The Noisy Trigonometric Moment Problem

Badri Narayan

ECE Dept

April 27, 2010
Trigonometric Moment Problem

Given a sequence of m complex numbers $(x_k)_{k=1}^m$ and $x_0 > 0$, does there exist a positive Borel measure μ on $[0,1]$ such that x_k is the kth trigonometric moment with respect to μ?

In other words, does there exist $\mu > 0$ supported on $[0,1]$ such that

$$x_k = \int_0^1 e^{-i2\pi kt} \mu(dt)$$

for all $k \in \{0, \ldots, m\}$?

Note that x_k is simply the kth Fourier coefficient of μ.
Caratheodory’s theorem

There exists a measure that solves the moment problem if and only if the Hermitian Toeplitz Matrix formed by x_0, \ldots, x_m, viz.

$$X = T(x) = \begin{pmatrix}
x_0 & x_1 & \cdots & x_m \\
x_1^* & x_0 & \ddots & x_{m-1} \\
\vdots & \ddots & \ddots & \vdots \\
x_m^* & \cdots & x_0 & x_0
\end{pmatrix}$$

is positive semidefinite.
Caratheodory’s theorem (contd.)

Furthermore, if \(n = \text{rank}(X) \), there exists a finitely atomic measure

\[
\mu(dt) = \sum_{i=1}^{n} c_i \delta(t - \theta_i) dt,
\]

where \(c_i \)'s are positive and \(\theta_i \)'s are in \([0, 1]\), solving the moment problem if and only if \(X \succeq 0 \).
Caratheodory’s theorem (contd.)

Furthermore, if $n = \text{rank}(X)$, there exists a finitely atomic measure

$$
\mu(dt) = \sum_{i=1}^{n} c_i \delta(t - \theta_i)dt,
$$

where c_is are positive and θ_is are in $[0, 1]$, solving the moment problem if and only if $X \succeq 0$.

Let us verify the necessary conditions. For the given μ, note that

$$
x_k = \sum_{i=1}^{n} c_i e^{i2\pi k\theta_i}.
$$
Caratheodory’s theorem (contd.)

Furthermore, if \(n = \text{rank}(X) \), there exists a finitely atomic measure

\[
\mu(dt) = \sum_{i=1}^{n} c_i \delta(t - \theta_i) dt,
\]

where \(c_i \)'s are positive and \(\theta_i \)'s are in \([0, 1]\), solving the moment problem if and only if \(X \succeq 0 \).

Let us verify the necessary conditions. For the given \(\mu \), note that

\[
x_k = \sum_{i=1}^{n} c_i e^{i2\pi k \theta_i}.
\]

Our key tool will be the Vandermonde Decomposition.
Vandermonde Decomposition

Any sequence of m consecutive values can be written as

$$
\begin{pmatrix}
 x_{m+k-1} \\
 \vdots \\
 x_k
\end{pmatrix} = [\tilde{z}_n \cdots \tilde{z}_1] \begin{pmatrix}
 c_1 e^{i2\pi k\theta_1} \\
 \vdots \\
 c_n e^{i2\pi k\theta_n}
\end{pmatrix}
$$

where $\tilde{z}_i = [e^{i(m-1)\theta_i}, \ldots, e^{i\theta_i}, 1]^T$.
Vandermonde Decomposition

Any sequence of m consecutive values can be written as

$$\begin{pmatrix} x_{m+k-1} \\ \vdots \\ x_k \end{pmatrix} = \begin{bmatrix} \vec{z}_n & \cdots & \vec{z}_1 \end{bmatrix} \begin{pmatrix} c_1 e^{i2\pi k\theta_1} \\ \vdots \\ c_n e^{i2\pi k\theta_n} \end{pmatrix}$$

where $\vec{z}_i = [e^{i(m-1)\theta_i}, \ldots, e^{i\theta_i}, 1]^T$.

Repeating this for $k = (1 - m)$ to 1, we have

$$X = [\vec{z}_n \cdots \vec{z}_1] \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix} \begin{pmatrix} \vec{z}_n^H \\ \vdots \\ \vec{z}_1^H \end{pmatrix} = \sum_{i=1}^{n} c_i \vec{z}_i \vec{z}_i^H$$

Clearly, $\text{rank}(X) = \min\{m, n\}$ and $X \succeq 0$
Prony’s technique

Put $m = n$, and $\alpha = [\alpha_n, \ldots, \alpha_1, 1]^T$. Then,

$$\alpha^H X \alpha = \sum_{i=1}^{n} c_i |\alpha^H \tilde{z}_i|^2$$

So, $\alpha^H X \alpha = 0$ if and only if
Prony’s technique

Put $m = n$, and $\vec{\alpha} = [\alpha_n, \ldots, \alpha_1, 1]^T$. Then,

$$\vec{\alpha}^H X \vec{\alpha} = \sum_{i=1}^n c_i |\vec{\alpha}^H \vec{z}_i|^2$$

So, $\alpha^H X \vec{\alpha} = 0$ if and only if

- $\vec{\alpha}$ is the unique null vector with last coordinate equal to unity.
Prony’s technique

Put $m = n$, and $\tilde{\alpha} = [\alpha_n, \ldots, \alpha_1, 1]^T$. Then,

$$\tilde{\alpha}^H X \tilde{\alpha} = \sum_{i=1}^{n} c_i |\tilde{\alpha}^H \tilde{z}_i|^2$$

So, $\alpha^H X \tilde{\alpha} = 0$ if and only if

- $\tilde{\alpha}$ is the unique null vector with last coordinate equal to unity.
- $\tilde{\alpha}$ are the coefficients of the unique monic polynomial with $e^{i2\pi \theta_1}, \ldots, e^{i2\pi \theta_n}$ as roots.
Prony’s technique

Put $m = n$, and $\vec{\alpha} = [\alpha_n, \ldots, \alpha_1, 1]^T$. Then,

$$\vec{\alpha}^H X \vec{\alpha} = \sum_{i=1}^{n} c_i |\vec{\alpha}^H \vec{z}_i|^2$$

So, $\alpha^H X \vec{\alpha} = 0$ if and only if

- $\vec{\alpha}$ is the unique null vector with last coordinate equal to unity.
- $\vec{\alpha}$ are the coefficients of the unique monic polynomial with $e^{i2\pi\theta_1}, \ldots, e^{i2\pi\theta_n}$ as roots.

Using the above, θ_is and hence c_is can be determined.
Prony’s technique

Put \(m = n \), and \(\vec{\alpha} = [\alpha_n, \ldots, \alpha_1, 1]^T \). Then,

\[
\vec{\alpha}^H \mathbf{X} \vec{\alpha} = \sum_{i=1}^{n} c_i |\vec{\alpha}^H \vec{z}_i|^2
\]

So, \(\alpha^H \mathbf{X} \vec{\alpha} = 0 \) if and only if

- \(\vec{\alpha} \) is the unique null vector with last coordinate equal to unity.
- \(\vec{\alpha} \) are the coefficients of the unique monic polynomial with \(e^{i2\pi \theta_1}, \ldots, e^{i2\pi \theta_n} \) as roots.

Using the above, \(\theta_i \)'s and hence \(c_i \)'s can be determined.

Note: A stable reformulation is possible.
Noisy Trigonometric Moment Problem

Let's add some noise! Suppose we observe

\[x_k = \sum_{i=1}^{n} c_i e^{i2\pi k \theta_i} + \nu_k \]

for \(0 \leq k \leq m \), where

- \(c_i \)'s are positive and \(\theta_i \)'s are in \([0, 1]\).
- \(\nu_k \) is \(iid \) Gaussian noise with variance \(\sigma^2 \).

If we have \(m \gg n \) observations, can we alleviate the distortion due to noise?
The Toeplitz Hermitian Matrix formed by x_0, \ldots, x_n is low rank ($n \ll m$).

Every vector $[x_0, x_1, \ldots, x_m]^T \in \mathbb{R}^+ \times \mathbb{C}^m$ is a valid candidate for the moment problem whenever the associated hermitian toeplitz matrix $X \succeq 0$ (Caratheodory's theorem).

A naïve first attempt:

$$\min_{z \in \Omega} \|z - x\|_2$$

subject to $\text{rank}(Z) \leq n$

where $\Omega = \mathbb{R}^+ \times \mathbb{C}^m$ and $Z = T(z)$.

Our constraint set is not convex.
Approach

- The Toeplitz Hermitian Matrix formed by x_0, \ldots, x_n is low rank ($n \ll m$).
Approach

- The Toeplitz Hermitian Matrix formed by x_0, \ldots, x_n is low rank ($n \ll m$).

- Every vector $[x_0, x_1, \ldots, x_m]^T \in \mathbb{R}_+ \times \mathbb{C}^m$ is a valid candidate for the moment problem whenever the associated hermitian toeplitz matrix $X \succeq 0$ (Caratheodory’s theorem).
Approach

- The Toeplitz Hermitian Matrix formed by x_0, \ldots, x_n is low rank ($n \ll m$).
- Every vector $[x_0, x_1, \ldots, x_m]^T \in \mathbb{R}_+ \times \mathbb{C}^m$ is a valid candidate for the moment problem whenever the associated hermitian toeplitz matrix $X \succeq 0$ (Caratheodory’s theorem).

A naïve first attempt:

$$\begin{align*}
\text{minimize}_{z \in \Omega} \|z - x\|^2 \\
\text{subject to } \text{rank}(Z) \leq n \\
Z \succeq 0
\end{align*}$$ (P)

where $\Omega = \mathbb{R}_+ \times \mathbb{C}^m$ and $Z = T(z)$.
Approach

- The Toeplitz Hermitian Matrix formed by x_0, \ldots, x_n is low rank ($n \ll m$).
- Every vector $[x_0, x_1, \ldots, x_m]^T \in \mathbb{R}_+ \times \mathbb{C}^m$ is a valid candidate for the moment problem whenever the associated hermitian toeplitz matrix $X \succeq 0$ (Caratheodory’s theorem).

A naïve first attempt:

\[\begin{align*}
\text{minimize}_{z \in \Omega} \|z - x\|^2 \\
\text{subject to } \operatorname{rank}(Z) \leq n \\
Z \succeq 0
\end{align*} \]

where $\Omega = \mathbb{R}_+ \times \mathbb{C}^m$ and $Z = T(z)$.

Our constraint set is not convex.
Reformulation

Let’s use Lagrange Multipliers:

\[\text{minimize}_{z \in \Omega} \| z - x \|^2 + \lambda \text{rank}(Z) \]
subject to \(Z \succeq 0 \)
Reformulation

Let’s use Lagrange Multipliers:

\[
\begin{align*}
\text{minimize}_{z \in \Omega} & \|z - x\|^2 + \lambda \text{rank}(Z) \\
\text{subject to} & \quad Z \succeq 0
\end{align*}
\]

(L)

Finally, relax and minimize the convex envelope of the non-convex objective above:

\[
\begin{align*}
\text{minimize}_{z \in \Omega} & \|z - x\|^2 + \lambda \|Z\|_* \\
\text{subject to} & \quad Z \succeq 0
\end{align*}
\]

(R)
Reformulation

Let’s use Lagrange Multipliers:

\[
\text{minimize}_{z \in \Omega} \| z - x \|^2 + \lambda \text{rank}(Z) \quad (L)
\]

subject to \(Z \succeq 0 \)

Finally, relax and minimize the convex envelope of the non-convex objective above:

\[
\text{minimize}_{z \in \Omega} \| z - x \|^2 + \lambda \| Z \|_* \quad (R)
\]

subject to \(Z \succeq 0 \)

What \(\lambda \)? We’ll try a range of values and pick the best. Let’s code it up!
Interlude – Alternating Projections

Here’s a competing algorithm.
Interlude – Alternating Projections

Here’s a competing algorithm.

- Use SVD to find the best rank-n approximation.
Interlude – Alternating Projections

Here’s a competing algorithm.

- Use SVD to find the best rank-\(n \) approximation.
- Find the closest Toeplitz Hermitian approximation of the rank-\(n \) approximation.
Interlude – Alternating Projections

Here’s a competing algorithm.

- Use SVD to find the best rank-\(n\) approximation.
- Find the closest Toeplitz Hermitian approximation of the rank-\(n\) approximation.
- Alternate between the above two steps and repeat until convergence.

A few remarks are in order:

- This method is proposed by Cadzow based on Von Neumann’s method to find the closest point in the intersection of two subspaces.
- With two convex sets, we only get some point in the intersection, not the closest.
- But the space of low rank matrix is pretty hairy (certainly not convex). We don’t have theoretical guarantees that this is even a good idea.

Let’s code this up too!
Interlude – Alternating Projections

Here’s a competing algorithm.

- Use SVD to find the best rank-n approximation.
- Find the closest Toeplitz Hermitian approximation of the rank-n approximation.
- Alternate between the above two steps and repeat until convergence.

A few remarks are in order:

- This method is proposed by Cadzow based on Von Neumman’s method to find the closest point in the intersection of two subspaces.
- With two convex sets, we only get some point in the intersection, not the closest.
- But the space of low rank matrix is pretty hairy (certainly not convex). We don’t have theoretical guarantees that this is even a good idea.

Let’s code this up too!
Interlude – Alternating Projections

Here’s a competing algorithm.

- Use SVD to find the best rank-n approximation.
- Find the closest Toeplitz Hermitian approximation of the rank-n approximation.
- Alternate between the above two steps and repeat until convergence.

A few remarks are in order:

- This method is proposed by Cadzow based on Von Neumann’s method to find the closest point in the intersection of two subspaces.
Interlude – Alternating Projections

Here’s a competing algorithm.

- Use SVD to find the best rank-n approximation.
- Find the closest Toeplitz Hermitian approximation of the rank-n approximation.
- Alternate between the above two steps and repeat until convergence.

A few remarks are in order:

- This method is proposed by Cadzow based on Von Neumann’s method to find the closest point in the intersection of two subspaces.
- With two convex sets, we only get some point in the intersection, not the closest.
Interlude – Alternating Projections

Here’s a competing algorithm.

- Use SVD to find the best rank-n approximation.
- Find the closest Toeplitz Hermitian approximation of the rank-n approximation.
- Alternate between the above two steps and repeat until convergence.

A few remarks are in order:

- This method is proposed by Cadzow based on Von Neumann’s method to find the closest point in the intersection of two subspaces.
- With two convex sets, we only get some point in the intersection, not the closest.
- But the space of low rank matrix is pretty hairy (certainly not convex). We don’t have theoretical guarantees that this is even a good idea.
Interlude – Alternating Projections

Here’s a competing algorithm.

- Use SVD to find the best rank-n approximation.
- Find the closest Toeplitz Hermitian approximation of the rank-n approximation.
- Alternate between the above two steps and repeat until convergence.

A few remarks are in order:

- This method is proposed by Cadzow based on Von Neumann’s method to find the closest point in the intersection of two subspaces.
- With two convex sets, we only get some point in the intersection, not the closest.
- But the space of low rank matrix is pretty hairy (certainly not convex). We don’t have theoretical guarantees that this is even a good idea.

Let’s code this up too!
function X = cadzow_denoise(X, r)
% Find the closest PSD Toeplitz matrix that to X which
% has only r prominent eigen values.

tol = 0.001;
 ratio = tol;
 [n,~] = size(X);
 while ratio >= tol
 [U,S,V] = svd(X); %#ok<ASGLU,NASGU>
 ratio = S(r+1,r+1)/S(r,r);
 S((r+1):end,(r+1):end) = 0;
 cvx_begin quiet
 variable X(n,n) hermitian toeplitz;
 X == hermitian_semidefinite(n); %#ok<EQEFF>
 minimize norm(X-U*S*V');
 cvx_end
 end
end
Nuclear Norm Relaxation

clc; clear; N = 5;
theta = [0.2 0.5 0.7]; c = [3 5 7];
x = fliplr([c zeros(1,N)]*vander([exp(1i*2*pi*theta) zeros(1,N)]));
y = awgn(x,5); y(1) = abs(y(1)); n = length(y);
gamma = logspace(-2.5,0,20);
sos = zeros(size(gamma));
fprintf('X_* = %.2f, (y-x) = %.2f

',norm_nuc(toeplitz(x)),sum_square_abs(y-x));
fprintf(''.---.
')
fprintf('| Status | gamma | (z-x) | (z-y) | Z_* |
')
fprintf('|---|
')
for k = 1:length(gamma)
 cvx_begin quiet
 variable Z(n,n) toeplitz hermitian;
 z = Z(1,:);
 minimize sum_square_abs(z-y) + gamma(k)*norm_nuc(Z);
 subject to
 Z(1) == x(1);
 cvx_end
 z=Z(1,:);sos(k) = sum_square_abs(z-x);
 fprintf('| %8s | %8.4f | %8.2f | %8.2f | %6.2f |
', ...
 cvx_status, gamma(k), sos(k), sum_square_abs(y-z), norm_nuc(Z));
end
fprintf(''.---.
')
fprintf('
After Nuclear Norm minimization...
');
fprintf('Best distance from true x = %.2f

',min(sos));
W = cadzow_denoise(toeplitz(y),3); w = W(1,:);
fprintf('
After Cadzow denoising...
');
fprintf('Best distance from true x = %.2f

',sum_square_abs(w-x));
Simulation Time

\[X_* = 120.00, \ (y-x) = 2.21 \]

<table>
<thead>
<tr>
<th>Status</th>
<th>gamma</th>
<th>(z-x)</th>
<th>(z-y)</th>
<th>Z_*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solved</td>
<td>0.0043</td>
<td>1.78</td>
<td>0.42</td>
<td>124.18</td>
</tr>
<tr>
<td>Solved</td>
<td>0.0058</td>
<td>1.78</td>
<td>0.42</td>
<td>124.16</td>
</tr>
<tr>
<td>Solved</td>
<td>0.0078</td>
<td>1.77</td>
<td>0.42</td>
<td>124.15</td>
</tr>
<tr>
<td>Solved</td>
<td>0.0106</td>
<td>1.76</td>
<td>0.42</td>
<td>124.12</td>
</tr>
<tr>
<td>Solved</td>
<td>0.0144</td>
<td>1.75</td>
<td>0.42</td>
<td>124.08</td>
</tr>
<tr>
<td>Solved</td>
<td>0.0195</td>
<td>1.74</td>
<td>0.42</td>
<td>124.04</td>
</tr>
<tr>
<td>Solved</td>
<td>0.0264</td>
<td>1.72</td>
<td>0.43</td>
<td>123.98</td>
</tr>
<tr>
<td>Solved</td>
<td>0.0357</td>
<td>1.70</td>
<td>0.44</td>
<td>123.90</td>
</tr>
<tr>
<td>Solved</td>
<td>0.0483</td>
<td>1.68</td>
<td>0.45</td>
<td>123.81</td>
</tr>
<tr>
<td>Solved</td>
<td>0.0654</td>
<td>1.65</td>
<td>0.47</td>
<td>123.71</td>
</tr>
<tr>
<td>Solved</td>
<td>0.0886</td>
<td>1.62</td>
<td>0.51</td>
<td>123.60</td>
</tr>
<tr>
<td>Solved</td>
<td>0.1199</td>
<td>1.61</td>
<td>0.58</td>
<td>123.47</td>
</tr>
<tr>
<td>Solved</td>
<td>0.1624</td>
<td>1.62</td>
<td>0.70</td>
<td>123.32</td>
</tr>
<tr>
<td>Solved</td>
<td>0.2198</td>
<td>1.68</td>
<td>0.89</td>
<td>123.13</td>
</tr>
<tr>
<td>Solved</td>
<td>0.2976</td>
<td>1.84</td>
<td>1.20</td>
<td>122.89</td>
</tr>
<tr>
<td>Solved</td>
<td>0.4030</td>
<td>2.18</td>
<td>1.75</td>
<td>122.64</td>
</tr>
<tr>
<td>Solved</td>
<td>0.5456</td>
<td>2.88</td>
<td>2.73</td>
<td>122.41</td>
</tr>
<tr>
<td>Solved</td>
<td>0.7386</td>
<td>4.22</td>
<td>4.49</td>
<td>122.21</td>
</tr>
</tbody>
</table>

After Nuclear Norm minimization...
Best distance from true x = 1.61

After Cadzow denoising...
Best distance from true x = 0.25
Conclusions and Future Work
Conclusions and Future Work

- The Nuclear Norm Minimization is too sensitive to λ.
Conclusions and Future Work

- The Nuclear Norm Minimization is too sensitive to λ.
- With the positive semidefinite constraint, cvx failed to return a solution.
Conclusions and Future Work

- The Nuclear Norm Minimization is too sensitive to λ.
- With the positive semidefinite constraint, cvx failed to return a solution.
- Penalize shrinkage?
Conclusions and Future Work

- The Nuclear Norm Minimization is too sensitive to λ.
- With the positive semidefinite constraint, cvx failed to return a solution.
- Penalize shrinkage?
- Reformulate the problem as an SDP and try again?
Conclusions and Future Work

- The Nuclear Norm Minimization is too sensitive to λ.
- With the positive semidefinite constraint, cvx failed to return a solution.
- Penalize shrinkage?
- Reformulate the problem as an SDP and try again?
- Must find out why Cadzow does so well.
Thank You!

Questions?