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Lecture 7

1 Norms on Rn

We will make use of all of the following norms

‖x‖ = ‖x‖2 =

(
n∑

i=1

x2
i

)1/2

‖x‖1 =
n∑

i=1

|xi|

‖x‖∞ = max
i=1...n

|xi|

Fact 1. If x is s-sparse then

‖x‖∞ ≤ ‖x‖2 ≤ ‖x‖1 ≤
√
s‖x‖2 ≤ s‖x‖∞.

These inequalities can all be verified immediately from the definitions of the norms.

2 Compressed sensing

Given p, n,A ∈ Rp×n, b ∈ Rm, ε ≥ 0 the archetypal problem of compressed sensing is the following:

min card(x)
s.t. ‖Ax− b‖2 ≤ ε.

(1)

As a relaxation, or, really, surrogate, of (1), we consider the following problem:

min ‖x‖1
s.t. ‖Ax− b‖2 ≤ ε.

(2)

Now, why is (2) a sensible surrogate for (1)? In a sense, the l1 norm is the best convex relaxation
of the card function, which is not convex:

Fact 2. If f : [−1, 1]n → R is convex and f(x) ≤ card(x), then f(x) ≤ ‖x‖1.

Proof (Sid Barman, next lecture). The main idea is to express |x| as a convex combination of the
vertices of [0, 1]n.

Also, the l1 unit ball is the convex hull of the length-one cardinality-one vectors:

Fact 3. {x ∈ Rn : ‖x‖1 ≤ 1} = conv{e1,−e1, . . . , en,−en}
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Proof. Any nonzero x in the l1 unit ball satisfies

x =
∑

i

|xi|
‖x‖1

sgn(xi)ei,

and, conversely, if
x =

∑
i

(ci − di)ei

with c, d ≥ 0 and 1T (c+ d) = 1, then ‖x‖1 = 1T |c− d| ≤ 1.

And, we can draw pictures that suggest that a minimum-cardinality solution to a random linear
system is likely also to be a minimum l1-norm solution. We now try to formalize this observation.

3 Restricted isometry property

Definition 1. Let A ∈ Rp×n, s ≥ 0 . The s-restricted isometry constant δs of A is the smallest
nonnegative number δ such that

(1− δ)‖x‖2 ≤ ‖Ax‖2 ≤ (1 + δ)‖x‖2

for all x with card(x) ≤ s. If δs < 1, then A is said to be an s-restricted isometry and to have the
s-restricted isometry property (RIP).

Fact 4. If s ≤ s′ then δs ≤ δs′.

How might we check s-RIP? For I ⊆ {1, . . . , n} let AI be the submatrix of A consisting of those
columns of A with indices in I. Check the extreme singular values of all AI , |I| = s. Then δs is
the smallest number δ such that all these values lie in [1− δ, 1 + δ].

The point of RIP is that it sometimes ensures that the solution set to (1) is well-behaved. For
example:

Proposition 1. Suppose A has 2s-RIP constant δ2s < 1. If Ax = b has a solution x0 with
card(x0) ≤ s, then x0 is the only such solution.

Proof. Suppose there exists z with card(z) ≤ s and Az = b. Then card(z − x0) ≤ 2s so by RIP,

0 = ‖Az −Ax0‖2 = ‖A(z − x0)‖2 ≥ (1− δ2s)‖z − x0‖2

so z = x0.

A subtler example of this principle is the following:

Theorem 2 (Candes, Romberg, Tao [?]). Suppose A has 4s-RIP constant δ4s ≤ 1
4 . Suppose

x0 ∈ argminx{card(x) : Ax = b}

and
x1 ∈ argminx{‖x‖1 : Ax = b}.

If card(x0) ≤ s then x1 = x0.
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Proof. In the proof of the previous proposition, we used RIP on z − x0. We would like to do so
here on

r = x1 − x0,

but we can’t since r is not sparse. Instead the strategy will be to use RIP on sparse pieces of r,
absorbing the smaller such pieces into the largest. So, for any vector p ∈ Rn and any index set
I ⊆ {1, . . . , n}, define pI ∈ Rn by

(pI)j =
{
pj j ∈ I
0 j /∈ I .

Let I = supp(x0). Then, since x0 and rIc have disjoint supports,

‖x0‖1 ≥ ‖x1‖1 = ‖x0 + r‖1 ≥ ‖x0 + rIc‖1 − ‖rI‖1 = ‖x0‖1 + ‖rIc‖1 − ‖rI‖1,

so
‖rIc‖1 ≤ ‖rI‖1.

Now partition Ic into sets Ik, k = 1, 2, . . . , of size 3s (except for the last one, which may be smaller),
so that

|rj | ≥ |rj′ | if j ∈ Ik and j′ ∈ Ik′ with k ≤ k′.
Then for all j′ ∈ Ik+1,

|rj′ | ≤ 1
3s

∑
j∈Ik

|rj |,

i.e.
‖rIk+1

‖∞ ≤
1
3s
‖rIk
‖1,

so
‖rIk+1

‖2 ≤
√

3s‖rIk+1
‖∞ ≤

1√
3s
‖rIk
‖1.

Then, using our earlier estimate of rIc in terms of rI , we are able to absorb the small pieces of r
into the main one, with, crucially, a factor less than 1:∑

k≥2

‖rIk
‖2 ≤

1√
3s

∑
k≥1

‖rIk
‖1 =

1√
3s
‖rIc‖1 ≤

1√
3s
‖rI‖1 ≤

1√
3
‖rI‖2.

Finally,
0 = ‖Ax1 −Ax0‖2 =

∥∥∥A(rI + rI1) +
∑

k≥2ArIk

∥∥∥
2

≥ ‖A(rI + rI1)‖2 −
∑

k≥2 ‖ArIk
‖2

≥ (1− δ4s)‖rI + rI1‖2 − (1 + δ3s)
∑

k≥2 ‖rIk
‖2

≥ (1− δ4s)‖rI‖2 − 1√
3
(1 + δ4s)‖rI‖2

≥ c(δ4s)‖rI‖2,

where c(δ) > 0 as long as δ < (1 − 1/
√

3)/(1 + 1/
√

3) = 0.26795 . . . . Hence rI = 0, so rIc = 0, so
r = 0.
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