CS838 Topics In Optimization: Convex Geometry in High-Dimensional Data Analysis

February 9, 2010
Scribe: Jesse Holzer

Lecture 7

1 Norms on \mathbb{R}^{n}

We will make use of all of the following norms

$$
\begin{gathered}
\|x\|=\|x\|_{2}=\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{1 / 2} \\
\|x\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right| \\
\|x\|_{\infty}=\max _{i=1 \ldots n}\left|x_{i}\right|
\end{gathered}
$$

Fact 1. If x is s-sparse then

$$
\|x\|_{\infty} \leq\|x\|_{2} \leq\|x\|_{1} \leq \sqrt{s}\|x\|_{2} \leq s\|x\|_{\infty} .
$$

These inequalities can all be verified immediately from the definitions of the norms.

2 Compressed sensing

Given $p, n, A \in \mathbb{R}^{p \times n}, b \in \mathbb{R}^{m}, \epsilon \geq 0$ the archetypal problem of compressed sensing is the following:

$$
\begin{array}{ll}
\min & \operatorname{card}(x) \\
\text { s.t. } & \|A x-b\|_{2} \leq \epsilon . \tag{1}
\end{array}
$$

As a relaxation, or, really, surrogate, of (1), we consider the following problem:

$$
\begin{array}{ll}
\min & \|x\|_{1} \\
\text { s.t. } & \|A x-b\|_{2} \leq \epsilon . \tag{2}
\end{array}
$$

Now, why is (2) a sensible surrogate for (1)? In a sense, the l^{1} norm is the best convex relaxation of the card function, which is not convex:

Fact 2. If $f:[-1,1]^{n} \rightarrow \mathbb{R}$ is convex and $f(x) \leq \operatorname{card}(x)$, then $f(x) \leq\|x\|_{1}$.
Proof (Sid Barman, next lecture). The main idea is to express $|x|$ as a convex combination of the vertices of $[0,1]^{n}$.

Also, the l^{1} unit ball is the convex hull of the length-one cardinality-one vectors:
Fact 3. $\left\{x \in \mathbb{R}^{n}:\|x\|_{1} \leq 1\right\}=\operatorname{conv}\left\{e_{1},-e_{1}, \ldots, e_{n},-e_{n}\right\}$

Proof. Any nonzero x in the l^{1} unit ball satisfies

$$
x=\sum_{i} \frac{\left|x_{i}\right|}{\|x\|_{1}} \operatorname{sgn}\left(x_{i}\right) e_{i},
$$

and, conversely, if

$$
x=\sum_{i}\left(c_{i}-d_{i}\right) e_{i}
$$

with $c, d \geq 0$ and $1^{T}(c+d)=1$, then $\|x\|_{1}=1^{T}|c-d| \leq 1$.
And, we can draw pictures that suggest that a minimum-cardinality solution to a random linear system is likely also to be a minimum l^{1}-norm solution. We now try to formalize this observation.

3 Restricted isometry property

Definition 1. Let $A \in \mathbb{R}^{p \times n}, s \geq 0$. The s-restricted isometry constant δ_{s} of A is the smallest nonnegative number δ such that

$$
(1-\delta)\|x\|_{2} \leq\|A x\|_{2} \leq(1+\delta)\|x\|_{2}
$$

for all x with $\operatorname{card}(x) \leq s$. If $\delta_{s}<1$, then A is said to be an s-restricted isometry and to have the s-restricted isometry property (RIP).

Fact 4. If $s \leq s^{\prime}$ then $\delta_{s} \leq \delta_{s^{\prime}}$.
How might we check s-RIP? For $I \subseteq\{1, \ldots, n\}$ let A_{I} be the submatrix of A consisting of those columns of A with indices in I. Check the extreme singular values of all $A_{I},|I|=s$. Then δ_{s} is the smallest number δ such that all these values lie in $[1-\delta, 1+\delta]$.

The point of RIP is that it sometimes ensures that the solution set to (1) is well-behaved. For example:

Proposition 1. Suppose A has $2 s$-RIP constant $\delta_{2 s}<1$. If $A x=b$ has a solution x_{0} with $\operatorname{card}\left(x_{0}\right) \leq s$, then x_{0} is the only such solution.

Proof. Suppose there exists z with $\operatorname{card}(z) \leq s$ and $A z=b$. Then $\operatorname{card}\left(z-x_{0}\right) \leq 2 s$ so by RIP,

$$
0=\left\|A z-A x_{0}\right\|_{2}=\left\|A\left(z-x_{0}\right)\right\|_{2} \geq\left(1-\delta_{2 s}\right)\left\|z-x_{0}\right\|_{2}
$$

so $z=x_{0}$.
A subtler example of this principle is the following:
Theorem 2 (Candes, Romberg, Tao [?]). Suppose A has $4 s$-RIP constant $\delta_{4 s} \leq \frac{1}{4}$. Suppose

$$
x_{0} \in \operatorname{argmin}_{x}\{\operatorname{card}(x): A x=b\}
$$

and

$$
x_{1} \in \operatorname{argmin}_{x}\left\{\|x\|_{1}: A x=b\right\} .
$$

If $\operatorname{card}\left(x_{0}\right) \leq s$ then $x_{1}=x_{0}$.

Proof. In the proof of the previous proposition, we used RIP on $z-x_{0}$. We would like to do so here on

$$
r=x_{1}-x_{0},
$$

but we can't since r is not sparse. Instead the strategy will be to use RIP on sparse pieces of r, absorbing the smaller such pieces into the largest. So, for any vector $p \in \mathbb{R}^{n}$ and any index set $I \subseteq\{1, \ldots, n\}$, define $p_{I} \in \mathbb{R}^{n}$ by

$$
\left(p_{I}\right)_{j}=\left\{\begin{array}{cc}
p_{j} & j \in I \\
0 & j \notin I
\end{array} .\right.
$$

Let $I=\operatorname{supp}\left(x_{0}\right)$. Then, since x_{0} and $r_{I^{c}}$ have disjoint supports,

$$
\left\|x_{0}\right\|_{1} \geq\left\|x_{1}\right\|_{1}=\left\|x_{0}+r\right\|_{1} \geq\left\|x_{0}+r_{I^{c}}\right\|_{1}-\left\|r_{I}\right\|_{1}=\left\|x_{0}\right\|_{1}+\left\|r_{I^{c}}\right\|_{1}-\left\|r_{I}\right\|_{1},
$$

so

$$
\left\|r_{I^{c}}\right\|_{1} \leq\left\|r_{I}\right\|_{1} .
$$

Now partition I^{c} into sets $I_{k}, k=1,2, \ldots$, of size $3 s$ (except for the last one, which may be smaller), so that

$$
\left|r_{j}\right| \geq\left|r_{j^{\prime}}\right| \text { if } j \in I_{k} \text { and } j^{\prime} \in I_{k^{\prime}} \text { with } k \leq k^{\prime} .
$$

Then for all $j^{\prime} \in I_{k+1}$,

$$
\left|r_{j^{\prime}}\right| \leq \frac{1}{3 s} \sum_{j \in I_{k}}\left|r_{j}\right|,
$$

i.e.

$$
\left\|r_{I_{k+1}}\right\|_{\infty} \leq \frac{1}{3 s}\left\|r_{I_{k}}\right\|_{1}
$$

so

$$
\left\|r_{I_{k+1}}\right\|_{2} \leq \sqrt{3 s}\left\|r_{I_{k+1}}\right\|_{\infty} \leq \frac{1}{\sqrt{3 s}}\left\|r_{I_{k}}\right\|_{1} .
$$

Then, using our earlier estimate of $r_{I^{c}}$ in terms of r_{I}, we are able to absorb the small pieces of r into the main one, with, crucially, a factor less than 1 :

$$
\sum_{k \geq 2}\left\|r_{I_{k}}\right\|_{2} \leq \frac{1}{\sqrt{3 s}} \sum_{k \geq 1}\left\|r_{I_{k}}\right\|_{1}=\frac{1}{\sqrt{3 s}}\left\|r_{I^{c}}\right\|_{1} \leq \frac{1}{\sqrt{3 s}}\left\|r_{I}\right\|_{1} \leq \frac{1}{\sqrt{3}}\left\|r_{I}\right\|_{2}
$$

Finally,

$$
\begin{aligned}
0=\left\|A x_{1}-A x_{0}\right\|_{2} & =\left\|A\left(r_{I}+r_{I_{1}}\right)+\sum_{k \geq 2} A r_{I_{k}}\right\|_{2} \\
& \geq\left\|A\left(r_{I}+r_{I_{1}}\right)\right\|_{2}-\sum_{k \geq 2}\left\|A r_{I_{k}}\right\|_{2} \\
& \geq\left(1-\delta_{4 s}\right)\left\|r_{I}+r_{I_{1}}\right\|_{2}-\left(1+\delta_{3 s}\right) \sum_{k \geq 2}\left\|r_{I_{k}}\right\|_{2} \\
& \geq\left(1-\delta_{4 s}\right)\left\|r_{I}\right\|_{2}-\frac{1}{\sqrt{3}}\left(1+\delta_{4 s}\right)\left\|r_{I}\right\|_{2} \\
& \geq c\left(\delta_{4 s}\right)\left\|r_{I}\right\|_{2},
\end{aligned}
$$

where $c(\delta)>0$ as long as $\delta<(1-1 / \sqrt{3}) /(1+1 / \sqrt{3})=0.26795 \ldots$. Hence $r_{I}=0$, so $r_{I^{c}}=0$, so $r=0$.

References

[1] E. J. Candès, J. Romberg, and T. Tao. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inform. Theory, 52(2):489-509, 2006.

