# CS838 Topics In Optimization Convex Geometry in HighDimensional Data Analysis 

Ben Recht
Spring 2010

## Logistics

- Class Tu-Th 1-2:15PM
- Office Hours CS4387, Tuesday 2:15-3:30
- Course webpage: http://pages.cs.wisc.edu/~brecht/ cs838.html
- Readings will be posted here.
- Scribing. All students are required to scribe notes for at least one lecture. LaTeX template will be provided.
- Project. All students are required to prepare a 20-30 minute presentation on the themes of this course. This can be a literature review or an application of the course's techniques to your research.


## Recommender Systems

## More Top Picks for You

## amazon.com



NETFLIX
Because you enjoyed:
2001: A Space Odyssey
Blue Vehet
Bottle Rocket

We think you'll enjoy:
Stalker
Add

chemistry
eHarmony

## Netflix

－Rate some movies．．．
－Get some recommendations：


## Netflix Prize

- One million big ones!


Data Sleuths in an Internet Age


| HOME PADE | TODAO'S PAPER | VDEO | MOST POFULAK | TMES TOPICB |
| :--- | :--- | :--- | :--- | :--- |

## 

## Technology

WORLD U.S. N.Y./REGION SUSTRES TBCHNOLOGY SCIENCE HEALTH SPORTS OPIMON
Search Technology

## Inside Technology

Internet Start-Ups Business Computing Companie
For Today's Graduate, Just One Word: Statistics
GY STEVE LOTR
Putistent Asgust 5, 2000
MOUNTAIN VIEW, Calif. - At Harvard, Carrie Grimes majored in anthropology and archaeology and ventured to places like Honduras, where she studied Mayan settlement patterns by mapping where artifacts were found. But she was drawn to what she calls "all the computer and math stuff" that was part of the job.

810ninto hecommend

A- timtter
P. comments (50)

日 Emal

- sempto


## Netflix Prize

- One million big ones!


## NETFLIX

- Given 100 million ratings on a scale of 1 to 5 , predict 3 million ratings to highest accuracy

- 17770 total movies x 480189 total users
- Over 8 billion total ratings
- How to fill in the blanks?


## Abstract Setup: Matrix Completion


$X_{i j}$ known for black cells
$\mathrm{X}_{\mathrm{ij}}$ unknown for white cells
Rows index movies
Columns index users

- How do you fill in the missing data?

kn entries
$r(k+n)$ entries


## Netflix Prize - Dimensions



- $k=$ Number of movies $=2 \times 10^{4}$
- $\mathrm{n}=$ Number of users $=5 \times 10^{5}$
- $\mathrm{m}=$ Number of Given Ratings $=10^{8}$
- $\mathrm{kn} \approx 10^{10}$
- For $r<200, r(k+n)<10^{8}$


## Matrix Rank



- The rank of $\mathbf{X}$ is...
the dimension of the span of the rows
the dimension of the span of the columns
the smallest number $r$ such that there exists an $k \times r$ matrix $\mathbf{L}$ and an $\mathrm{n} \times r$ matrix $\mathbf{R}$ with $\mathbf{X}=\mathbf{L} \mathbf{R}^{*}$

Recommender Systems

## amazon.com

## NETFLIX match.com 年 chemistry

Rank of:<br>Data<br>Matrix



Model
Reduction

Euclidean
Embedding


Gram
Matrix


System
Identification

## Multitask

 Learning $a \Delta \pi \alpha a=a a d a+a, a a=a 1$ aa\&aazaacaגaQGaaa।
 as-aa+aQgaa@aロaka.





 anaaonaagaaaßamnai


Matrix of Classifiers


Controller Design

Constraints involving the rank of the Hankel Operator, Matrix, or Singular Values

## Affine Rank Minimization

- PROBLEM: Find the matrix of lowest rank that satisfies/approximates the underdetermined linear system

$$
\begin{array}{cl}
\mathcal{A}(\mathbf{X})=\mathbf{b} & \mathcal{A}: \mathbb{R}^{k \times n} \rightarrow \mathbb{R}^{m} \\
& \\
\text { minimize } & \operatorname{rank}(\mathbf{X}) \\
\text { subject to } & \mathcal{A}(\mathbf{X})=\mathbf{b}
\end{array}
$$

- NP-HARD:
- Reduce to finding solutions to polynomial systems
- Hard to approximate
- Exact algorithms are awful


## Heuristic: Gradient Descent

$$
\mathcal{F}(\mathbf{L}, \mathbf{R})=\sum_{i=1}^{k} \sum_{k=1}^{r} L_{i k}^{2}+\sum_{j=1}^{n} \sum_{k=1}^{r} R_{j k}^{2}+\lambda \sum_{i, j}\left(\sum_{k} L_{i k} R_{j k}-X_{i j}\right)^{2}
$$

- Just run gradient descent to minimize $\mathcal{F}$
- $\lambda$ determines tradeoff between satisfying constraints and the size of the factors


Gradient descent on low-rank parameterization

Complex
Systems




Predictions


Structure

Rank

## Smoothness

## Sparsity

## Modeling Simplicity: Strategy

- Find a "natural" convex heuristic
$t \mathrm{x}_{1}+(1-t) \mathrm{x}_{2}$
- Use probabilistic analysis to prove the heuristic succeeds

- Provide efficient algorithms for solving the heuristic


## Topics

- Sparsity
- Rank
- Smoothness


## Themes

- Random Projections Preserve Geometry (encoding)
- Atomic Norms Recover Geometry (decoding)


## Parsimonious Models



- Search for best linear combination of fewest atoms
- "rank" = fewest atoms needed to describe the model
- "natural" heuristic is the atomic norm:

$$
\|x\|_{\mathcal{A}} \equiv \inf \left\{\sum_{k=1}^{r}\left|w_{k}\right|: x=\sum_{k=1}^{r} w_{k} \alpha_{k}\right\}
$$

## Mining for Biomarkers





- $\mathrm{n}_{\text {patients }} \ll \mathrm{n}_{\text {peaks }}$
- If very few are needed for diagnosis, search for a sparse set of markers
- $I_{1}$, LASSO, etc.


## Topic 1: Cardinality/Sparsity

- Vector $x$ has cardinality $s$ if it has at most $s$ nonzeros. ( $x$ is $s$-sparse)

$$
x=\sum_{k=1}^{s} w_{k} e_{i_{k}}
$$

- Atoms are a discrete set of orthogonal points
- Typical Atoms:
- standard basis
- Fourier basis
- Wavelet basis


## Cardinality Minimization

- PROBLEM: Find the vector of lowest cardinality that satisfies/approximates the underdetermined linear system

$$
A x=b \quad A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}
$$

- NP-HARD:
- Reduce to EXACT-COVER [Natarajan 1995]
- Hard to approximate
- Known exact algorithms require enumeration


## Proposed Heuristic

Cardinality Minimization:

## minimize $\quad \operatorname{card}(x)$ <br> subject to $A x=b$

Convex Relaxation:
$\begin{array}{ll}\operatorname{minimize} & \|x\|_{1}=\sum_{i=1}^{D}\left|x_{i}\right| \\ \text { subject to } & A x=b\end{array}$

- Long history (back to geophysics in the 70s)
- Flurry of recent work characterizing success of this heuristic: Candès, Donoho, Romberg, Tao, Tropp, etc., etc...
- "Compressed Sensing"


## Compressed Sensing



- Model: most of the energy is at low frequencies
- Basis for JPG compression
- Use the fact that the image is sparse in DCT/wavelet basis to reduce number of measurements required for signal acquisition.
- decode using $I_{1}$ minimization


## Why $\mathrm{I}_{1}$ norm?



- 1-sparse vectors of Euclidean norm 1
- Convex hull is the unit ball of the $I_{1}$ norm $\left\{x:\|x\|_{1} \leq 1\right\}$

$$
\|x\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|
$$



$$
\begin{array}{ll}
\operatorname{minimize} & \|x\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right| \\
\text { subject to } & A x=b
\end{array}
$$



## Integer Programming

- Integer solutions: all components of $x$ are $\pm 1$

$(1,1)$
- Convex hull is the unit ball of the $I_{\infty}$ norm $\left\{x:\|x\|_{\infty} \leq 1\right\} \quad(-1,-1)$
$(1,-1)$

$$
\|x\|_{\infty}=\max _{i}\left|x_{i}\right|
$$

$\operatorname{minimize} \quad\|x\|_{\infty}=\max _{i}\left|x_{i}\right|$ subject to $A x=b$


## Cardinality/Sparsity

- How many samples are required to reconstruct sparse vectors?
- Relationship to coding theory
- When can we guarantee the I1 heuristic works?
- What are efficient ways to compute minimum I1 norm solutions?


## Topic 2: (Matrix) Rank

- Matrix $X$ has rank $r$ if it has at most $r$ nonzero singular values.

$$
X=\sum_{j=1}^{r} \sigma_{j} u_{j} v_{j}^{*}=\sum_{j=1}^{r} \sigma_{j} A_{j}
$$

- Atoms are the set of all rank one matrices
- Not a discrete set


## Singular Value Decomposition (SVD)

- If $\mathbf{X}$ is a matrix of size $\mathrm{k} \times \mathrm{n}(\mathrm{k} \leq \mathrm{m})$ then there matrices $\mathbf{U}(k \times k)$ and $\mathbf{V}(n \times k)$ such that

$$
\begin{gathered}
\mathbf{X}=\mathbf{U} \Sigma \mathbf{V}^{*} \\
\mathbf{U}^{*} \mathbf{U}=I_{m} \quad \mathbf{V}^{*} \mathbf{V}=I_{m}
\end{gathered}
$$

- $\sum$ a diagonal matrix, $\sigma_{1} \geq \ldots \geq \sigma_{k} \geq 0$
- $\sigma_{i}^{2}$ is an eigenvalue of $\mathbf{X X}$. $\mathbf{U}$ are eigenvectors of $\mathbf{X X}$.
- Fact: If $\mathbf{X}$ has rank $r$, then $\mathbf{X}$ has only $r$ non-zero singular values.


## SVD = Filter Bank

- Multiply a vector $\mathbf{Z}$ by $\mathbf{X}=\mathbf{U} \Sigma \mathbf{V}^{*}$



## Collaborative Filterings

- $\mathbf{Z}$ is a linear combination of eigenusers, $\mathbf{v}_{1}, \ldots, \mathbf{v}_{\mathbf{k}}$.
- $\mathrm{u}_{1}, \ldots, \mathrm{u}_{\mathrm{k}}$ are the eigenratings



## Which Algorithm?

## Affine Rank Minimization:

minimize $\operatorname{rank}(\mathbf{X})$
subject to $\mathcal{A}(\mathbf{X})=\mathbf{b}$


## Convex Relaxation:

$$
\begin{array}{ll}
\operatorname{minimize} & \|\mathbf{X}\|_{*}=\sum_{i=1}^{k} \sigma_{i}(\mathbf{X}) \\
\text { subject to } & \mathcal{A}(\mathbf{X})=\mathbf{b}
\end{array}
$$

- Proposed by Fazel (2002).
- Nuclear norm is the "numerical rank" in numerical analysis
- The "trace heuristic" from controls if $\mathbf{X}$ is p.s.d.


## Why nuclear norm?



- Just as $I_{1}$ norm induces sparsity, nuclear norm induces low rank
- Nuclear norm of diagonal matrix $=I_{1}$ norm of diagonal
- $2 \times 2$ matrices
- plotted in 3d

$$
\left[\begin{array}{ll}
x & y \\
y & z
\end{array}\right]
$$



Convex hull:

$$
\left\{X:\|X\|_{*} \leq 1\right\}
$$

- $2 \times 2$ matrices
- plotted in 3d

$$
\left\|\left[\begin{array}{ll}
x & 0 \\
0 & z
\end{array}\right]\right\|_{*} \leq 1
$$

- Projection onto $\mathrm{x}-\mathrm{z}$ plane is $I_{1}$ ball
- $2 \times 2$ matrices
- plotted in 3d

$$
\left\|\left[\begin{array}{ll}
x & y \\
y & z
\end{array}\right]\right\|_{*} \leq 1
$$

- Not polyhedral...


So how do we compute it? And when does it work?

## Computationally: Gradient Descent!

$$
\mathcal{F}(\mathbf{L}, \mathbf{R})=\sum_{i=1}^{k} \sum_{j=1}^{r} L_{i j}^{2}+\sum_{i=1}^{n} \sum_{j=1}^{r} R_{i j}^{2}+\lambda\left\|\mathcal{A}\left(\mathbf{L R}^{*}\right)-\mathbf{b}\right\|^{2}
$$

- "Method of multipliers"
- Schedule for $\lambda$ controls the noise in the data
- Same global minimum as nuclear norm


## Topic 2: Rank

- How many samples are required to reconstruct low-rank matrices?
- Fast algorithms for SVD as compressed sensing
- When can we guarantee the nuclear norm heuristic works?
- What are efficient ways to compute minimum nuclear norm solutions?



## Learning Functions

## Typically a list of example inputs


classes covariate state

Which space of functions?
fitness $(f$, data)
dictated by application

- Goal: Find a class $\mathcal{F}$ which is easy to search over, but can approximate complex behavior.




## Topic 3: Approximation

- Try to write a function as a sum of (non-orthogonal) bases:

$$
f(x) \approx \sum_{k=1}^{n} c_{k} \phi_{k}\left(\mathbf{x} ; \theta_{k}\right)
$$

- Atoms are sets of basis functions
- Not a discrete set, infinite dimensional space.


## Learning Functions

## Typically a list of example inputs


classes
covariate state

Which space of functions?
dictated by application

- Goal: Find a class $\mathcal{F}$ which is easy to search over, but can approximate complex behavior.
- Solution: Approximate $f(\mathbf{x})$ by $f_{n}(\mathbf{x})=\sum_{k=1}^{n} c_{k} \phi_{k}\left(\mathbf{x} ; \theta_{k}\right)$
- Approximate $f(\mathbf{x})$ by $f_{n}(\mathbf{x})=\sum_{k=1}^{n} c_{k} \phi_{k}\left(\mathbf{x} ; \theta_{k}\right)$

For large class of $f$, sampling $\theta_{k}$ i.i.d. and optimizing $c_{k}$ yields

$$
\left\|f-f_{n}\right\|=O\left(\frac{1}{\sqrt{n}}\right)
$$

Analysis via convex hull norm where the atoms are $\phi(\mathbf{x} ; \theta)$


$$
\begin{aligned}
\phi(\mathrm{x} ; \omega, b) & =\cos \left(\omega^{\prime} \mathrm{x}+b\right) \\
\omega & \sim \mathcal{N}(0,1) \\
b & \sim \mathrm{unif}[-\pi, \pi]
\end{aligned}
$$

$$
k(\mathbf{x}, \mathbf{y})=\exp \left(-\gamma\|\mathbf{x}-\mathbf{y}\|^{2}\right)
$$

Radial Basis Functions
\% Approximates Gaussian Process regression
\% with Gaussian kerne1 of variance gamma
\% 1ambda: regularization parameter
\% dataset: X is $\mathrm{dxN}, \mathrm{y}$ is $1 x \mathrm{~N}$
\% test: xtest is dx1
\% D: dimensionality of random feature
\% training
w = randn(D, $\operatorname{size}(X, 1))$;
$b=2 * p i * \operatorname{rand}(\mathrm{D}, 1)$;
$Z=\cos (s q r t(g a m m a) * w * X+\operatorname{repmat}(b, 1, s i z e(X, 2))) ;$ alpha $=\left(7 a m b d a * \operatorname{eye}\left(\operatorname{size}(x, 2)+Z^{*} Z^{\prime}\right) \backslash(Z * y)\right.$;
\% testing
ztest $=$ alpha(:)'*cos( sqrt(gamma)*w*xtest(:) + ... $+\operatorname{repmat}(b, 1, \operatorname{size}(X, 2))$ );

## Topic 3: Approximation

- How many bases are required to approximate complicated behavior?
- What are efficient ways to fit functions in infinite dimensional function spaces?
- What are fast ways to fit functions when we are overwhelmed by data?

