CS838 Topics In Optimization
Convex Geometry in High-
Dimensional Data Analysis

Ben Recht
Spring 2010




Logistics

Class Tu-Th 1-2:15PM
Office Hours CS4387, Tuesday 2:15-3:30

Course webpage: http://pages.cs.wisc.edu/~brecht/
cs838.html

Readings will be posted here.

Scribing. All students are required to scribe notes for at least
one lecture. LaTeX template will be provided.

Project. All students are required to prepare a 20-30 minute
presentation on the themes of this course. This can be a
literature review or an application of the course’s techniques
to your research.
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Netflix

e Rate some movies...
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e Get some recommendations:
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Netflix Prize

e One million big ones!
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For Today’s Graduate, Just One Word: Statistics
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MOUNTAIN VIEW, Calif. — At Harvard, Carrie Grimes majored in
anthropology and archaeology and ventured to places like Honduras, bl
where she studied Mayan settlement patterns by mapping where ® comuments cn)
artifacts were found, But she wae drawn to what she calle “all the B eamul
computer ard math stuff” that was part of the job. M sews 1O
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Netflix Prize

e One million big ones! NETFLIX

e Given 100 million ratings on a scale of 1 to 5, predict 3
million ratings to highest accuracy
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© Not Interested

e 17770 total movies x 480189 total users
e Over 8 billion total ratings

' & & &
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e How to fill in the blanks?




Abstract Setup: Matrix Completion

L
- X;; known for black cells
X = . - X;; unknown for white cells

q Rows index movies
Columns index users

e How do you fill in the missing data?

R*

k X n k X r rxn

kn entries F(k+n) entries




Netflix Prize - Dimensions

R*

NETELIX X

Il
F

k X n k X r Fxn

e k = Number of movies = 2 x 104

e n = Number of users = 5 x 10°

e m = Number of Given Ratings = 108
e kn = 1010

e Forr < 200, r(k+n) < 108




Matrix Rank

k X n k X r Fxn

e The rank of X is...
the dimension of the span of the rows
the dimension of the span of the columns

the smallest number r such that there exists an k x r
matrix L and an n x r matrix R with X=LR"




Recommender Euclidean Multitask

Systems Embedding Learning
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Rank of: Data Gram Matrix of
Matrix Matrix Classifiers
Model System Controller
Reduction Identification Design

Constraints involving the rank of the Hankel Operator, Matrix,
or Singular Values




Affine Rank Minimization

e PROBLEM: Find the matrix of lowest rank that
satisfies/approximates the underdetermined linear

system — |
AX)=Db A:R¥" - R™
minimize  rank(X)
subject to A(X)=Db
e NP-HARD:

— Reduce to finding solutions to polynomial systems
— Hard to approximate
- Exact algorithms are awful




Heuristic: Gradient Descent

2

k 7

FIL,R) =Y > LAE+> > RG+A) (Sj LikRjx — X,-_,-)
t,] k

=1 k=1 =1 k=1

e Just run gradient descent to minimize F

e )\ determines tradeoff between satisfying constraints
and the size of the factors




Mixture of
hundreds of

models, including
. 1 When Gravity and Dinosaurs Unite 0.8675 882 2008-03-01 07:03:35
gra dient descent Bellor 0.8682 875 2008-02-28 23.40:45

V 0.8708 8.47 2008-02-06 14:12:44

Gradient descent
on low-rank
parameterization

53 JustWithSvD 0.8900 6.45 2008-02-1416:17:54
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Complex Predictions Structure
Systems
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Modeling Simplicity: Strategy
e Find a “natural” convex heuristic

tx; + (1 = t)xo \ /

0 oS

e Use probabilistic analysis to prove
the heuristic succeeds

e Provide efficient algorithms for
solving the heuristic




Topics
Sparsity

Rank
Smoothness

Themes

Random Projections Preserve Geometry (encoding)
Atomic Norms Recover Geometry (decoding)



Parsimonious Models
- «— 2 —rank

:l? = ZU)},OL;l
_1/\,
atoms

weights

e Search for best linear combination of fewest atoms
e "“rank” = fewest atoms needed to describe the model

model

|II

e “natural” heuristic is the atomic norm:
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If very few are needed for
diagnosis, search for a
sparse set of markers
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Topic 1: Cardinality/Sparsity
e Vector x has cardinality s if it has at most s nonzeros.

(X is s-sparse)
S
I = E WEEyq,
=1

e Atoms are a discrete set of orthogonal points
e Typical Atoms:

— standard basis

— Fourier basis

- Wavelet basis




Cardinality Minimization

e PROBLEM: Find the vector of lowest cardinality that
satisfies/approximates the underdetermined linear

SYStem Ar = b A:-R* - R™

e NP-HARD:
— Reduce to EXACT-COVER [Natarajan 1995]

- Hard to approximate
- Known exact algorithms require enumeration




Proposed Heuristic

Cardinality Minimization: Convex Relaxation:
minimize  card(x) minimize ||z|[; = le):l ||
subject to Az =1b subject to Ax =b

e Long history (back to geophysics in the 70s)

e Flurry of recent work characterizing success of this
heuristic: Candes, Donoho, Romberg, Tao, Tropp, etc.,
etc...

e "Compressed Sensing”




e Model: most of the energy is at low frequencies

e Basis for JPG compression

e Use the fact that the image is sparse in DCT/wavelet
basis to reduce number of measurements required for
signal acquisition.

e decode using I, minimization




Why |, norm?

/ [ 1x11,

\/ card(x)
i i » R!

—1 1




e 1-sparse vectors of
Euclidean norm 1

e Convex hull is the
unit ball of the I, norm

iz o flzfly <1}

n
Jzl =) |
i=1




minimize ||z|; = D_;_, |z
subject to Az =0b




Integer Programming

e Integer solutions:

all components of x

are 1 (-1,1)

(1,1)

e Convex hull is the
unit ball of the |l norm

1z ¢ ||z)lee <1} (4,-1) (1,-1)

|2l = max [z




minimize
subject to

|z||ooc = max; |z;]

Az =0b

AX




Cardinality/Sparsity

How many samples are required to reconstruct
sparse vectors?

Relationship to coding theory

When can we guarantee the |1 heuristic
works?

What are efficient ways to compute minimum
|1 norm solutions?

28



Topic 2: (Matrix) Rank

e Matrix X has rank r if it has at most r nonzero singular
values.

. .

c— . . * —_ . .

X = E OjUV; = E o A‘7
j=1 j=1

e Atoms are the set of all rank one matrices
e Not a discrete set




Singular Value Decomposition (SVD)

e If X is a matrix of size k x n (k<m) then there matrices
U (k x k) and V (n x k) such that

X =UXV~
u'u =1, V*V =1,

e Y, adiagonal matrix, o; 2 ... 2 0, 2 0
e o7 is an eigenvalue of XX*. U are eigenvectors of XX".

e Fact: If X has rank r, then X has only r non-zero
singular values.




SVD = Filter Bank
e Multiply a vector Z by X — UZV*

L
N\

SY



Collaborative Filterings

e Z is a linear combination of eigenusers, Viy ooy Vi -

* u,..., u, are the eigenratings

Vi s O " Wy

SY

L
N\




Which Algorithm?

Affine Rank Minimization:
minimize  rank(X)

subject to A(X) =b

- =

Convex Relaxation:
minimize || X[, = S5, 04(X)
subject to A(X) =b

Proposed by Fazel (2002).

Nuclear norm is the "numerical rank” in numerical
analysis

The “trace heuristic” from controls if X is p.s.d.



Why nuclear norm?

\ t / L 1X] ]«

rank(X)

> R]Xl
-1 |

e Just as |; norm induces sparsity,
nuclear norm induces low rank

e Nuclear norm of diagonal matrix = |,
norm of diagonal




e 2x2 matrices { r Y }

e plotted in 3d y =z gz
04
0.2
e 0
— rank 1 -0.2
X2+ z24+2y2=1 528
-0.8
05
Convex hull: o

05




e 2Xx2 matrices
e plotted in 3d
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e Projection onto x-z
plane is |, ball




|

2X2 matrices
plotted in 3d
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So how do we compute it? And when does it work?



Computationally: Gradient Descent!

k T 7

FL,R) =) » L +ZZR + A||A(LR*) — b|?

=1 1=1 =1 3=1

e “Method of multipliers”
e Schedule for A controls the noise in the data
e Same global minimum as nuclear norm




Topic 2: Rank

How many samples are required to reconstruct low-rank
matrices?

Fast algorithms for SVD as compressed sensing

When can we guarantee the nuclear norm heuristic
works?

What are efficient ways to compute minimum nuclear
norm solutions?

39
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Learning Functions

Tylr;;acl)lly a ﬁ:j classes
example covtalrtlate
inputs state

X X
min fitness(f, data)
feF
Which space of functions? dictated by application

. Goal: Find a class F which is easy to search over, but can

approximate complex behavior. Blessing of
4 P A{ smoothness
error < /‘O)'n_ ﬁ)}
Number of _ Cur € Of.
dimensionality

> examples



Topic 3: Approximation

e Try to write a function as a sum of (non-orthogonal)
bases:
n

f(x) ~ Z CrPr(X; O )

k=1

e Atoms are sets of basis functions
e Not a discrete set, infinite dimensional space.




Learning Functions

L

Tyﬁ;acl)lgl . classes
example covta rtlzte
inputs >t
X X
min fitness(f, data)
feF
Which space of functions? dictated by application

. Goal: Find a class F which is easy to search over, but can

approximate complex behavior.

e Solution: Approximate f(x) by f,(x) = Zc.,qbk,(x; Or)



T

* Approximate f(X) by f'n(x) — Z Ck‘,d)k(x; 9’.)
k=1

For large class of f, sampling 6, i.i.d. and optimizing c, yields

n

Analysis via convex hull norm where the atoms are ¢(X; 9)

ax d(x; w,b) = cos(w'x + b)
w~N(0,1)
. _— A b ~ unif[—m, «]
. o w R?
e ] k(x,y) = exp(—[[x — y||*)
' ® e RPD
Radial Basis Functions




R R R R R X

R
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Approximates Gaussian Process regression
with Gaussian kernel of variance gamma

lambda: regularization parameter

dataset: X 1s dxN, y 1s 1xN

test: xtest 1s dxl

D: dimensionality of random feature

training

w = randn(D, si1ze(X,1));

b = 2*pi*rand(D,1);

Z = cos(sqgrt(gamma)*w*X + repmat(b,1l,s1ze(X,2)));
alpha = (lambda*eye(size(X,2)+z*Z")\(Z*y);

testing
ztest = alpha(:)’*cos( sqgrt(gamma)*w*xtest(:) + ..
+ repmat(b,1,s1ze(X,2)) );



Topic 3: Approximation

e How many bases are required to approximate
complicated behavior?

e What are efficient ways to fit functions in infinite
dimensional function spaces?

e What are fast ways to fit functions when we are
overwhelmed by data?




