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Lecture 6

1 Prony’s Method (c. 1795)

Definition 1. The Discrete Fourier Transform (DFT) - Consider x in RD. The DFT of x is:

x̂[k] =
1√
D

D−1∑
n=0

x[n]e−2πi kn
D

The DFT is a linear mapping. Let ωD = exp(−2πi/D) and define the matrix F with elements

Fk,n =
e−2πi kn

D

√
D

=
ωknD√
D
.

We can write the DFT as

x̂ = Fx

The matrix F is unitary, (F†F = FF† = I). We can see this from direct evaluation:

[F†F]kk =
D∑
n=0

FnkFnk =
1
D

D−1∑
n=0

ω̄nkωnk

[F†F]km =
1
D

D−1∑
n=0

ω̄(m−k)n =
1
D

(ωm−k)D − 1
ωm−k − 1

= 0 for m 6= k

Since F is unitary, we immediately get the discrete analogs of the identities of Plancherel and
Parseval. For x,y ∈ CD,

x†y = Fx†Fy Plancherel

x†x = Fx†Fx Parseval .

We also have the following identity about convolutions. Recall that the convolution of u and
v ∈ CD is defined as

u ∗ v[k] =
D−1∑
m=0

u[m]v[(k −m) mod D] .

Then we have the following

Proposition 1. Let x and y ∈ CD. Let z ∈ CD be the vector with components zk = xkyk. Then
ẑ = x̂ ∗ ŷ.
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Proof.

ẑk =
1√
D

D−1∑
n=0

e−2πi kn
D zn

=
1√
D

D−1∑
n=0

e−2πi kn
D xnyn

=
1√
D

D−1∑
n=0

e−2πi kn
D

(
1√
D

D−1∑
m=0

e2πi
mn
D x̂m

)
yn

=
1√
D

D−1∑
m=0

x̂m
1√
D

D−1∑
n=0

e−2πi
(k−m)n

D yn

=
1√
D

D−1∑
m=0

x̂[m]ŷ[(k −m) mod D] = x̂ ∗ ŷ[k]

We now can present Prony’s Method which recovers an s-sparse vector from its first 2s Fourier
coefficients

Theorem 2 (Prony’s Method). Let x be s-sparse. Let x̂ be its discrete Fourier Transform. Then x
is uniquely determined by x̂0, x̂1, x̂2, . . . , x̂2S−1. Moreover, an efficient algorithm for reconstructing
x from these 2s numbers exists.

Proof. Define a polynomial

p(z) =
∏

k∈supp(x)

w−kD (−z + wkD) = 1 + λ1z + λ2z
2 + . . .+ λsz

s .

Then the degree of p is and the roots are precisely {wkD}k∈supp(x)
Define the vector v ∈ CD by

v = (1, λ1, λ2, λ3, . . . , λs, 0, . . . , 0)T

and set

u = F†v =
1√
D

D−1∑
k=0

wnkD vk =
1√
D

s∑
k=0

λk(wnD)k =
1√
D
p(wnD)

By the above reasoning, we have un = 0 iff n ∈ supp(x), and hence qn = xnun = 0 everywhere.
It then follows from Proposition 1 that 0 = x̂ ∗ Fu = x̂ ∗ v. Writing this last equation out in
components, we see that

[x̂ ∗ v]k =
D−1∑
n=0

vnx̂[(k − n) mod D] =
s∑

n=0

λnx̂[(k − n) mod D]
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x̂[k]

x̂[(k − 1) mod D]
x̂[(k − 1) mod D]

. . .
x̂[(k − s) mod D]


T 

1
λ1

λ2

. . .
λs

 = 0 for any k

In other words, substituting k = t+ s(t < D − s),
x̂t+s
x̂t+s−1

ˆ. . .
x̂t


T 

1
λ1

. . .
λs


Using t = 0, . . . , s− 1, we can construct s equations with s unknowns

x̂0 x̂1 x̂2 . . . x̂s−1

x̂1 x̂2 x̂3 . . . x̂s
x̂2 x̂3 x̂4 . . . x̂s+1

. . .
x̂s−1 x̂s x̂s+1 . . . x̂2s−2




λs
λs−1

λs−2

. . .
λ1

 =


x̂s
x̂s+1

x̂s+2

. . .
x̂2s−1

 (1)

This system has full rank if x is s-sparse (see Badri’s notes). Thus, we can compute the coefficients
of p which uniquely determine the support of x. From the support, we can then solve for the
non-zero coefficients of x.

Prony’s method is thus summarized by the following algorithm

Algorithm

• Form and solve the linear system (1) for λ

• Compute the roots of 1 + λ1z + . . .+ λsz
s to find supp(x)

• solve the linear system {x̂t =
∑

k∈supp(x) Fknwn}
2s−1
k=0 for w

• Return

xk =

{
wk k ∈ supp(x)

0 otherwise

Prony’s method shows that there is a deterministic 2s× n matrix that can encode all s-sparse
vectors, and that any s-sparse vector can be decoded from its image. Namely, this matrix is F(2s),
the matrix with the first 2s rows of F. It’s not hard to see that 2s is the minimal possible size for
any such linear encoding. Let A be a p ×D matrix with p < 2s. Let Ã be the submatrix of the
first 2s columns. Then there must exist a w ∈ R2s such that Ãw = 0. Define the vectors x and y
in Rn by

x = (w1, . . . , ws, 0, . . . , 0)
y = (0, . . . , 0, −ws+1, . . . ,−w2s, 0, . . . , 0)

Then Ax = Ay, and hence 2 s-sparse vectors are mapped to the same point by A.
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The main drawbacks of Prony’s method is that it is not numerically stable for largeD. Moreover,
it is not stable if x is nearly sparse. Also, the algorithm is very specific to the structure of the
Fourier transform and does not generalize to other linear encodings. In the next lecture, we explore
an algorithm that overcomes all of these shortcomings, at the expense of requiring a slightly larger
encoding matrix A.
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