University of Wisconsin-Madison

Lecturer: Benjamin Recht

CS838 Topics In Optimization: Convex Geometry in High-Dimensional Data Analysis

February 9, 2010

Scribe: Jesse Holzer

Lecture 7

1 Norms on \mathbb{R}^n

We will make use of all of the following norms

$$|x|| = ||x||_2 = \left(\sum_{i=1}^n x_i^2\right)^{1/2}$$
$$||x||_1 = \sum_{i=1}^n |x_i|$$
$$||x||_{\infty} = \max_{i=1\dots n} |x_i|$$

Fact 1. If x is s-sparse then

$$\|x\|_{\infty} \le \|x\|_{2} \le \|x\|_{1} \le \sqrt{s} \|x\|_{2} \le s \|x\|_{\infty}.$$

These inequalities can all be verified immediately from the definitions of the norms.

2 Compressed sensing

Given $p, n, A \in \mathbb{R}^{p \times n}, b \in \mathbb{R}^m, \epsilon \ge 0$ the archetypal problem of compressed sensing is the following:

$$\begin{array}{l} \min \quad \operatorname{card}(x) \\ \text{s.t.} \quad \|Ax - b\|_2 \le \epsilon. \end{array}$$
 (1)

As a relaxation, or, really, surrogate, of (1), we consider the following problem:

$$\min_{\substack{\|x\|_1 \\ \text{s.t.} \quad \|Ax - b\|_2 \le \epsilon. } }$$

$$(2)$$

Now, why is (2) a sensible surrogate for (1)? In a sense, the l^1 norm is the best convex relaxation of the card function, which is not convex:

Fact 2. If $f: [-1,1]^n \to \mathbb{R}$ is convex and $f(x) \leq \operatorname{card}(x)$, then $f(x) \leq ||x||_1$.

Proof (Sid Barman, next lecture). The main idea is to express |x| as a convex combination of the vertices of $[0,1]^n$.

Also, the l^1 unit ball is the convex hull of the length-one cardinality-one vectors:

Fact 3. $\{x \in \mathbb{R}^n : ||x||_1 \le 1\} = \operatorname{conv}\{e_1, -e_1, \dots, e_n, -e_n\}$

Proof. Any nonzero x in the l^1 unit ball satisfies

$$x = \sum_{i} \frac{|x_i|}{\|x\|_1} \operatorname{sgn}(x_i) e_i,$$

and, conversely, if

$$x = \sum_{i} (c_i - d_i)e_i$$

with $c, d \ge 0$ and $1^T(c+d) = 1$, then $||x||_1 = 1^T |c-d| \le 1$.

And, we can draw pictures that suggest that a minimum-cardinality solution to a random linear system is likely also to be a minimum l^1 -norm solution. We now try to formalize this observation.

3 Restricted isometry property

Definition 1. Let $A \in \mathbb{R}^{p \times n}$, $s \ge 0$. The s-restricted isometry constant δ_s of A is the smallest nonnegative number δ such that

$$(1-\delta)\|x\|_2 \le \|Ax\|_2 \le (1+\delta)\|x\|_2$$

for all x with $\operatorname{card}(x) \leq s$. If $\delta_s < 1$, then A is said to be an s-restricted isometry and to have the s-restricted isometry property (RIP).

Fact 4. If $s \leq s'$ then $\delta_s \leq \delta_{s'}$.

How might we check s-RIP? For $I \subseteq \{1, \ldots, n\}$ let A_I be the submatrix of A consisting of those columns of A with indices in I. Check the extreme singular values of all A_I , |I| = s. Then δ_s is the smallest number δ such that all these values lie in $[1 - \delta, 1 + \delta]$.

The point of RIP is that it sometimes ensures that the solution set to (1) is well-behaved. For example:

Proposition 1. Suppose A has 2s-RIP constant $\delta_{2s} < 1$. If Ax = b has a solution x_0 with $\operatorname{card}(x_0) \leq s$, then x_0 is the only such solution.

Proof. Suppose there exists z with $\operatorname{card}(z) \leq s$ and Az = b. Then $\operatorname{card}(z - x_0) \leq 2s$ so by RIP,

$$0 = ||Az - Ax_0||_2 = ||A(z - x_0)||_2 \ge (1 - \delta_{2s})||z - x_0||_2$$

so $z = x_0$.

A subtler example of this principle is the following:

Theorem 2 (Candes, Romberg, Tao [?]). Suppose A has 4s-RIP constant $\delta_{4s} \leq \frac{1}{4}$. Suppose

$$x_0 \in \operatorname{argmin}_x \{\operatorname{card}(x) : Ax = b\}$$

and

$$x_1 \in \operatorname{argmin}_x\{\|x\|_1 : Ax = b\}$$

If $\operatorname{card}(x_0) \leq s$ then $x_1 = x_0$.

Proof. In the proof of the previous proposition, we used RIP on $z - x_0$. We would like to do so here on

$$r = x_1 - x_0,$$

but we can't since r is not sparse. Instead the strategy will be to use RIP on sparse pieces of r, absorbing the smaller such pieces into the largest. So, for any vector $p \in \mathbb{R}^n$ and any index set $I \subseteq \{1, \ldots, n\}$, define $p_I \in \mathbb{R}^n$ by

$$(p_I)_j = \begin{cases} p_j & j \in I \\ 0 & j \notin I \end{cases}$$

Let $I = \text{supp}(x_0)$. Then, since x_0 and r_{I^c} have disjoint supports,

$$|x_0||_1 \ge ||x_1||_1 = ||x_0 + r||_1 \ge ||x_0 + r_{I^c}||_1 - ||r_I||_1 = ||x_0||_1 + ||r_{I^c}||_1 - ||r_I||_1,$$

 \mathbf{SO}

$$||r_{I^c}||_1 \le ||r_I||_1.$$

Now partition I^c into sets $I_k, k = 1, 2, ...,$ of size 3s (except for the last one, which may be smaller), so that

$$|r_j| \ge |r_{j'}|$$
 if $j \in I_k$ and $j' \in I_{k'}$ with $k \le k'$.

Then for all $j' \in I_{k+1}$,

$$|r_{j'}| \le \frac{1}{3s} \sum_{j \in I_k} |r_j|,$$

i.e.

$$||r_{I_{k+1}}||_{\infty} \le \frac{1}{3s} ||r_{I_k}||_1,$$

 \mathbf{SO}

$$||r_{I_{k+1}}||_2 \le \sqrt{3s} ||r_{I_{k+1}}||_\infty \le \frac{1}{\sqrt{3s}} ||r_{I_k}||_1.$$

Then, using our earlier estimate of r_{I^c} in terms of r_I , we are able to absorb the small pieces of r into the main one, with, crucially, a factor less than 1:

$$\sum_{k \ge 2} \|r_{I_k}\|_2 \le \frac{1}{\sqrt{3s}} \sum_{k \ge 1} \|r_{I_k}\|_1 = \frac{1}{\sqrt{3s}} \|r_{I^c}\|_1 \le \frac{1}{\sqrt{3s}} \|r_I\|_1 \le \frac{1}{\sqrt{3s}} \|r_I\|_2.$$

Finally,

$$0 = \|Ax_1 - Ax_0\|_2 = \|A(r_I + r_{I_1}) + \sum_{k \ge 2} Ar_{I_k}\|_2$$

$$\geq \|A(r_I + r_{I_1})\|_2 - \sum_{k \ge 2} \|Ar_{I_k}\|_2$$

$$\geq (1 - \delta_{4s})\|r_I + r_{I_1}\|_2 - (1 + \delta_{3s})\sum_{k \ge 2} \|r_{I_k}\|_2$$

$$\geq (1 - \delta_{4s})\|r_I\|_2 - \frac{1}{\sqrt{3}}(1 + \delta_{4s})\|r_I\|_2$$

$$\geq c(\delta_{4s})\|r_I\|_2,$$

where $c(\delta) > 0$ as long as $\delta < (1 - 1/\sqrt{3})/(1 + 1/\sqrt{3}) = 0.26795...$ Hence $r_I = 0$, so $r_{I^c} = 0$, so r = 0.

References

 E. J. Candès, J. Romberg, and T. Tao. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. *IEEE Trans. Inform. Theory*, 52(2):489–509, 2006.