividing both sides by #; and summing over ¢ = 0,1,...,k yields




where the second inequality uses the concavity of ¢(z,-) and the ﬁrst equality in (25), and the equality

follows from “<” in (15) holding with equality, so that —2— — 52‘ = Torr and an induction argument
k+1 k

yields 2 7= Zf 0 9 . The second equality in (25) follows similarly. Combining this with (26) yields, for
k

each k, .
@(fp(xkﬂ) — (@) + 9—2 (f(z) = ¢z, 0k)) < LD(x,20) V€ domP.

Now take the maximum of both sides over z € domP and use (10). =

Corollary 1(a) generalizes and slightly refines the complexity estimates in [21, Theorem 5], [4, Theorem
5.2], and [31, Theorem 2.2.3] for the special case of (3), X; = &, and zg41 given by (17) or (18).

In the remainder of this section we further assume that f is differentiable on £, and £ is a Hilbert
space, i.e., E* =&, || - || = /(). The following method is an extension of Nesterov’s first O(y/L/e)
method [28] (also see [7]), using h(-) = &|| - ||* (so that D(z,y) = ||z — y||?), to solve (1).

Algorithm 2 Choose 8y = 0_1 € (0,1], 7o = z_1 € domP. k + 0. Go to 1.
1. Choose a nonempty closed convex set Xy C £ with Xy NdomP # (. Let

v = e+ 00, — Dizk — ze-1), (27)
. L

o = argmin {es(aiye) + 3o - welP}. (28)
zEXy 2

Choose 041 € (0,1] satisfying (15). k « k+ 1, and go to 1.

The set Xy, and 6 can be chosen as in Algorithm 1; see Note 2. Note that y; may be outside of domP,
and hence we need f to be differentiable outside of domP. Algorithm 2 assumes L is known, but this can
be relaxed by increasing L and repeating the iteration whenever (29) below is violated; also see [7, FISTA
with backtracking]. Algorithm 2 with X = £ and 6} chosen by (20) is essentially Nesterov’s method in
[28], as extended by Beck and Teboulle [7] to solve (1). This method is simpler than Algorithms 1 and 3
but is more limited in applicability.

Below we use Property 1 to give a simple proof of the O(y/L/¢) iteration complexity for Algorithm
2, analogous to that given in Proposition 1 for Algorithm 1. The proof uses the homogeneity property of

I-l-

Proposition 2 Assume f is differentiable on €, and &* =&, || - || = /(-,-). Let {(z k Yk, Ok, Xi)} be
generated by Algorithm 2. For any k = 0,1,... and any x € X}, NdomP, if fF(z) < fF(zrs1) or (20)
holds, then (22) holds with D(z,z) = ||z — 2||? and zx = zp—1 + 0, ", (T4 — T—1)-

Proof. Fix any k € {0,1,...} and any z € X} NdomP. Let y = (1 — 0y)zy + Oz, so that y € domP.
By the second inequality in (6),

FPane) < Lpenive + llzen - ul? (29)
< L) + Pl =l Sy~ zi
= Lr((L = Ok + Ors yr) + §||(1 — Ok)zk + Ok — yil” — §||(1 — Ok)zk + k7 — Tppa ||
= (1= Ok)ar + Ors r) + Higllw + 0 (o — i) — 2” — eigllx + 0 (@ — i) —
= (= 0o+ Bz y) + 0 5l — 2l = g o = P
< G—mﬂﬂuww+%@@ww+%§w—%w—%%M—%HW
< W= 0077 (r) + (77 (@) = Ap(msye) + B o — 2l = 6 o = zenlP



where the second inequality uses (28) and Property 1 with ¢(x) = €¢(z;yx)/L + 0x,(2), D(z,2) =
tllz — 2||?, the third equality uses (27) (in fact, (27) is chosen to make this equality hold), the third
inequality uses the convexity of £¢(-;yx), and last inequality uses (6) and (21).

Subtracting ff(z) from both sides and then dividing both sides by 62 and using D(z, z) = }||z — 2||?
yields (24). If f¥(z) < f¥(zg41), then this together with (15) proves (22). If (20) holds, then the “<”
in (15) holds with equality and this again proves (22). =

Corollary 2 Assume f is differentiable on &, and E* = &, || - || = /{-,"). Let {(zk,yr, 0k, Xi)} be
generated by Algorithm 2 with 8y = 1. Then assertion (a) in Corollary 1 holds with zo = zo. Assertion
(b) in Corollary 1 holds with zo = =z if in addition ¢ is continuous on & x V, ¢(-,v) is conver and
differentiable on £ for every v € V, and ¢(x,-) is strictly concave for every z € £.

Proof. The proof is very similar to that of Corollary 1, with Proposition 2 replacing Proposition 1 and
noting that zg = zg. Since y; may not lie in domP, for (b) we need ¢ to have the desired properties on
& x V instead of domP x V. ]

Corollary 2(a) refines [28, Theorem 2] and [7, Theorem 4.1] for the case of X} = £ and (1) having a
minimum point.

4 oo-memory O(/L/e) methods for convex optimization

Nesterov’s O(y/L/€) method in [32] is remarkably different from those in [4, 21, 28, 29, 31] in that it
uses, at each iteration, two projections and a weighted sum of previous gradients. In this section we
present a general framework and analysis of Nesterov’s method, extended to solve (1). Our framework
and analysis parallel that of Algorithms 1 and 2, thus showing a close connection among all O(y/L/e)
methods. Moreover, our analysis shows that one projection per iteration suffices to achieve the same
complexity for Nesterov’s method.

Algorithm 3 Choose 0 < 6y < 1,99 > 0y, 20 € domP. Let zo = argminh(z), X 1 =&. k«+ 0. Go
z€domP
to 1.

1. Choose a nonempty closed convex set Xy, C Xj_1 with Xy NdomP # (. Let yy be given by (11), let

LA (z;:)
(@) = Y T va, (30)
i=0 ¢
e = argmin (Y (o) + Lh(2)} (31)

and let zy41 be given by (13), (14). Choose 0 < Ojy1 < 1,941 > Op41 satisfying

1=k 1
Or+19k41  Opr

(32)

k< k+1, and go to 1.

We can choose Xy, = & or by (16), provided that X} C Xj_1. We do not know if the latter restriction,
which is needed in the proof of Proposition 3 below, can be relaxed. Nesterov’s method in [32, Section
3] corresponds to Algorithm 3 with Xy, = &, zx+1 given by (17), and

2 2

"rre TR (3



which satisfy (32). A better choice is
0y given by (20) with 6 =1, Y = Oy, (34)

which also satisfy (32) and tend to zero faster. Nesterov’s recent method for solving (1) [35, Section 4] is
similar to Algorithm 3 but with D(z,y) = %||z — y||?, X = £, and zj41 given by (17). In [32, Section
5.2] is described a modified method that replaces (17) by

Zry1 = arg T;lin {45 (x;yx) + 0x LD (z; 21) } (35)
rEXy
Tpr1 = (1 —0p)xp + Okirsr. (36)

This modified method may be viewed as a hybrid of Algorithms 1 and 3 (compare (35), (36) with (12),
(13)). It uses the same kernel function h in both minimizations (31) and (35), which may be advantageous
when h can be chosen to simplify the minimizations (e.g., (3) with X being the unit simplex and h being
the z ln z-entropy function). We can alternatively choose zx11 by (18), so that only one projection is
needed per iteration. This new variant may be advantageous when the projection is expensive.

Algorithm 3 resembles Algorithm 1, except that zx4; is given by (31) instead of (12). (The differences
between (15) and (32) are negligible.) In particular, by using (30), we can rewrite (31) as

Zg+1 = argmin { gf(f;i’yk) + () + Lh(:z:)} ,
k

TzEXg

with 109 = dgomp- As we shall see in the analysis below, the term 1y (z) + Lh(x) plays the role of LD(x, z,)
n (12).

Note 4: By the same argument as in Note 1, z;y1 exists, belongs to domP, and h is differentiable at
Zp+1- Algorithm 3 assumes L is known, but this can be relaxed as described in Note 3, i.e., increase
L whenever (23) is violated.

Note 5: If 6 = 1, then (32) implies
Z % 0k19k (37)

This clearly holds for £ = 0. Suppose it holds for some k£ > 0. Then, by (32),

’il P Y TE S S
9 9k19k 19k+1 © Okt1Ykp1 Okt Okr1Vkgr

Below we use Property 2 and (37) to give a simple proof of the O(y/L/¢) iteration complexity for
Algorithm 3, paralleling that for Algorithms 1 and 2 (compare Propositions 1, 2, and 3).

Proposition 3 Let {(zg, Yk, 2k, Ok, Ik, Xr)} be generated by Algorithm 3 or its modification where (13),
(14) are replaced by (35), (36). Let 1o = dgomp- For any k=0,1,..., we have

O

Lm0kt 6P ) (an + L) (2an) < 10—19 FP(xx) — Wk + L) (21). (38)
kVE

Or+1V%+1

Proof. The definitions of zg, 1, and X _; = £ imply that (31) holds for ¥ = —1. Fix any k£ € {0,1,...}.
If 41 is given by (13) and (14), then as in the proof of Proposition 1, we have that (23) holds. If x4
is given by (35) and (36), then as in the proof of Proposition 1, we have that (23) holds but with zg41
replaced by Zgy1. Combining this with 21 € X and (35), so that

Ci(Zry15yr) + Ok LD (Zry1; 2k) < Ly(2ry1;yn) + Ok LD (25415 21),



we see that (23) holds. Using (23), we have

P (@hy1) (1= 0)ly (ks yr) + Ok (Ly(2ry15Yn) + Ok LD (2841, 21))

<
< (1= 0k)fF (xk) + Ok (L (2ht1;yk) + 9k LD (241, 21))

(1 —6k) 7 (z1) + O (W + L-D(Zk+1;zk))

IA

(1= )17 (2x) + 600 (f"(’“gfy’“) T k() + L) — v (zx) — Lh(zk)) ,

= (1= 60k)f" (xk) + OOk (Vhs1(2k41) + Lh(2k41) — Yi(2k) — Lh(zk)) 5

where the second inequality uses the first inequality in (6) and 0 < ¥, the last inequality uses zg+1 €
X C Xg—1, Property 2 with ¢(z) = ¢x(z)/L + éx,_, (z), and the fact that (31) holds when “k + 1” is
replaced by “k”, the last equality uses (30) and g = ddomp-

Dividing both sides by 89 and using (32) yields

1—0k1

P (@) < lak‘ﬁ"k’“ FP(@) + (rsr + Ih)(zign) — (o + L) (2.

Or+1V%+1
Rearranging terms yields (38). =
Corollary 3 Let {(zk, Yk, 2k, 0k, 0%, Xi)} be generated by Algorithm 3 or its modification described in
Proposition 3, with 8y = 1.
(a) For any k > 0 and any z € X N domP, we have
1 T
o @) = @) + 3 === < Lik(@) - h(z)). (39)

i > . 5 pp k S 2 k is given by ]'6 fo all k' h n jo a/ny 6 dOmP wzth
Y e k+1 and X T Then for T
fP(z) <inf fl + €, we have

AL(h(z) = h(z0))

€

-1

fP(xry1) < fP(z) +€ whenever k> \/
(c) Suppose £ is finite-dimensional, domP is bounded, f has the form (9), and X = E£. Then
0 < ffann) =" () < Ok0xL max (h(z) = h(z0)), k=0,1,...,
€T om.

where ¢¥ is given by (10), and we let vy = argmax, ¢(yx,v) and

k k
B = ( %Z) / <ZO 19%) = (1 —6)0k—1 + Orvg (-1 =0).

Proof. (a) By applying (38) recursively and then using (32) and 6y = 1, we have that, for each k > 0,

P
F@e) I ) < — (o L) (z0).
019
Since 19 = dgomp 0 that 1g(29) = 0, this yields for any z € X; N domP that
[P (@rq1)

< Yr+1(2k+1) + Lh(zk41) — Lh(20)
019

10



IN

Yrt1(x) + Lh(x) — Lh(zo)
k

=Y br(w3yi) (f;fyi) + Lh(z) — Lh(zo)
i=0 ’

& k
5 fl;(.a:) S Af({;’; yi) + Lh(z) — Lh(zo)
=0 " =0 z

_ SP@) A
- M‘%Tﬂh(x)—m(zﬂ),

where the second inequality uses (31) and = € X}, and the three equalities use, respectively, (30), (21),
and (37). Rearranging terms yields (39).

The proof of (b) and (c) is very similar to that of Corollary 1, with (39) replacing (26) and using
0 < Y, (32), (37). [ |

In the special case of (3), Xy, = &, zxy1 given by (17), and 94, 8 given by (33), Corollary 3 reduces
to [32, Theorems 2 and 3]; also see [22, Theorem 2.2]. In fact, Corollaries 1(b), 2(b) and 3(c) are
motivated by [32, Theorem 3] and [22, Theorem 2.2]. We obtain slightly sharper complexity bound by
replacing (33) with (34). For k¥ = 0,1,...,5, this yields ;9 = 1,.38,.20,.13,.09,.06 as compared to
OrY; = 2,.66,.33,.2,.13,.09 for (33). In the special case of X}, = £ and zx,1 given by (17), Corollary
3(b) is similar to [35, Eq. (4.17)]. Notice that Propositions 1, 2, 3 and Corollaries 1(a), 2(a), 3(b) do not
assume (1) has a minimum point. If (1) has a minimum point z, then it can be used therein.

5 O(L/e) method for convex-concave optimization and mono-
tone variational inequality

Suppose F' : domP — £* is monotone and Lipschitz continuous on domP, i.e.,
(F(z) = F(y),z—y) 20 and |[F(z) — F(y)ll« < Lllz -yl Vz,y € domP. (40)
Consider the variational inequality problem of finding an & € domP satisfying

(F(z),z—Z)+ P(z)—P(Z) >0 Vr << 3I= argzminﬁp(m;a_c), (41)

where we define

lr(z;y) = (F(y),z) + P(). (42)
In the case of (3), this problem has been well studied; see [15] and references therein. A special case of
interest is the min-max problem

min max{¢(u,v) + (u) — @ (v)}, (43)

where 7 : R" = (—o00,00], @ : R™ — (—o0,00] are proper, lsc, convex, and ¢ is convex-concave
and differentiable on an open set containing domm x dome (with Lipschitz continuous gradient). This
generalizes (1). Moreover, an Z € domP solves (43) if and only if it satisfies (41) with

Pl = | g0 L Pl = w) + =) (a4

In the case of (3), Nemirovski [26] proposed an O(L/€) prox-type method to solve (41) and (43). His
analysis shows, as a byproduct, that Korpelevich’s extragradient method [20] achieves O(L/¢) iteration
complexity in an ergodic sense; also see [3, Proposition 4.1] for a similar result with a general proximity
function. This improves on analogous results for the mirror descent method [27, Section 6.2]. Below we
extend Nemirovski’s method to solve (41) and (43); compare (45) with [26, Eqgs. (3.3), (3.4)].
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Algorithm 4 Choose xg € domP. k + 0. Go to 1.
1. Choose a nonempty closed convex set Xj, C £ with X; NdomP # 0. Choose vy, > 0 and y, € domP

satisfying

. L
mip {er(ain) + D@} > el (45)

Let 41 attain the minimum in (45). k + k + 1, and go to 1.

Note 6: Algorithm 4 assumes L is known, but this can be relaxed by making an initial guess of L and
decreasing L by a constant factor and repeating the iteration whenever (45) is violated. Under (40)
and with y; given by (48) and v < 1, the proof of Lemma 1 below shows that the number of such
decreases is finite.

The set X}, should be chosen to contain a desired solution of (41). The simplest choice is X} = £. For
any w € domP and any solution z of (41), we have (F(w) — F(z),w —z) > 0 and (F(z),w —z) + P(w) —
P(z) > 0. Summing them yields (F(w),w — z) + P(w) — P(z) > 0 or, equivalently, {r(z; w) < £p(w;w).
Thus, the choice

Xp=q= ‘ D o illr (@3 we) — br (Wi W) < ks §=1,...,mk ¢ (46)

i€ly,;
with wg; € domP, a,; > 0, Zie[;”-
of (41). In the case of (3), using (46) adds ny cutting planes to (45) compared to using X = &.

One choice of y; is the unique solution of the strongly monotone variational inequality, obtained by
adding the proximal term D(-,zy) to P in (41), i.e.,

ar; =1, I ; €{1,2,...}, ng >0, and g5 > 0, contains all solutions

L
yr = argmin {Ep(w;yk) + —D(a:,a:k)} . (47)
TEXy Yk

Thus y; attains the minimum in (45) and hence (45) holds. In this case, Algorithm 4 reduces to the
proximal point method for solving (41) using a Bregman function; see [14, 40, 41] and references therein.
However, this choice of y; is generally too expensive to compute.

A second choice of yg, proposed in [26], is to approximate F' by the constant mapping F(zy), i.e.,

L
yr = argmin {ﬁp(m;wk) + —D(w,mk)} . (48)
zeEXy Yk

In this case, Algorithm 4 with X} = £ reduces to Korpelevich’s extragradient method for solving (41)
using a Bregman function; see [3, 20, 26, 44] and references therein. As is noted in [26], (48) and (45) are
equivalent to two fixed-point iterations of the contractive mapping y — argming < £p(z;y) + ,Y%D(:c, Z)
whose fixed point satisfies (47). The lemma below, an extension of [26, Theorem 3.1], shows that this
choice satisfies (45) provided v, < 1. We give a simple proof using Property 1.

Lemma 1 For each k € {0,1,...}, if vx < 1, then yi, given by (48) satisfies (45).

Proof. By using (48) and Property 1 with i (z) = % Lp(z;2) + 0x, (2), we have

%EF(Z';.’L'];) + D(z,z) > ’Yfklfp(yk;mk) + D(yg, zx) + D(z,yr) Vz € X NdomP. (49)

Then (42) yields, for all z € X} N domP,

lng(x;yk) + D(z,zx) — %fF(yk;yk) > %(F(yk) — F(zg),® — yx) + D(yk, ox) + D(z, yx)
1 1
> _”yk_a:k””x_yk”+§”yk_$k”2+§”x_yk”2
> 0,

12



where the second inequality follows from —(F(yx) — F(zr),z — yr) < ||F(yx) — F(zp)|l«l|lz — yil|| <
L|lyx — zk||llz — yxll, % < 1, and (7). Minimizing the left-hand side with respect to z € X}, yields (45).
[

Termination for Algorithm 4 will be based on the following error function

e(y) = max {E(z,y)-P(z)+Py)}, (50)

z€dom
where E : domP x domP — ¥ satisfies
E(x,-) is convex, E(z,z)=0, and E(z,y) <(F(y),y—=z) Vz,y € domP. (51)
Thus e(-) is convex and e(y) > 0 for all y € domP. The following lemma relates e(-) to (41).
Lemma 2 Let E(z,%) = (F(z),T — z) or, when F and P are given by (44), E(x,Z) = ¢(a,v) — ¢(u, v).
Then E satisfies (51). Moreover, for any & € domP, (41) is equivalent to e(Z) = 0.

Proof. Suppose E(z,y) = (F(z),y — x), which is convex in y. If Z satisfies (41), then by using the
monotonicity of F, e.g., (F'(z) — F(z),x — Z) > 0, we obtain
—E(x,%) + P(x) — P(Z) >0 V& € domP.

Thus (50) yields e(Z) = 0. Conversely, if e(Z) = 0, then the above inequalities hold. We now argue
similarly as in the case of (3); see [15, page 159]. Since domP is convex, this implies

—Efz+(1-0)z,2)+ Pz + (1 —60)z) — P(z) >0 VzedomP, VO<0 < 1.
Using the convexity of P, i.e., P(0z + (1 — 0)%) < §P(x) + (1 — ) P(z), we obtain that
(F(x+(1-60)%),z — %) + P(x) — P(Z) >0 Vz e domP, VO<6<1.

Letting # — 0 and using the continuity of F' yields (41). Moreover, the monotonicity of F implies
(F(y),y —z) > (F(x),y —z) = E(z,y), where z,y € domP. Thus (51) holds.

Suppose F and P are given by (44) and E(z,Z) = ¢(4,v) — ¢(u, 0), which is convex in Z = (4, ).
It is straightforward to verify that e(Z) = 0 is equivalent to Z being a solution of (43). Moreover, the
convex-concavity of ¢ implies

(Fy)y—z) = (Vud(w,z),w —u) = (Vyp(w, 2),2 —v)
> ¢(w,z) - ¢(U,Z) - (¢('ZU,Z) - ¢(w,v))
= ¢(U),U) —¢(U,Z) = E(.’L’,y),

where z = (u,v),y = (w, z) € domP. Thus (51) holds. m

In the case of (3), e(-) with E given by Lemma 2 reduces to €(-) and €;(-) in [26]. The former is known
as the dual gap function (modulo negation); see [15, page 167]. Below we use Property 1 to give a simple
proof of the O(L/e) iteration complexity of Algorithm 4 for finding an Z with e(Z) < e. This result shows
that, for fast convergence, the stepsize 7y should be as large as possible. For y; given by (48), Lemma 1
suggests taking v = 1. In fact, vy, > 1 is allowable provided that (45) still holds.

Proposition 4 Let {(z, Yk, vk, Xr)} be generated by Algorithm 4.
(a) Suppose Xy = & for all k. For any integers 0 < s < t, we have Fs; € domP and

LD
E(z,%s:) — P(x) + P(Z5) < w Vz € domP, (52)
s,t
where
¢ 1 &
Vst = Z%, Tst = Z’Ykﬁl/k
k=s 85t p=s
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(b) Suppose Xy, is given by (46), Xy is nonempty, and there exist Lagrange multipliers Ay ; > 0, j =

1,...,ng, for its constraints in the minimization of (45) for all k. For any integers 0 < s < t, we
have Zs, € domP and (52) holds, where

ka 1+Z Z AkiQii | > Tt = Z% yk+z Z Ak,j Ok, i W,

j=1i€l ; 8,t k=s j=1i€l ;

Proof. (a) Fix any k € {0,1,...} and any z € domP. Since zy4; attains the minimum in (45) and
Xy =&, Property 1 with ¢(z) = B Lr(z; ) yields

%WF(H?;ZJ/@) + D(z,zr) > 7fkéF(ﬂUkJrl;y/c) + D(2gy1,2k) + D(z,2141) Vo € domP. (53)

Moreover, zj41 € domP and setting z = 2441 in (45) yields

L
Cp(Try13yr) + %D(xk+1axk) > Lr(Yr; Yr)-
Multiplying the above inequality by 2+ and adding it to (53) yield

VII,C (br(z;y) — Lr(yr;uk)) + D(z,2,) > D(z,z14+1) Vo € domP.

By using (42) and (51) to bound the left-hand side, we have

%(—E(m,yk) + P(z) — P(yx)) + D(z,zx) > D(z,2g+1) Vz € domP.
For each x € domP and any integers 0 < s < ¢, summing this over k = s,s + 1,...,¢ and dividing by

Vot = ZZZS i yields

D(x,xs) — D(z,x
—ZwkEwyk)+P Zwkpyk)—i—L ( 3)7 (2, 7141) > 0.
k=s k=s st

where we let wi, = ¢ /7s,- Since E(z,-) and P are convex, and D(z,z;41) > 0, this and the definition of
Zs.t, Vs, yields Z;; € domP and

LD(z,x,
—E(z,%s4¢) + P(x) — P(Zs) + LD(@,,) > 0.
Vs,t
(b) For any integer k > 0, since A;; > 0, j = 1,...,n;, are Lagrange multipliers for the constraints

in (46), the left-hand side of (45) equals

Nk
. L
min Lr(z;yr) + E E Ak,jOkyi (Cr (25 whyi) — LF (Wh,i5why)) + %D(xaxk)
j=1icT,

and zp41 attains the minimum. This is equivalent to (45) with X = £ and with a nonnegative weighted
sum of £p(x;wg,;) — br(Wk,i; Wk,i), § € U 111, added to £r(z;yr). Thus we can repeat the argument
for (a), but using this modification to £p (m yk) |

If domP is bounded and we take, say, v = 1 for all k£ in Algorithm 4, then (52) shows that, after ¢
iterations, we obtain an Z € domP satisfying

o ] LR, , -
e(z) = ponax (B(z,z) — P(z) + P(Z)) < PRSP with R, = zefﬁlggéPD(af Ts)
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for any 0 < s <t¢. When F and P are given by (44) and E(z, %) = ¢(u,v) — ¢(u, 0), this implies Z = (u, 0)
is an e-solution of the saddle-point problem (43) in the sense that

mvax{qﬁ(ﬂ, v)+m(a) —w(v)} —e < 9(,0) + 7(@) — w(v) < m&n{qﬁ(u, 0)+7(u) —w(®)} +¢€

whenever t —s+1 > LR, /e. In the case of (3) and s = |¢/2], this result recovers those in [26, Sections 2
and 3]. Proposition 4(b) generalizes the “bundle” algorithm in [26, Section 4]. In the case of £ = R", X},
given by (46) is nonempty whenever (41) has a solution, and Lagrange multipliers Ay ; exist whenever
(i) P is polyhedral or (ii) P is given by (3) and X, Nri(X) # @ (as is assumed in [26, Section 4]) or (iii)
a Slater condition hold; see [38, Theorem 28.2]. Our proof using D(-,-), E(-,-), and Property 1 seems
simpler. In the case of (3), yr given by (48), E(z,y) = (F(z),y — z), and s = 0, Proposition 4(a) is
similar to [3, Proposition 4.1] specialized to Bregman functions.
Suppose X, is given by (46) and yy, is given by (48). For any solution Z of (41), we have

lp(x;Z) > Lp(Z;T) V. (54)

Also, (49) and (53) hold for all z € Xj. Setting * = 11, £ = T, and © = y;, in (49), (53), and (54),
respectively, and summing, we obtain (also using (42))

D(Eamk) - D(Eamkﬂ-l)

Tk Yk

> f(F(mk) — F(yr), yk — Th1) + 17 (F(yx) — F(Z),yx — %) + D(@k11,yx) + D(yx, zk)
> —vller — yrllllyr — g1 ll + D(@kt1, &) + D(yr, k)
> (=) (lzesr — vell” + llye — zll?) /2,

where the second inequality uses (40), and the last inequality uses (7). Thus, {D(Z,z)} | for any solution
7 of (41) and {||zx||} is bounded. If in addition lim sup,, vx < 1, then {||zx+1 — vk ||® + |lyx — 2k |*} = O,
and it can be shown that {z}} converges weakly to a solution of (41) when £ is finite-dimensional or a
Hilbert space; see, e.g., [3, proof of Theorem 4.1(a)], [44, proof of Theorem 3.4(b)].

6 A Numerical Example

How do Algorithms 1, 3, 4 compare with each other? We apply them to solve the matrix game problem,
also solved in [26, 32]:
min max(v, Au), (55)
uelU veV
where U and V are the unit simplices in " and ™, A € R™*", and (-,-) is the usual inner product.
Each entry of A is generated independently and uniformly in the interval [—1, 1] with probability p and
otherwise is set to 0.
As in [32, Section 6], we consider a smooth approximation of (55):

rwnelg fu(z) = max ((v,Am) —u (lnm + ifui lnvi>> . (56)

i=1

Then f, has the form (9) and f,(z) < fo(x) = max;(Az); < fu(x) + plnm for all x € U. By setting

B = 5107, its optimal value is within €/2 of (55), and V f,, is Lipschitz continuous on U with constant
L, - 1 _ 2Inm
I €

with respect to the 1-norm; see [32, Eq. (4.8)]. Thus (56) is a special case of (1) with £ = R", || - || being
the 1-norm, and P = éy. We apply Algorithms 1 and 3 to (56) with X = R”, h(x) = Z?:l zjlnz; (so
(7) holds for z € U N (0,00)™), xx+1 given by either (18) or (35), (36) (so zx+1 has closed form and is
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computable in O(n) time), 0, ¥ given by (34), and z¢ = 29 = (%, ey %) We do not consider (17) nor
Algorithm 2 since they entail solving a quadratic knapsack problem per iteration, which requires a more
complex algorithm to solve in O(n) time; see [19] and references therein. To accelerate convergence, we
initialize L to L, /8 and increase L by a factor of 2 and repeat the iteration whenever L < L, and (23) is
violated. Propositions 1 and 3 still hold with this modification. We have fo(2g+1) < infy fo +€ whenever

Ju(@ry1) <infy f,+5 which, by Corollaries 1 and 3 (and using max,ey D(%, 20) = maxzcp h(z)—h(z) =

Inn), occurs whenever
k> 4Lu1nn_1=4\/1nmlnn_1
V €/2 €

Thus, we can terminate the methods at iteration k£ when the bound in (57) is reached. To accelerate
termination as is suggested in [22, 23, 32] and by Corollaries 1(b) and 3(c), we also check every 5
iterations whether the duality gap at xzxy+1 and 7 given by the second formula in (25), with vy =

(Ayg)i/p . .

e

(W) , 18 below €, l.e.,
i i=1,...,m

et R

(57)

max(Azk41)i — min(A*0;); <, (58)
i J

and terminate if yes. This check takes only O(n) time since A*vy, is available as a byproduct of evaluating

Vf. at y, and Axyyq is available from evaluating f,,(zx+1) to check (23). If (23) has not been checked

at iteration k, then we use Ay in place of Azgi1. The results obtained are reported below.

Algl Alg3a Alg3b Alg4

n/m/p € k/%/cpu time | k/%/cpu time | k/%/cpu time | t/%/cpu time
1000,/100/.01 .001 3325/14/5 10510/46/9 9790/43/13 2400/20/5
:0001 20635/9/23 | 61865/27/45 | 60215/26/71 1150/10/3

1000/100/.1 .001 1265/18/8 1265/18/8 1265/18/10 1150/10/3
0001 | 42470/18/87 | 70895/31/103 | 70850/31/136 11085/9/38

1000/1000/.01 | .001 4760/17/12 4760/17/11 4760/17/14 1565/11/7
.0001 50820/18/126 50820/18/121 50820/18/146 18485/13/90

1000/1000/.1 .001 3900/14/33 3900/14/33 3900/14/34 1050/7/32
.0001 38605/14/333 49645/18/412 49275/17/436 9915/7/318

10000/100/-01 001 | 10005/38/142 | 10005/38/128 | 10005/38/171 | 10005/72/187
10000/100/.1 001 | 10005/38/201 | 10005/38/185 | 10005/38/238 | 10005/72/456
10000/1000/.01 .001 10005/31/202 10005/31/191 10005/31/238 10005/62/457
10000/1000/.1 001 | 10005/31/706 | 10005/31/695 | 10005/31/743 | 10005/62/2977

Table 1: Comparing Algorithms 1, 3, 4 for different problem dimension, sparsity, and termination toler-
ance. (Algorithms 3a and 3b choose zg11 by, respectively, (18) and (35), (36).)

The problem (55) is a special case of (43) with ¢(u,v) = (v, Au), @ = dy, w = dy. This corresponds
to (41) with & = R"+™, and

F(u,v) = [14;2] s P(u,v) = 6va(u,?})-

We endow & with the 1-norm, so F is Lipschitz continuous on £ with constant 1 (since A € [-1,1]™*™).
Similar to [26, Section 6], we apply Algorithm 4 with Xy = R"+™, h(u,v) = 37_, ujlnu; + 37", vilnv;
(so (7) holds for z € (U x V)N (0,00)**™), 4, given by (48) (so yi has closed form and is computable in
O(n) time), v, =1, uo = (£,..., %), v0 = (&,..., ). We can choose L = 1. To accelerate convergence,
we initialize L to 1/8 and increase L by a factor of 2 and repeat the iteration whenever L < 1 and (45)
is violated. We check every 5 iterations whethere the duality gap at o+ = (@o,¢, To,¢), defined as in (50)

and Lemma 2, is below ¢, i.e.,

e(Zo,t) = max(Atog,¢); — min(A*vg¢); < e,
i J
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and terminate if yes. By the remarks following Proposition 4 (and using max,cyxyv D{(x, o) = lnn +

Inm), this occurs whenever 22tnm < ¢ o
) —_

t+1

tZlnn+lnm_1' (59)
€
The iteration bound (57) for Algorithms 1 and 3 is about a factor of 2 more than the bound (59) for
Algorithm 4. On the other hand, Algorithms 1 and 3 require only two or three matrix-vector multiplica-
tions per iteration by A and A* (depending on whether (23) is checked), whereas Algorithm 4 requires
four such multiplications per iteration. The remaining computations per iteration are O(n) for these
methods.

All methods are coded in Matlab, with A stored in sparse format. All runs are performed on an HP
DL360 workstation, under Matlab 7.2.0. We report in Table 1 the number of iterations, also expressed as
a percentage of the bounds in (57) and (59), and the cpu time (in seconds) for Algorithms 1, 3 (“a” for
(18) and “b” for (35), (36)), and Algorithm 4, for different m,n,p,e. Thus Algl, Alg3b, Alg4 are similar
to the methods in [4, Section 5], [32, Section 5.3], [26], but with a dynamically adjusted L. As can be
seen from Table 1, Alg3b is slower than the other three methods in terms of cpu time (though it uses the
same or fewer iterations than Alg3a). Alg4 is fastest on problems with n = 1000 while Alg3a is fastest on
problems with n = 10000. For Algl, Alg3a, and Alg3b, termination occurs several times faster using the
average dual vector ¥y in (58) than using vg. The number of iterations seems independent of the sparsity
of A. These results corroborate those reported in [32, Tables 2 and 3] for a method that is essentially
Algorithm 3 with L = L, and (17), and in [26, Table 6.1] for a method that is essentially Algorithm 4
with yy, given by (48), L = 1, h being a regularized entropy, and 7, dynamically adjusted. The Matlab
code can be downloaded from

http://www.math.washington.edu/ tseng/papers.html

7 Discussions and extensions

We assumed for simplicity that h is differentiable on an open set containing domP. This assumption can
be relaxed to

(a) domP C domh and domVh = int(domh).
(b) For any linear function £: £ - R and a > 0, argmin, {/(z) + P(z) + ah(z)} € domVh.

Then by taking zp € domP N domVh, Algorithms 1 and 3 with X}, = & would maintain zg,y; €
domP N domVh for all k. Similarly, by taking g € domP N domVh, Algorithm 4 with X; = £ and
(48) would maintain zy,yr € domP NdomVh for all k. The remaining proofs are unchanged. The above
relaxed assumption is satisfied by (3) with X being a Cartesian product of simplices and spectahedra
and h being the z In(x)-entropy function; see [3, Definition 2.1 and Proposition 2.1]. What if X, is given
by (16) or (46)? In the case of (3) with

n

E=R", X ={z| Az = b, = > 0} bounded, h(z) = Zhj(a:j),
7j=1
and each h; : [0, 00) — R being continuous and twice differentiable on (0, co) with A" (t) > 0, lim;_,o+ b} (t) =
—oo (e.g., hj(t) = tint), it can be seen that if argmin,, yx, {¢(z) + h(z)} has zero components, with
£ : & — R being any linear function, then those component must be zero for all z € X and hence can be
eliminated from the computation. An alternative approach, suggested in [8, 26], is to use the regularized
entropy (t + §/n)In(t + 6/n) with small § > 0 (e.g., § = 10716).

Given the similarities between Algorithms 1 and 3 and Propositions 1 and 3, we may ask whether we
can switch between D(-, zx) and A(-) in (12) and (31) and accordingly switch between Properties 1 and
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2 in the proofs. The answer seems to be ‘no.” Intuitively, if we use D(-, z), then we are limited to using
Property 1 with z = 2 and z4 = 2y1. If we use h(-), then we are limited to using Property 2 with
Z =2z Or 2 = 2Zp41. This in turn limits the choice of ¢ for obtaining a recursion like (22) and (38).

Can the interpolation techniques and their analysis be extended to other gradient methods, such as
incremental gradient methods [9, Section 1.5] and coordinate gradient descent methods [45]7 Can the
primal-dual method in [33] and the dual extrapolation method in [34] be treated in a similarly unified
way? Can other proximity functions, such as those studied in [3, 4], be used?
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