1/15

The Noisy Trigonometric Moment Problem

Badri Narayan

ECE Dept

April 27, 2010

Trigonometric Moment Problem

Given a sequence of *m* complex numbers $(x_k)_{k=1}^m$ and $x_0 > 0$, does there exist a positive Borel measure μ on [0, 1] such that x_k is the *k*th trigonometric moment with respect to μ ?

In other words, does there exist $\mu > 0$ supported on [0,1] such that

$$x_k = \int_0^1 e^{-i2\pi kt} \mu(dt)$$

for all $k \in \{0, ..., m\}$?

?

Note that x_k is simply the *k*th Fourier coefficient of μ .

3/15

Caratheodory's theorem

There exists a measure that solves the moment problem if and only if the Hermitian Toeplitz Matrix formed by x_0, \ldots, x_m , *viz*.

$$X = T(x) = \begin{pmatrix} x_0 & x_1 & \cdots & x_m \\ x_1^* & x_0 & \ddots & x_{m-1} \\ \vdots & \ddots & \ddots & \vdots \\ x_m^* & & \cdots & x_0 \end{pmatrix}$$

is positive semidefinite.

Caratheodory's theorem (contd.)

Furthermore, if $n = \operatorname{rank}(X)$, there exists a finitely atomic measure

$$\mu(dt) = \sum_{i=1}^n c_i \delta(t - \theta_i) dt,$$

where c_i s are positive and θ_i s are in [0, 1], solving the moment problem if and only if $X \succeq 0$.

4/15

イロン イロン イヨン イヨン 三日

Caratheodory's theorem (contd.)

Furthermore, if $n = \operatorname{rank}(X)$, there exists a finitely atomic measure

$$\mu(dt) = \sum_{i=1}^n c_i \delta(t-\theta_i) dt,$$

where c_i s are positive and θ_i s are in [0, 1], solving the moment problem if and only if $X \succeq 0$.

Let us verify the necessary conditions. For the given μ , note that

$$x_k = \sum_{i=1}^n c_i e^{i2\pi k\theta_i}$$

Caratheodory's theorem (contd.)

Furthermore, if $n = \operatorname{rank}(X)$, there exists a finitely atomic measure

$$\mu(dt) = \sum_{i=1}^n c_i \delta(t-\theta_i) dt,$$

where c_i s are positive and θ_i s are in [0, 1], solving the moment problem if and only if $X \succeq 0$.

Let us verify the necessary conditions. For the given μ , note that

$$x_k = \sum_{i=1}^n c_i e^{i2\pi k\theta_i}$$

Our key tool will be the Vandermonde Decomposition.

Vandermonde Decomposition

Any sequence of m consecutive values can be written as

$$\begin{pmatrix} x_{m+k-1} \\ \vdots \\ x_k \end{pmatrix} = \begin{bmatrix} \vec{z}_n \cdots \vec{z}_1 \end{bmatrix} \begin{pmatrix} c_1 e^{i2\pi k\theta_1} \\ \vdots \\ c_n e^{i2\pi k\theta_n} \end{pmatrix}$$

where
$$\vec{z}_i = [e^{i(m-1)\theta_i}, ..., e^{i\theta_i}, 1]^T$$
.

Vandermonde Decomposition

Any sequence of m consecutive values can be written as

$$\begin{pmatrix} x_{m+k-1} \\ \vdots \\ x_k \end{pmatrix} = [\vec{z}_n \cdots \vec{z}_1] \begin{pmatrix} c_1 e^{i2\pi k\theta_1} \\ \vdots \\ c_n e^{i2\pi k\theta_n} \end{pmatrix}$$

where $\vec{z}_i = [e^{i(m-1)\theta_i}, ..., e^{i\theta_i}, 1]^T$.

Repeating this for k = (1 - m) to 1, we have

$$X = \begin{bmatrix} \vec{z}_n \cdots \vec{z}_1 \end{bmatrix} \begin{pmatrix} c_1 & & \\ & \ddots & \\ & & c_n \end{pmatrix} \begin{pmatrix} \vec{z}_n^H \\ \vdots \\ \vec{z}_1^H \end{pmatrix} = \sum_{i=1}^n c_i \vec{z}_i \vec{z}_i^H$$

Clearly, rank $(X) = \min\{m, n\}$ and $X \succeq 0$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Put
$$m = n$$
, and $\vec{\alpha} = [\alpha_n, \dots, \alpha_1, 1]^T$. Then,
 $\vec{\alpha}^H X \vec{\alpha} = \sum_{i=1}^n c_i |\vec{\alpha}^H \vec{z}_i|^2$

So, $\alpha^H X \vec{\alpha} = 0$ if and only if

Put
$$m = n$$
, and $\vec{\alpha} = [\alpha_n, \dots, \alpha_1, 1]^T$. Then,

$$\vec{\alpha}^H X \vec{\alpha} = \sum_{i=1}^n c_i |\vec{\alpha}^H \vec{z}_i|^2$$

So, $\alpha^H X \vec{\alpha} = 0$ if and only if

• $\vec{\alpha}$ is the unique null vector with last coordinate equal to unity.

Put
$$m = n$$
, and $\vec{\alpha} = [\alpha_n, \ldots, \alpha_1, 1]^T$. Then,

$$\vec{\alpha}^H X \vec{\alpha} = \sum_{i=1}^n c_i |\vec{\alpha}^H \vec{z}_i|^2$$

So, $\alpha^H X \vec{\alpha} = 0$ if and only if

- $\vec{\alpha}$ is the unique null vector with last coordinate equal to unity.
- ► $\vec{\alpha}$ are the coefficients of the unique monic polynomial with $e^{i2\pi\theta_1}, \ldots, e^{i2\pi\theta_n}$ as roots.

Put
$$m = n$$
, and $\vec{\alpha} = [\alpha_n, \dots, \alpha_1, 1]^T$. Then,

$$\vec{\alpha}^H X \vec{\alpha} = \sum_{i=1}^n c_i |\vec{\alpha}^H \vec{z}_i|^2$$

So, $\alpha^H X \vec{\alpha} = 0$ if and only if

- $\vec{\alpha}$ is the unique null vector with last coordinate equal to unity.
- ► $\vec{\alpha}$ are the coefficients of the unique monic polynomial with $e^{i2\pi\theta_1}, \ldots, e^{i2\pi\theta_n}$ as roots.

Using the above, θ_i s and hence c_i s can be determined.

Put
$$m = n$$
, and $\vec{\alpha} = [\alpha_n, \dots, \alpha_1, 1]^T$. Then,

$$\vec{\alpha}^H X \vec{\alpha} = \sum_{i=1}^n c_i |\vec{\alpha}^H \vec{z}_i|^2$$

So, $\alpha^H X \vec{\alpha} = 0$ if and only if

- $\vec{\alpha}$ is the unique null vector with last coordinate equal to unity.
- ► $\vec{\alpha}$ are the coefficients of the unique monic polynomial with $e^{i2\pi\theta_1}, \ldots, e^{i2\pi\theta_n}$ as roots.

Using the above, θ_i s and hence c_i s can be determined. Note: A stable reformulation is possible.

Noisy Trigonometric Moment Problem

Let's add some noise! Suppose we observe

$$x_k = \sum_{i=1}^n c_i e^{i2\pi k\theta_i} + \nu_k$$

for $0 \le k \le m$, where

• c_i s are positive and θ_i s are in [0, 1].

• ν_k is *iid* Gaussian noise with variance σ^2 .

If we have $m \gg n$ observations, can we alleviate the distortion due to noise?

${\sf Approach}$

Approach

► The Toeplitz Hermitian Matrix formed by x_0, \ldots, x_n is low rank $(n \ll m)$.

Approach

- ► The Toeplitz Hermitian Matrix formed by x₀,..., x_n is low rank (n ≪ m).
- Every vector [x₀, x₁,..., x_m]^T ∈ ℝ₊ × ℂ^m is a valid candidate for the moment problem whenever the associated hermitian toeplitz matrix X ≥ 0 (Caratheodory's theorem).

8/15

Approach

- ► The Toeplitz Hermitian Matrix formed by x₀,..., x_n is low rank (n ≪ m).
- Every vector [x₀, x₁,..., x_m]^T ∈ ℝ₊ × ℂ^m is a valid candidate for the moment problem whenever the associated hermitian toeplitz matrix X ≥ 0 (Caratheodory's theorem).

A naïve first attempt:

$$\begin{aligned} \mininimize_{z\in\Omega} & \|z-x\|^2 & (\mathsf{P}) \\ \text{subject to } \operatorname{rank}(Z) &\leq n \\ & Z \succeq 0 \end{aligned}$$

where $\Omega = \mathbb{R}_+ \times \mathbb{C}^m$ and Z = T(z).

Approach

- ► The Toeplitz Hermitian Matrix formed by x₀,..., x_n is low rank (n ≪ m).
- Every vector [x₀, x₁,..., x_m]^T ∈ ℝ₊ × ℂ^m is a valid candidate for the moment problem whenever the associated hermitian toeplitz matrix X ≥ 0 (Caratheodory's theorem).

A naïve first attempt:

$$\begin{array}{ll} \mininimize_{z\in\Omega} \|z-x\|^2 & (\mathsf{P})\\ \text{subject to } \operatorname{rank}(Z) \leq n\\ Z \succeq 0 \end{array}$$

where $\Omega = \mathbb{R}_+ \times \mathbb{C}^m$ and Z = T(z). Our constraint set is not convex.

9/15

Reformulation

Let's use Lagrange Multipliers:

minimize_{$$z \in \Omega$$} $||z - x||^2 + \lambda \operatorname{rank}(Z)$ (L)
subject to $Z \succeq 0$

9/15

Reformulation

Let's use Lagrange Multipliers:

$$\begin{aligned} \min_{z \in \Omega} \|z - x\|^2 + \lambda \operatorname{rank}(Z) \qquad (L) \\ \text{subject to } Z \succeq 0 \end{aligned}$$

Finally, relax and minimize the convex envelope of the non-convex objective above:

$$\begin{array}{l} \text{minimize}_{z \in \Omega} \|z - x\|^2 + \lambda \|Z\|_* \\ \text{subject to } Z \succeq 0 \end{array}$$
 (R)

イロン イロン イヨン イヨン 三日

Reformulation

Let's use Lagrange Multipliers:

$$\begin{aligned} \min_{z \in \Omega} \|z - x\|^2 + \lambda \operatorname{rank}(Z) \qquad (L) \\ \text{subject to } Z \succeq 0 \end{aligned}$$

Finally, relax and minimize the convex envelope of the non-convex objective above:

$$\begin{array}{l} \text{minimize}_{z \in \Omega} \|z - x\|^2 + \lambda \|Z\|_* \\ \text{subject to } Z \succeq 0 \end{array}$$
 (R)

What λ ? We'll try a range of values and pick the best. Let's code it up!

10/15

Interlude – Alternating Projections

Here's a competing algorithm.

▶ Use SVD to find the best rank-*n* approximation.

- ▶ Use SVD to find the best rank-*n* approximation.
- Find the closest Toeplitz Hermitian approximation of the rank-n approximation.

- ▶ Use SVD to find the best rank-*n* approximation.
- Find the closest Toeplitz Hermitian approximation of the rank-n approximation.
- Alternate between the above two steps and repeat until convergence.

- ▶ Use SVD to find the best rank-*n* approximation.
- Find the closest Toeplitz Hermitian approximation of the rank-n approximation.
- Alternate between the above two steps and repeat until convergence.
- A few remarks are in order:

- ▶ Use SVD to find the best rank-*n* approximation.
- Find the closest Toeplitz Hermitian approximation of the rank-n approximation.
- Alternate between the above two steps and repeat until convergence.
- A few remarks are in order:
 - This method is proposed by Cadzow based on Von Neumman's method to find the closest point in the intersection of two subspaces.

- ▶ Use SVD to find the best rank-*n* approximation.
- Find the closest Toeplitz Hermitian approximation of the rank-n approximation.
- Alternate between the above two steps and repeat until convergence.
- A few remarks are in order:
 - This method is proposed by Cadzow based on Von Neumman's method to find the closest point in the intersection of two subspaces.
 - With two convex sets, we only get some point in the intersection, not the closest.

- ▶ Use SVD to find the best rank-*n* approximation.
- Find the closest Toeplitz Hermitian approximation of the rank-n approximation.
- Alternate between the above two steps and repeat until convergence.
- A few remarks are in order:
 - This method is proposed by Cadzow based on Von Neumman's method to find the closest point in the intersection of two subspaces.
 - With two convex sets, we only get some point in the intersection, not the closest.
 - But the space of low rank matrix is pretty hairy (certainly not convex). We don't have theoretical guarantees that this is even a good idea.

Here's a competing algorithm.

- ▶ Use SVD to find the best rank-*n* approximation.
- Find the closest Toeplitz Hermitian approximation of the rank-n approximation.
- Alternate between the above two steps and repeat until convergence.
- A few remarks are in order:
 - This method is proposed by Cadzow based on Von Neumman's method to find the closest point in the intersection of two subspaces.
 - With two convex sets, we only get some point in the intersection, not the closest.
 - But the space of low rank matrix is pretty hairy (certainly not convex). We don't have theoretical guarantees that this is even a good idea.

Let's code this up too!

Alternating Projections

```
function X = cadzow denoise(X, r)
% Find the closest PSD Toeplitz matrix that to X which
% has only r prominent eigen values.
tol = 0.001;
ratio = tol;
[n, \tilde{}] = size(X);
  while ratio \geq tol
    [U,S,V] = svd(X); %#ok<ASGLU,NASGU>
    ratio = S(r+1,r+1)/S(r,r);
    S((r+1):end,(r+1):end) = 0;
    cvx_begin quiet
        variable X(n,n) hermitian toeplitz;
        X == hermitian_semidefinite(n); %#ok<EQEFF>
       minimize norm(X-U*S*V');
    cvx end
  end
end
```

Nuclear Norm Relaxation

```
clc; clear; N = 5;
theta = [0.2 \ 0.5 \ 0.7]; c = [3 \ 5 \ 7];
x = fliplr([c zeros(1,N)]*vander([exp(1i*2*pi*theta) zeros(1,N)]));
y = awgn(x,5); y(1) = abs(y(1)); n = length(y);
gamma = logspace(-2.5.0.20);
sos = zeros(size(gamma));
fprintf('X_* = %.2f, (y-x) = %.2f\n\n', norm_nuc(toeplitz(x)), sum_square_abs(y-x));
fprintf('.-----.\n')
fprintf('| Status | gamma | (z-x) | (z-y) | Z_* |\n')
fprintf('|-----|\n')
for k = 1:length(gamma)
   cvx_begin quiet
     variable Z(n,n) toeplitz hermitian;
     z = Z(1,:);
     minimize sum square abs(z-v) + gamma(k)*norm nuc(Z);
     subject to
      Z(1) == x(1);
   cvx end
   z=Z(1,:);sos(k) = sum_square_abs(z-x);
   fprintf('| %8s | %8.4f | %8.2f | %8.2f | %6.2f |\n', ...
   cvx_status, gamma(k), sos(k), sum_square_abs(y-z), norm_nuc(Z));
end
fprintf('.----.\n')
fprintf('\nAfter Nuclear Norm minimization...\n');
fprintf('Best distance from true x = \%.2f\lnn', min(sos));
W = cadzow_denoise(toeplitz(y),3); w = W(1,:);
fprintf('\nAfter Cadzow denoising...\n');
fprintf('Best distance from true x = \%.2f(n/n', sum square abs(w-x)):
                                                        ▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの
```

Simulation Time

 $X_* = 120.00, (y-x) = 2.21$

Ì	Status	L	gamma	I	(z-x)	I	(z-y) Z_*
I –							
L	Solved	I.	0.0043	L	1.78		0.42 124.18
L	Solved	L	0.0058	L	1.78		0.42 124.16
L	Solved	L	0.0078	L	1.77		0.42 124.15
L	Solved	I.	0.0106	L	1.76		0.42 124.12
L	Solved	L	0.0144	L	1.75		0.42 124.08
L	Solved	L	0.0195	L	1.74		0.42 124.04
L	Solved	L	0.0264	L	1.72		0.43 123.98
L	Solved	L	0.0357	L	1.70		0.44 123.90
L	Solved	L	0.0483	L	1.68		0.45 123.81
L	Solved	L	0.0654	L	1.65		0.47 123.71
L	Solved	L	0.0886	L	1.62		0.51 123.60
L	Solved	L	0.1199	L	1.61		0.58 123.47
L	Solved	L	0.1624	L	1.62		0.70 123.32
L	Solved	L	0.2198	L	1.68		0.89 123.13
L	Solved	L	0.2976	L	1.84		1.20 122.89
L	Solved	L	0.4030	L	2.18	Ť.	1.75 122.64
L	Solved	L	0.5456	L	2.88		2.73 122.41
L	Solved	L	0.7386	L	4.22	Ť.	4.49 122.21
_							

After Nuclear Norm minimization... Best distance from true x = 1.61

After Cadzow denoising... Best distance from true x = 0.25

• The Nuclear Norm Minimization is too sensitive to λ .

- The Nuclear Norm Minimization is too sensitive to λ .
- With the positive semidefinite constraint, cvx failed to return a solution.

- The Nuclear Norm Minimization is too sensitive to λ .
- With the positive semidefinite constraint, cvx failed to return a solution.
- Penalize shrinkage?

- The Nuclear Norm Minimization is too sensitive to λ .
- With the positive semidefinite constraint, cvx failed to return a solution.
- Penalize shrinkage?
- Reformulate the problem as an SDP and try again?

- The Nuclear Norm Minimization is too sensitive to λ .
- With the positive semidefinite constraint, cvx failed to return a solution.
- Penalize shrinkage?
- Reformulate the problem as an SDP and try again?
- Must find out why Cadzow does so well.

Thank You!

Questions?