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Logistics

• Class Tu-Th 1-2:15PM
• Office Hours CS4387, Tuesday 2:15-3:30

• Course webpage:  http://pages.cs.wisc.edu/~brecht/
cs838.html

• Readings will be posted here.

• Scribing. All students are required to scribe notes for at least 
one lecture.  LaTeX template will be provided.

• Project.  All students are required to prepare a 20-30 minute 
presentation on the themes of this course.  This can be a 
literature review or an application of the course’s techniques 
to your research.

http://pages.cs.wisc.edu/~brecht/cs838.html
http://pages.cs.wisc.edu/~brecht/cs838.html
http://pages.cs.wisc.edu/~brecht/cs838.html
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Recommender Systems



Netflix

• Rate some movies…

• Get some recommendations:



Netflix Prize

• One million big ones!



Netflix Prize

• One million big ones!

• Given 100 million ratings on a scale of 1 to 5, predict 3 
million ratings to highest accuracy

• 17770 total movies x 480189 total users
• Over 8 billion total ratings

• How to fill in the blanks?



Abstract Setup: Matrix Completion

• How do you fill in the missing data?

Xij known for black cells
Xij unknown for white cells

Rows index movies
Columns index users

X =

X L
R*

k x r r x nk x n

kn entries r(k+n) entries

=



Netflix Prize - Dimensions

• k = Number of movies = 2 x 104

• n = Number of users = 5 x 105

• m = Number of Given Ratings = 108

• kn ≈ 1010 

• For r < 200, r(k+n) < 108

X L
R*

k x r r x nk x n

=



Matrix Rank

• The rank of  X is…
	 the dimension of the span of the rows
	 the dimension of the span of the columns
	 the smallest number r such that there exists an k x r 

matrix L and an n x r matrix R with X=LR*

X L
R*

k x r r x nk x n

=
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Affine Rank Minimization

• PROBLEM: Find the matrix of lowest rank that 
satisfies/approximates the underdetermined linear 
system

• NP-HARD:
– Reduce to finding solutions to polynomial systems
– Hard to approximate
– Exact algorithms are awful



Heuristic: Gradient Descent

• Just run gradient descent to minimize F
•  λ determines tradeoff between satisfying constraints 

and the size of the factors



… … … …Gradient descent 
on low-rank

parameterization

Mixture of 
hundreds of 

models, including 
gradient descent



Complex
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Modeling Simplicity: Strategy

• Find a “natural” convex heuristic

• Use probabilistic analysis to prove 
the heuristic succeeds

• Provide efficient algorithms for 
solving the heuristic

x1

x2



Topics

• Random Projections Preserve Geometry (encoding)
• Atomic Norms Recover Geometry (decoding)

Themes

• Sparsity
• Rank
• Smoothness



• Search for best linear combination of fewest atoms
• “rank” = fewest atoms needed to describe the model

• “natural” heuristic is the atomic norm:

Parsimonious Models

atomsmodel weights

rank



Mining for Biomarkers

• npatients << npeaks 
• If very few are needed for 

diagnosis, search for a 
sparse set of markers

• l1, LASSO, etc.



Topic 1: Cardinality/Sparsity

• Vector x has cardinality s if it has at most s nonzeros. 
(x is s-sparse)

• Atoms are a discrete set of orthogonal points 
• Typical Atoms: 

– standard basis
– Fourier basis
– Wavelet basis



Cardinality Minimization

• PROBLEM: Find the vector of lowest cardinality that 
satisfies/approximates the underdetermined linear 
system

• NP-HARD:
– Reduce to EXACT-COVER [Natarajan 1995]
– Hard to approximate
– Known exact algorithms require enumeration



Proposed Heuristic

• Long history (back to geophysics in the 70s) 
• Flurry of recent work characterizing success of this 

heuristic: Candès, Donoho, Romberg, Tao, Tropp, etc., 
etc…

•  “Compressed Sensing”

Convex Relaxation:Cardinality Minimization:



Compressed Sensing

• Model: most of the energy is at low frequencies
• Basis for JPG compression
• Use the fact that the image is sparse in DCT/wavelet 

basis to reduce number of measurements required for  
signal acquisition.

• decode using l1 minimization



Why l1 norm?

card(x)

||x||1



• 1-sparse vectors of 
Euclidean norm 1

• Convex hull is the 
 unit ball of the l1 norm

1

1

-1

-1



x1

x2

Ax=b



• Integer solutions:
 all components of x 

are ±1

• Convex hull is the 
 unit ball of the l

1
 norm

(1,-1)

(1,1)

(-1,-1)

(-1,1)

Integer Programming



x1

x2

Ax=b



Cardinality/Sparsity

• How many samples are required to reconstruct 
sparse vectors?

• Relationship to coding theory
• When can we guarantee the l1 heuristic 

works?
• What are efficient ways to compute minimum 

l1 norm solutions?
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Topic 2: (Matrix) Rank

• Matrix X has rank r if it has at most r nonzero singular 
values.

• Atoms are the set of all rank one matrices
• Not a discrete set



Singular Value Decomposition (SVD)

• If X is a matrix of size k x n (k≤m) then there matrices 
	 U (k x k) and V (n x k) such that

•       a diagonal matrix, σ1 ≥ … ≥ σk ≥ 0

• σi
2 is an eigenvalue of XX*. U are eigenvectors of XX*.

• Fact: If X has rank r, then X has only r non-zero 
singular values.



SVD = Filter Bank

• Multiply a vector          by 

v1

v2

vk

σ
1

σ
2

σk

u1

u2

uk



Collaborative Filterings

•      is a linear combination of eigenusers, v1, …, vk .

• u1,…, uk are the eigenratings 

v1

v2

vk

σ
1

σ
2

σk

u1

u2

uk



Which Algorithm?

• Proposed by Fazel (2002).
• Nuclear norm is the “numerical rank” in numerical 

analysis
• The “trace heuristic” from controls if X is p.s.d.

Convex Relaxation:

Affine Rank Minimization:



Why nuclear norm?

rank(X)

||X||*

• Just as l1 norm induces sparsity, 
nuclear norm induces low rank

• Nuclear norm of diagonal matrix = l1 
norm of diagonal



• 2x2 matrices
• plotted in 3d

  rank 1
  x2 + z2 + 2y2 = 1

Convex hull:



• 2x2 matrices
• plotted in 3d

• Projection onto x-z 
 plane is l1 ball



So how do we compute it? And when does it work?

• 2x2 matrices
• plotted in 3d

• Not polyhedral…



Computationally: Gradient Descent!

• “Method of multipliers”
• Schedule for λ controls the noise in the data
• Same global minimum as nuclear norm



Topic 2: Rank

• How many samples are required to reconstruct low-rank 
matrices?

• Fast algorithms for SVD as compressed sensing
• When can we guarantee the nuclear norm heuristic 

works?
• What are efficient ways to compute minimum nuclear 

norm solutions?
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• Goal: Find a class F which is easy to search over, but can 

approximate complex behavior.

dictated by applicationWhich space of functions?

classes
covariate

state

Typically a 
list of 

example 
inputs

Learning Functions

Number of 
examples

Curse of 
dimensionality

Blessing of 
smoothness



Topic 3: Approximation

• Try to write a function as a sum of (non-orthogonal) 
bases:

• Atoms are sets of basis functions
• Not a discrete set, infinite dimensional space.

f(x) ≈
n�

k=1

ckφk(x; θk)



• Goal: Find a class F which is easy to search over, but can 

approximate complex behavior.

• Solution:  Approximate          by

dictated by applicationWhich space of functions?

classes
covariate

state

Typically a 
list of 

example 
inputs

Learning Functions

optimize sample



Radial Basis Functions

For large class of f, sampling θk i.i.d. and optimizing ck yields

Analysis via convex hull norm where the atoms are 

• Approximate     by

φ(x; θ)



% Approximates Gaussian Process regression 
%   with Gaussian kernel of variance gamma
% lambda: regularization parameter 
% dataset: X is dxN, y is 1xN
% test: xtest is dx1
% D: dimensionality of random feature 

% training
 w = randn(D, size(X,1));
 b = 2*pi*rand(D,1);
 Z = cos(sqrt(gamma)*w*X + repmat(b,1,size(X,2)));
 alpha = (lambda*eye(size(X,2)+Z*Z')\(Z*y);

% testing
 ztest = alpha(:)’*cos( sqrt(gamma)*w*xtest(:) + …
   + repmat(b,1,size(X,2)) );



Topic 3: Approximation

• How many bases are required to approximate 
complicated behavior?

• What are efficient ways to fit functions in infinite 
dimensional function spaces?

• What are fast ways to fit functions when we are 
overwhelmed by data?


