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Lecture 7

1 Norms on R"

We will make use of all of the following norms

n 1/2
]l = [lll2 = (Zx2>
i=1
n
Izl =l
i=1

[£]loc = max |a;|
i=1...n
Fact 1. If x is s-sparse then
[2lloe < [lzll2 < N2l < Vsllz]l2 < sllz]lo-

These inequalities can all be verified immediately from the definitions of the norms.

2 Compressed sensing
Given p,n, A € RP*™ h € R™, ¢ > 0 the archetypal problem of compressed sensing is the following:

min card(x) (1)
st. [J[Az —b|2 <e.

As a relaxation, or, really, surrogate, of (1), we consider the following problem:

min ||z
st. Az —bls <e. 2)

Now, why is (2) a sensible surrogate for (1)? In a sense, the [! norm is the best convex relaxation
of the card function, which is not convex:

Fact 2. If f: [-1,1]" — R is convex and f(x) < card(zx), then f(z) < ||z|.

Proof (Sid Barman, next lecture). The main idea is to express |z| as a convex combination of the
vertices of [0, 1]™. O

Also, the ! unit ball is the convex hull of the length-one cardinality-one vectors:

Fact 3. {x € R": ||z < 1} = conv{er, —e€1,...,en, —€n}



Proof. Any nonzero z in the [* unit ball satisfies

and, conversely, if

with ¢,d > 0 and 17 (c + d) = 1, then |z|; = 1T |c — d| < 1. O

And, we can draw pictures that suggest that a minimum-cardinality solution to a random linear
system is likely also to be a minimum ['-norm solution. We now try to formalize this observation.

3 Restricted isometry property

Definition 1. Let A € RP*" s > 0 . The s-restricted isometry constant ds of A is the smallest
nonnegative number § such that

(1 =0)[zll2 < [[Az]l2 < (1 + 0)][zl2

for all x with card(z) < s. If 65 < 1, then A is said to be an s-restricted isometry and to have the
s-restricted isometry property (RIP).

Fact 4. If s < s’ then 65 < dy.

How might we check s-RIP? For I C {1,...,n} let Ar be the submatrix of A consisting of those
columns of A with indices in I. Check the extreme singular values of all Ay, |I| = s. Then d; is
the smallest number 0 such that all these values lie in [1 — §,1 + 4.

The point of RIP is that it sometimes ensures that the solution set to (1) is well-behaved. For
example:

Proposition 1. Suppose A has 2s-RIP constant dos < 1. If Ax = b has a solution xy with
card(zg) < s, then xq is the only such solution.

Proof. Suppose there exists z with card(z) < s and Az = b. Then card(z — o) < 2s so by RIP,
0= [[Az — Azoll2 = [[A(z — m0)[l2 = (1 — d24) ]|z — 2ol
S0 2z = xg. ]
A subtler example of this principle is the following;:
Theorem 2 (Candes, Romberg, Tao [?]). Suppose A has 4s-RIP constant 045 < i. Suppose
xo € argmin, {card(z) : Az = b}

and
x1 € argmin, {||z||; : Az = b}.

If card(zo) < s then z1 = xp.



Proof. In the proof of the previous proposition, we used RIP on z — z5. We would like to do so
here on
r=x1 — Zo,

but we can’t since r is not sparse. Instead the strategy will be to use RIP on sparse pieces of r,
absorbing the smaller such pieces into the largest. So, for any vector p € R™ and any index set

I C{1,...,n}, define p; € R" by
o Dj jel

Let I = supp(zp). Then, since xy and rre have disjoint supports,
[zollr = [[z1llr = llzo + rllt = [lwo + rrells = [[rrlls = llzollx + llrrell — 7zl
SO
[rrells < lIrellr-

Now partition I¢ into sets I,k = 1,2, ..., of size 3s (except for the last one, which may be smaller),
so that
Irjl > |rj|if j € I and j' € Iy with k <K'

1
Iyl < 55 > I,

JE€Ik

Then for all j’ € I,q,

ie.
1
Iz lloo < -llrnclly,
SO 1
Hr1k+1||2 <v 38|’T1k+1||00 < 7Hrlk||1'

V3s

Then, using our earlier estimate of ryc in terms of r;, we are able to absorb the small pieces of r
into the main one, with, crucially, a factor less than 1:

S lrnlle < —= S el = ——llrzel < —=llrrlls < —= -

k>2 E>1
Finally,
0= [l Azr — Avolla = |[AGrs +71,) + Xyog Ars, |
= (A +rn)llz = Xgpso [[Ars 2
> (L=0as)llrr +rnllz = (14 035) Dogso 7 ll2
= (1= das)llrrllz — %(1 + Oas)|7r |2
= c(das)lrrll2,
where ¢(6) > 0 as long as 6 < (1 —1/v/3)/(1+1/+/3) = 0.26795.... Hence r; = 0, so rjc = 0, so
r=0. ]
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