The Noisy Trigonometric Moment Problem

Badri Narayan

ECE Dept

April 27, 2010

Trigonometric Moment Problem

Given a sequence of m complex numbers $\left(x_{k}\right)_{k=1}^{m}$ and $x_{0}>0$, does there exist a positive Borel measure μ on $[0,1]$ such that x_{k} is the k th trigonometric moment with respect to μ ?

In other words, does there exist $\mu>0$ supported on $[0,1]$ such that

$$
x_{k}=\int_{0}^{1} e^{-i 2 \pi k t} \mu(d t)
$$

for all $k \in\{0, \ldots, m\}$?

Note that x_{k} is simply the k th Fourier coefficient of μ.

Caratheodory's theorem

There exists a measure that solves the moment problem if and only if the Hermitian Toeplitz Matrix formed by x_{0}, \ldots, x_{m}, viz.

$$
X=T(x)=\left(\begin{array}{cccc}
x_{0} & x_{1} & \cdots & x_{m} \\
x_{1}^{*} & x_{0} & \ddots & x_{m-1} \\
\vdots & \ddots & \ddots & \vdots \\
x_{m}^{*} & & \cdots & x_{0}
\end{array}\right)
$$

is positive semidefinite.

Caratheodory's theorem (contd.)

Furthermore, if $n=\operatorname{rank}(X)$, there exists a finitely atomic measure

$$
\mu(d t)=\sum_{i=1}^{n} c_{i} \delta\left(t-\theta_{i}\right) d t
$$

where $c_{i} \mathrm{~s}$ are positive and $\theta_{i} \mathrm{~s}$ are in $[0,1]$, solving the moment problem if and only if $X \succeq 0$.

Caratheodory's theorem (contd.)

Furthermore, if $n=\operatorname{rank}(X)$, there exists a finitely atomic measure

$$
\mu(d t)=\sum_{i=1}^{n} c_{i} \delta\left(t-\theta_{i}\right) d t
$$

where $c_{i} \mathrm{~s}$ are positive and $\theta_{i} \mathrm{~s}$ are in $[0,1]$, solving the moment problem if and only if $X \succeq 0$.

Let us verify the necessary conditions. For the given μ, note that

$$
x_{k}=\sum_{i=1}^{n} c_{i} e^{i 2 \pi k \theta_{i}}
$$

Caratheodory's theorem (contd.)

Furthermore, if $n=\operatorname{rank}(X)$, there exists a finitely atomic measure

$$
\mu(d t)=\sum_{i=1}^{n} c_{i} \delta\left(t-\theta_{i}\right) d t
$$

where $c_{i} \mathrm{~s}$ are positive and $\theta_{i} \mathrm{~s}$ are in $[0,1]$, solving the moment problem if and only if $X \succeq 0$.

Let us verify the necessary conditions. For the given μ, note that

$$
x_{k}=\sum_{i=1}^{n} c_{i} e^{i 2 \pi k \theta_{i}}
$$

Our key tool will be the Vandermonde Decomposition.

Vandermonde Decomposition

Any sequence of m consecutive values can be written as

$$
\left(\begin{array}{c}
x_{m+k-1} \\
\vdots \\
x_{k}
\end{array}\right)=\left[\vec{z}_{n} \cdots \vec{z}_{1}\right]\left(\begin{array}{c}
c_{1} e^{i 2 \pi k \theta_{1}} \\
\vdots \\
c_{n} e^{i 2 \pi k \theta_{n}}
\end{array}\right)
$$

where $\vec{z}_{i}=\left[e^{i(m-1) \theta_{i}}, \ldots, e^{i \theta_{i}}, 1\right]^{T}$.

Vandermonde Decomposition

Any sequence of m consecutive values can be written as

$$
\left(\begin{array}{c}
x_{m+k-1} \\
\vdots \\
x_{k}
\end{array}\right)=\left[\vec{z}_{n} \cdots \vec{z}_{1}\right]\left(\begin{array}{c}
c_{1} e^{i 2 \pi k \theta_{1}} \\
\vdots \\
c_{n} e^{i 2 \pi k \theta_{n}}
\end{array}\right)
$$

where $\vec{z}_{i}=\left[e^{i(m-1) \theta_{i}}, \ldots, e^{i \theta_{i}}, 1\right]^{T}$.
Repeating this for $k=(1-m)$ to 1 , we have

$$
X=\left[\vec{z}_{n} \cdots \vec{z}_{1}\right]\left(\begin{array}{ccc}
c_{1} & & \\
& \ddots & \\
& & c_{n}
\end{array}\right)\left(\begin{array}{c}
\vec{z}_{n}^{H} \\
\vdots \\
\vec{z}_{1}^{H}
\end{array}\right)=\sum_{i=1}^{n} c_{i} \vec{z}_{i} \vec{z}_{i}^{H}
$$

Clearly, $\operatorname{rank}(X)=\min \{m, n\}$ and $X \succeq 0$

Prony's technique

Put $m=n$, and $\vec{\alpha}=\left[\alpha_{n}, \ldots, \alpha_{1}, 1\right]^{T}$. Then,

$$
\vec{\alpha}^{H} X \vec{\alpha}=\sum_{i=1}^{n} c_{i}\left|\vec{\alpha}^{H} \vec{z}_{i}\right|^{2}
$$

So, $\alpha^{H} X \vec{\alpha}=0$ if and only if

Prony's technique

$$
\begin{aligned}
& \text { Put } m=n \text {, and } \vec{\alpha}=\left[\alpha_{n}, \ldots, \alpha_{1}, 1\right]^{T} \text {. Then, } \\
& \qquad \vec{\alpha}^{H} X \vec{\alpha}=\sum_{i=1}^{n} c_{i}\left|\vec{\alpha}^{H} \vec{z}_{i}\right|^{2}
\end{aligned}
$$

So, $\alpha^{H} X \vec{\alpha}=0$ if and only if

- $\vec{\alpha}$ is the unique null vector with last coordinate equal to unity.

Prony's technique

$$
\begin{aligned}
& \text { Put } m=n \text {, and } \vec{\alpha}=\left[\alpha_{n}, \ldots, \alpha_{1}, 1\right]^{T} \text {. Then, } \\
& \qquad \vec{\alpha}^{H} X \vec{\alpha}=\sum_{i=1}^{n} c_{i}\left|\vec{\alpha}^{H} \vec{z}_{i}\right|^{2}
\end{aligned}
$$

So, $\alpha^{H} X \vec{\alpha}=0$ if and only if

- $\vec{\alpha}$ is the unique null vector with last coordinate equal to unity.
- $\vec{\alpha}$ are the coefficients of the unique monic polynomial with $e^{i 2 \pi \theta_{1}}, \ldots, e^{i 2 \pi \theta_{n}}$ as roots.

Prony's technique

$$
\begin{aligned}
& \text { Put } m=n \text {, and } \vec{\alpha}=\left[\alpha_{n}, \ldots, \alpha_{1}, 1\right]^{T} \text {. Then, } \\
& \qquad \vec{\alpha}^{H} X \vec{\alpha}=\sum_{i=1}^{n} c_{i}\left|\vec{\alpha}^{H} \vec{z}_{i}\right|^{2}
\end{aligned}
$$

So, $\alpha^{H} X \vec{\alpha}=0$ if and only if

- $\vec{\alpha}$ is the unique null vector with last coordinate equal to unity.
- $\vec{\alpha}$ are the coefficients of the unique monic polynomial with $e^{i 2 \pi \theta_{1}}, \ldots, e^{i 2 \pi \theta_{n}}$ as roots.
Using the above, $\theta_{i} \mathrm{~s}$ and hence $c_{i} \mathrm{~s}$ can be determined.

Prony's technique

$$
\begin{aligned}
& \text { Put } m=n \text {, and } \vec{\alpha}=\left[\alpha_{n}, \ldots, \alpha_{1}, 1\right]^{T} \text {. Then, } \\
& \qquad \vec{\alpha}^{H} X \vec{\alpha}=\sum_{i=1}^{n} c_{i}\left|\vec{\alpha}^{H} \vec{z}_{i}\right|^{2}
\end{aligned}
$$

So, $\alpha^{H} X \vec{\alpha}=0$ if and only if

- $\vec{\alpha}$ is the unique null vector with last coordinate equal to unity.
- $\vec{\alpha}$ are the coefficients of the unique monic polynomial with $e^{i 2 \pi \theta_{1}}, \ldots, e^{i 2 \pi \theta_{n}}$ as roots.
Using the above, $\theta_{i} s$ and hence $c_{i} s$ can be determined.
Note: A stable reformulation is possible.

Noisy Trigonometric Moment Problem

Let's add some noise! Suppose we observe

$$
x_{k}=\sum_{i=1}^{n} c_{i} e^{i 2 \pi k \theta_{i}}+\nu_{k}
$$

for $0 \leq k \leq m$, where

- $c_{i} s$ are positive and $\theta_{i} s$ are in $[0,1]$.
- ν_{k} is iid Gaussian noise with variance σ^{2}.

If we have $m \gg n$ observations, can we alleviate the distortion due to noise?

Approach

Approach

- The Toeplitz Hermitian Matrix formed by x_{0}, \ldots, x_{n} is low rank $(n \ll m)$.

Approach

- The Toeplitz Hermitian Matrix formed by x_{0}, \ldots, x_{n} is low rank $(n \ll m)$.
- Every vector $\left[x_{0}, x_{1}, \ldots, x_{m}\right]^{T} \in \mathbb{R}_{+} \times \mathbb{C}^{m}$ is a valid candidate for the moment problem whenever the associated hermitian toeplitz matrix $X \succeq 0$ (Caratheodory's theorem).

Approach

- The Toeplitz Hermitian Matrix formed by x_{0}, \ldots, x_{n} is low rank $(n \ll m)$.
- Every vector $\left[x_{0}, x_{1}, \ldots, x_{m}\right]^{T} \in \mathbb{R}_{+} \times \mathbb{C}^{m}$ is a valid candidate for the moment problem whenever the associated hermitian toeplitz matrix $X \succeq 0$ (Caratheodory's theorem).

A naïve first attempt:

$$
\begin{align*}
\operatorname{minimize}_{z \in \Omega} & \|z-x\|^{2} \tag{P}\\
\text { subject to } & \operatorname{rank}(Z) \leq n \\
& Z \succeq 0
\end{align*}
$$

where $\Omega=\mathbb{R}_{+} \times \mathbb{C}^{m}$ and $Z=T(z)$.

Approach

- The Toeplitz Hermitian Matrix formed by x_{0}, \ldots, x_{n} is low rank $(n \ll m)$.
- Every vector $\left[x_{0}, x_{1}, \ldots, x_{m}\right]^{T} \in \mathbb{R}_{+} \times \mathbb{C}^{m}$ is a valid candidate for the moment problem whenever the associated hermitian toeplitz matrix $X \succeq 0$ (Caratheodory's theorem).

A naïve first attempt:

$$
\begin{align*}
\operatorname{minimize}_{z \in \Omega} & \|z-x\|^{2} \tag{P}\\
\text { subject to } & \operatorname{rank}(Z) \leq n \\
& Z \succeq 0
\end{align*}
$$

where $\Omega=\mathbb{R}_{+} \times \mathbb{C}^{m}$ and $Z=T(z)$.
Our constraint set is not convex.

Reformulation

Let's use Lagrange Multipliers:

$$
\begin{align*}
& \operatorname{minimize}_{z \in \Omega}\|z-x\|^{2}+\lambda \operatorname{rank}(Z) \tag{L}\\
& \quad \text { subject to } Z \succeq 0
\end{align*}
$$

Reformulation

Let's use Lagrange Multipliers:

$$
\begin{align*}
& \operatorname{minimize}_{z \in \Omega}\|z-x\|^{2}+\lambda \operatorname{rank}(Z) \tag{L}\\
& \text { subject to } Z \succeq 0
\end{align*}
$$

Finally, relax and minimize the convex envelope of the non-convex objective above:

$$
\begin{align*}
& \operatorname{minimize}_{z \in \Omega}\|z-x\|^{2}+\lambda\|Z\|_{*} \tag{R}\\
& \text { subject to } Z \succeq 0
\end{align*}
$$

Reformulation

Let's use Lagrange Multipliers:

$$
\begin{align*}
& \operatorname{minimize}_{z \in \Omega}\|z-x\|^{2}+\lambda \operatorname{rank}(Z) \tag{L}\\
& \text { subject to } Z \succeq 0
\end{align*}
$$

Finally, relax and minimize the convex envelope of the non-convex objective above:

$$
\begin{align*}
& \operatorname{minimize}_{z \in \Omega}\|z-x\|^{2}+\lambda\|Z\|_{*} \tag{R}\\
& \text { subject to } Z \succeq 0
\end{align*}
$$

What λ ? We'll try a range of values and pick the best. Let's code it up!

Interlude - Alternating Projections

Here's a competing algorithm.

Interlude - Alternating Projections

Here's a competing algorithm.

- Use SVD to find the best rank-n approximation.

Interlude - Alternating Projections

Here's a competing algorithm.

- Use SVD to find the best rank-n approximation.
- Find the closest Toeplitz Hermitian approximation of the rank- n approximation.

Interlude - Alternating Projections

Here's a competing algorithm.

- Use SVD to find the best rank-n approximation.
- Find the closest Toeplitz Hermitian approximation of the rank- n approximation.
- Alternate between the above two steps and repeat until convergence.

Interlude - Alternating Projections

Here's a competing algorithm.

- Use SVD to find the best rank-n approximation.
- Find the closest Toeplitz Hermitian approximation of the rank- n approximation.
- Alternate between the above two steps and repeat until convergence.
A few remarks are in order:

Interlude - Alternating Projections

Here's a competing algorithm.

- Use SVD to find the best rank-n approximation.
- Find the closest Toeplitz Hermitian approximation of the rank- n approximation.
- Alternate between the above two steps and repeat until convergence.
A few remarks are in order:
- This method is proposed by Cadzow based on Von Neumman's method to find the closest point in the intersection of two subspaces.

Interlude - Alternating Projections

Here's a competing algorithm.

- Use SVD to find the best rank-n approximation.
- Find the closest Toeplitz Hermitian approximation of the rank- n approximation.
- Alternate between the above two steps and repeat until convergence.
A few remarks are in order:
- This method is proposed by Cadzow based on Von Neumman's method to find the closest point in the intersection of two subspaces.
- With two convex sets, we only get some point in the intersection, not the closest.

Interlude - Alternating Projections

Here's a competing algorithm.

- Use SVD to find the best rank-n approximation.
- Find the closest Toeplitz Hermitian approximation of the rank- n approximation.
- Alternate between the above two steps and repeat until convergence.
A few remarks are in order:
- This method is proposed by Cadzow based on Von Neumman's method to find the closest point in the intersection of two subspaces.
- With two convex sets, we only get some point in the intersection, not the closest.
- But the space of low rank matrix is pretty hairy (certainly not convex). We don't have theoretical guarantees that this is even a good idea.

Interlude - Alternating Projections

Here's a competing algorithm.

- Use SVD to find the best rank-n approximation.
- Find the closest Toeplitz Hermitian approximation of the rank- n approximation.
- Alternate between the above two steps and repeat until convergence.
A few remarks are in order:
- This method is proposed by Cadzow based on Von Neumman's method to find the closest point in the intersection of two subspaces.
- With two convex sets, we only get some point in the intersection, not the closest.
- But the space of low rank matrix is pretty hairy (certainly not convex). We don't have theoretical guarantees that this is even a good idea.
Let's code this up too!

Alternating Projections

```
function X = cadzow_denoise(X, r)
% Find the closest PSD Toeplitz matrix that to X which
% has only r prominent eigen values.
tol = 0.001;
ratio = tol;
[n, ~] = size(X);
    while ratio >= tol
        [U,S,V] = svd(X); %#ok<ASGLU,NASGU>
        ratio = S(r+1,r+1)/S(r,r);
        S((r+1) : end, (r+1):end) = 0;
        cvx_begin quiet
                variable X(n,n) hermitian toeplitz;
                X == hermitian_semidefinite(n); %#ok<EQEFF>
                minimize norm(X-U*S*V');
        cvx_end
        end
end
```


Nuclear Norm Relaxation

```
clc; clear; N = 5;
theta = [0.2 0.5 0.7]; c = [3 5 7];
x = fliplr([c zeros(1,N)]*vander([exp(1i*2*pi*theta) zeros(1,N)]));
y = awgn(x,5); y(1) = abs(y(1)); n = length(y);
gamma = logspace(-2.5,0,20);
sos = zeros(size(gamma));
fprintf('X_* = %.2f, (y-x) = %.2f\n\n',norm_nuc(toeplitz(x)),sum_square_abs(y-x));
fprintf('.----------------------------------------------------------------------
fprintf('| Status | gamma | (z-x) | (z-y) | Z_* |\n')
fprintf('|--------------------------------------------------------------------------
for k = 1:length(gamma)
    cvx_begin quiet
        variable Z(n,n) toeplitz hermitian;
        z = Z(1,:);
        minimize sum_square_abs(z-y) + gamma(k)*norm_nuc(Z);
        subject to
            Z(1) == x(1);
        cvx_end
    z=Z(1,:);sos(k) = sum_square_abs(z-x);
    fprintf('| %8s | %8.4f | %8.2f | %8.2f | %6.2f |\n', ...
    cvx_status, gamma(k), sos(k), sum_square_abs(y-z), norm_nuc(Z));
end
fprintf('.--------------------------------------------------------------------
fprintf('\nAfter Nuclear Norm minimization...\n');
fprintf('Best distance from true x = %.2f\n\n',min(sos));
W = cadzow_denoise(toeplitz(y),3); w = W(1,:);
fprintf('\nAfter Cadzow denoising...\n');
fprintf('Best distance from true x = %.2f\n\n',sum_square_abs(w-x));
```


Simulation Time

After Nuclear Norm minimization...
Best distance from true $\mathrm{x}=1.61$

After Cadzow denoising...
Best distance from true $\mathrm{x}=0.25$

Conclusions and Future Work

Conclusions and Future Work

- The Nuclear Norm Minimization is too sensitive to λ.

Conclusions and Future Work

- The Nuclear Norm Minimization is too sensitive to λ.
- With the positive semidefinite constraint, cvx failed to return a solution.

Conclusions and Future Work

- The Nuclear Norm Minimization is too sensitive to λ.
- With the positive semidefinite constraint, cvx failed to return a solution.
- Penalize shrinkage?

Conclusions and Future Work

- The Nuclear Norm Minimization is too sensitive to λ.
- With the positive semidefinite constraint, cvx failed to return a solution.
- Penalize shrinkage?
- Reformulate the problem as an SDP and try again?

Conclusions and Future Work

- The Nuclear Norm Minimization is too sensitive to λ.
- With the positive semidefinite constraint, cvx failed to return a solution.
- Penalize shrinkage?
- Reformulate the problem as an SDP and try again?
- Must find out why Cadzow does so well.

Thank You!

Questions?

