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Co-Occurrence observations 



Co-Occurrence observations 



Network Inference for Co-
Occurrences (NICO) for telephony 

5 6 

1 

8 7 

12 

4 

10 

3 

11 

5 6 

1 

8 7 

12 

15 
13 

2 

13 

10 

6 

2 2 

6 7 8 

12 
John Treichler 

others at 3-letter agency 
photo not available 

No knowledge of pathway 
structures; only know which 
components are activated in 
each pathway 



Network Inference from  
Linear Pathways 

We observe that a set of nodes have been 
activated. 
–  Assuming the nodes were activated along a linear 

pathway, we want to reconstruct the pathway through 
the network. 
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Network Inference from  
Ordered Linear Pathways 

With pathway order information, inference is easy 
–  Insert edges according to paths 
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Network Inference from  
Unordered Linear Co-occurrences 
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Without pathway order information,  



Network Inference from  
Unordered Linear Co-occurrences 

Without pathway order information, every 
permutation leads to a data-consistent network 
–  Combinatorial explosion of the solution set 
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Intuition:  
Which networks are more plausible? 

•  Vertices that co-occur 
frequently are probably 
close together 

•  Moreover, pathways that 
are similar (eg red, green, 
purple) probably have 
activated vertices arranged 
in a similar order 
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Assumption: The system has been engineered or 
evolved to re-use existing components (nodes, links) 
in new pathways. 



Observation: Signaling probabilities 

•  Suppose we could directly measure network signaling. Then 
we could compute empirical next-hop signaling probabilities 
between nodes: 
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•  Then we could 
calculate a 
most probable 
ordering for a 
particular co-
occurrence 



Estimate them together 

•  So if I had the order 
information, I could 
estimate the transition 
probabilities… 

•  And if I had the 
transition probabilities, 
I could estimate the 
order… 



EM Algorithm 
  Initialize Markov chain parameters from unordered co-

occurrences 

  E-step: Compute likelihood of orders of each pathway 
using the current estimate of the signaling probabilities 

  M-step: Estimate signaling probabilities based on 
expected permutations. 

  When the algorithm converges, use the signaling 
probabilities and ordered pathways to reconstruct the 
network 
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Error on Simulated  
Shortest Path Networks 



Internet Activation Data 
Objectives: 
1) traceroute measures Internet 

paths, router activation patterns 
2) Real routing, not random walks 

Data Specs: 
Probe from 3 srcs to 83 dests 
1105 node, 1317 edge network 
Paths between 8 and 27 hops 

Algorithm: 
- MCEM when Nm > 12 
- 50 random initializations 

Estimate a 1,105 x 1,105 matrix 
(with only 1,317 non-zeros) 
from 3,988 transitions 



Correct (1042) 

False negative (275) 
False positive (273) 



Optimization 

•  Under the Markov chain model, network 
inference consists in estimating the true 
transition frequencies θ. Given a prior P(θ) we 
can use the maximum a posteriori criterion: 

•  If P(θ) is uniform over all the possible θ then 
this reduces to the maximum likelihood 
criterion. 



Optimization problem 



Optimization problem 



Restricting the Solution Set 
•  If Routing is by shortest-path, not all 

permutations of co-occurrences result in 
data-feasible networks. 
–  This is because for shortest path networks, all 

subpaths of a shortest path must also be shortest 
paths. 

–  So if this is the shortest path from A to E, the 
following are also shortest paths: {ABCD}, 
{BCDE}, {ABC}, {BCD}, {CDE}, {AB}, {BC}, 
{CD}, {DE}. 

A B C D E 



Restricting the Solution Set 
•  If Routing is by shortest-path, not all 

permutations of co-occurrences result in 
data-feasible networks. 
–  This is because for shortest path networks, all 

subpaths of a shortest path must also be shortest 
paths. 

–  Therefore, when you have your resulting topology, 
there cannot be links from A->C, A->D, B->D, etc. 
All backwards links are still OK, but this still 
imposes a sizable restriction. 

A B C D E 



Restricting the Solution Set 

? ? ? ? 

With a correct 
estimate of the 
probability transition 
matrix, only 2(n-1) 

orderings will have 
positive likelihood. 

{A, B, C, D} 



Future Questions 

•  How do we impose shortest path 
routing on the feasible set? 
–  Is there a better way to think about the restriction when 

you don’t have the correct signaling probabilities? Then all 
permutations may again have positive likelihood, but the 
resulting topology won’t necessarily be feasible for shortest 
path. 

•  Can we extend the framework to tree-
shaped pathways? 
–  Network inference from co-occurrences is especially 

important in biological networks where signals do not take 
linear paths. 



Thank you! 



Extra Slides 



Generative Model  
for Linear Pathways 

•  Model pathway generation by a random walk on the graph 
according to next-hop signaling probability matrix A: 

–  The source node is drawn at random from the nodes in the graph. 
–  The next hop is then drawn according to the transition probabilities. 

–  This is the generative model– our assumption of how the co-occurrence 
observations are generated.  
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Obviously in a lot of practical or real-life 
scenarios, signaling does not occur as a 
random walk. But it turns out this is a 
useful way of modeling the problem! 



Generative Model  
for Linear Pathways 

•  Model pathway generation by a random walk on the graph 
according to next-hop signaling probability matrix A. 

•  Then we can reduce the problem of finding topology and 
information flow to simply estimating the matrix A. 

•  Using this model, with knowledge of A, we can calculate the 
likelihood of any particular path given a co-occurrence 
observation. 
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For example if our co-occurrence is 
2, 3, 6, 7, the order 2->6->7->3 
has likelihood 1/5 and is the only 
order with nonzero likelihood. 



Other Applications 

•  Where else is this result applicable? 

•  Identifying misconfigured or misbehaving 
routers 

•  Exponential splitting– choosing link 
weights for OSPF for optimal load 
balancing  

•  Fast computation of shortest-paths in a 
network 



Shortest-Path Routing 

•  Let’s look at P for a shortest-path 
routing network. 
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Shortest-Path Routing Example 

•  Let’s look at P for a shortest-path routing 
network. 
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Shortest-Path Routing Example 

•  Now say we get the co-occurrence “A, B, C”. 
What is the score of every ordering? 
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Shortest-Path Routing Example 

•  Now say we get the co-occurrence “A, B, C” 
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•  If we have information about 
the first node, then the only 
permutation with positive 
score is the correct one! 



Very General 

•  This result that the only permutation with 
positive score actually holds under very 
general conditions. 

•  It’s okay if the network has asymmetric 
links. 

•  It’s okay if the routing isn’t shortest-path, 
as long as it follows a “nested” routing 
policy. 

•  It’s okay if there are equal-cost paths, as 
long as the cost metric is hop-count. 



Nested Routing 

•  It’s okay if the routing isn’t shortest-path, as 
long as it follows a “nested” routing policy. 

–  When we think of shortest-path routing, we know 
that shortest paths are made up of shortest paths: 

–  So if this is the shortest path from A to E, the 
following are also shortest paths: {ABCD}, 
{BCDE}, {ABC}, {BCD}, {CDE}, {AB}, {BC}, 
{CD}, {DE}. 

A B C D E 



Nested Routing 

•  It’s okay if the routing isn’t shortest-path, as 
long as it follows a “nested” routing policy. 

–  When we think of shortest-path routing, we know 
that shortest paths are made up of shortest paths: 

–  As long as this principle holds– that paths chosen 
by the policy are made up of other chosen paths– 
then the results hold. 

A B C D E 



Equal-Cost Paths 

•  It’s okay if there are equal-cost paths, as 
long as the cost metric is hop-count. 

– Hop count is often the cost metric. For 
example, the version of RIP (Routing 
Information Protocol) implemented in Cisco 
routers uses hop count by default. 

– Even if hop count is not the cost metric, the 
result actually still holds if you use the 
transition matrix of the dual graph, or a link-
to-link transition matrix. 



Theorem 1 

•  Then an ordering π = [s, …] is the correct 
ordering for the route if and only if the 
score, derived from the transition matrix 
P, of the route {xs, xπ(2) , … , xπ(n)} is 
positive. 

•  A1: The network uses a nested routing policy. 
•  A2: X = {x1 , … , xn} is an unordered co-occurrence observation 

which consists of nodes from a true route in the network. 
•  A3: The first node in the route is known; we denote this by xs 
•  A4: If there are equal-cost paths, the cost metric is hop count. 



Theorem 2 

•  Then an ordering π = [s, …] is the correct 
ordering for the route if and only if the 
score, derived from the transition matrix Q 
built from link-to-link transitions, of the 
route {xs, xπ(2) , … , xπ(n)} is positive. 

•  A1: The network uses a nested routing policy. 
•  A2: X = {x1 , … , xn} is an unordered co-occurrence 

observation which consists of nodes from a true route in 
the network. 

•  A3: The first node in the route is known; we denote this by 
xs 



Other Applications 

•  These theorems solve the co-occurrence 
ordering problem for graphs with nested 
routing policies. Where else is this result 
applicable? 

•  Identifying misconfigured or misbehaving 
routers 

•  Exponential splitting– choosing link weights 
for OSPF for optimal load balancing  

•  Fast computation of shortest-paths in a 
network 



Identifying Misbehaving Routers 

•  Then an ordering π = [s, …] is the correct 
ordering for the route if and only if the 
score, derived from the transition matrix 
P, of the route {xs, xπ(2) , … , xπ(n)} is 
positive. 

•  A1: The network uses a nested routing policy. 
•  A2: X = {x1 , … , xn} is an unordered co-occurrence observation 

which consists of nodes from a true route in the network. 
•  A3: The first node in the route is known; we denote this by xs 
•  A4: If there are equal-cost paths, the cost metric is hop count. 



Identifying Misbehaving Routers 

•  Then an ordering π = [s, …] is the correct 
ordering for the route if and only if the 
score, derived from the transition matrix P, 
of the route {xs, xπ(2) , … , xπ(n)} is positive. 

•  It seems that if a router reports a route 
with ordering π which is incorrect, we can 
identify it immediately by looking at the 
score of that route...  



Identifying Misbehaving Routers 

•  A1: The network uses a nested routing policy. 
•  A2: X = {x1 , … , xn} is an unordered co-occurrence observation 

which consists of nodes from a true route in the network. 
•  A3: The first node in the route is known; we denote this by xs 
•  A4: If there are equal-cost paths, the cost metric is hop count. 

•  … but the second assumption requires that 
the co-occurrence observation consists of 
nodes from a true route in the network. 

•  If a router misbehaves by sending a route 
that has nodes that aren’t in a real route, 
then the theorems don’t hold.  



Identifying Misbehaving Routers 

•  If a router misbehaves by sending a 
route that has nodes that aren’t in a 
real route, then the theorems don’t 
hold.  

•  The next step is to look more carefully 
at this case and see how likely it is for 
a router to report a route that cannot 
be identified as problematic. 

•  My hunch is that the router has to work 
pretty hard to fool us. 


