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Trigonometric Moment Problem

Given a sequence of m complex numbers (xk)
m
k=1 and x0 > 0, does

there exist a positive Borel measure µ on [0, 1] such that xk is the
kth trigonometric moment with respect to µ?

In other words, does there exist µ > 0 supported on [0, 1] such that

xk =

∫ 1

0
e−i2πktµ(dt)

for all k ∈ {0, . . . ,m}?

Note that xk is simply the kth Fourier coefficient of µ.

2 / 15



. . . . . .

Noiseless Case Noisy Case

Caratheodory’s theorem

There exists a measure that solves the moment problem if and only
if the Hermitian Toeplitz Matrix formed by x0, . . . , xm, viz.

X = T (x) =


x0 x1 · · · xm

x∗1 x0
. . . xm−1

...
. . .

. . .
...

x∗m · · · x0


is positive semidefinite.
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Caratheodory’s theorem (contd.)

Furthermore, if n = rank(X ), there exists a finitely atomic measure

µ(dt) =
n∑

i=1

ciδ(t − θi )dt,

where ci s are positive and θi s are in [0, 1], solving the moment
problem if and only if X ≽ 0.

Let us verify the necessary conditions. For the given µ, note that

xk =
n∑

i=1

cie
i2πkθi .

Our key tool will be the Vandermonde Decomposition.
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Vandermonde Decomposition

Any sequence of m consecutive values can be written asxm+k−1
...
xk

 = [⃗zn · · · z⃗1]

c1e
i2πkθ1

...
cne

i2πkθn


where z⃗i = [e i(m−1)θi , . . . , e iθi , 1]T .

Repeating this for k = (1−m) to 1, we have

X = [⃗zn · · · z⃗1]

c1
. . .

cn


z⃗Hn

...
z⃗H1

 =
n∑

i=1

ci z⃗i z⃗
H
i

Clearly, rank(X ) = min{m, n} and X ≽ 0
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Prony’s technique

Put m = n, and α⃗ = [αn, . . . , α1, 1]
T . Then,

α⃗HX α⃗ =
n∑

i=1

ci |α⃗H z⃗i |2

So, αHX α⃗ = 0 if and only if

I α⃗ is the unique null vector with last coordinate equal to unity.

I α⃗ are the coefficients of the unique monic polynomial with
e i2πθ1 , . . . , e i2πθn as roots.

Using the above, θi s and hence ci s can be determined.
Note: A stable reformulation is possible.
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Noisy Trigonometric Moment Problem

Let’s add some noise! Suppose we observe

xk =
n∑

i=1

cie
i2πkθi + νk

for 0 ≤ k ≤ m, where

I ci s are positive and θi s are in [0, 1].

I νk is iid Gaussian noise with variance σ2.

If we have m ≫ n observations, can we alleviate the distortion due
to noise?
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Approach

I The Toeplitz Hermitian Matrix formed by x0, . . . , xn is low
rank (n ≪ m).

I Every vector [x0, x1, . . . , xm]
T ∈ R+ × Cm is a valid candidate

for the moment problem whenever the associated hermitian
toeplitz matrix X ≽ 0 (Caratheodory’s theorem).

A näıve first attempt:

minimizez∈Ω ∥z − x∥2 (P)

subject to rank(Z ) ≤ n

Z ≽ 0

where Ω = R+ × Cm and Z = T (z).
Our constraint set is not convex.
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Reformulation

Let’s use Lagrange Multipliers:

minimizez∈Ω ∥z − x∥2 + λ rank(Z ) (L)

subject to Z ≽ 0

Finally, relax and minimize the convex envelope of the non-convex
objective above:

minimizez∈Ω ∥z − x∥2 + λ∥Z∥∗ (R)

subject to Z ≽ 0

What λ? We’ll try a range of values and pick the best. Let’s code
it up!
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Interlude – Alternating Projections

Here’s a competing algorithm.

I Use SVD to find the best rank-n approximation.
I Find the closest Toeplitz Hermitian approximation of the

rank-n approximation.
I Alternate between the above two steps and repeat until

convergence.

A few remarks are in order:

I This method is proposed by Cadzow based on Von
Neumman’s method to find the closest point in the
intersection of two subspaces.

I With two convex sets, we only get some point in the
intersection, not the closest.

I But the space of low rank matrix is pretty hairy (certainly not
convex). We don’t have theoretical guarantees that this is
even a good idea.

Let’s code this up too!
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Alternating Projections

function X = cadzow_denoise(X, r)

% Find the closest PSD Toeplitz matrix that to X which

% has only r prominent eigen values.

tol = 0.001;

ratio = tol;

[n,~] = size(X);

while ratio >= tol

[U,S,V] = svd(X); %#ok<ASGLU,NASGU>

ratio = S(r+1,r+1)/S(r,r);

S((r+1):end,(r+1):end) = 0;

cvx_begin quiet

variable X(n,n) hermitian toeplitz;

X == hermitian_semidefinite(n); %#ok<EQEFF>

minimize norm(X-U*S*V’);

cvx_end

end

end
11 / 15
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Nuclear Norm Relaxation

clc; clear; N = 5;

theta = [0.2 0.5 0.7]; c = [3 5 7];

x = fliplr([c zeros(1,N)]*vander([exp(1i*2*pi*theta) zeros(1,N)]));

y = awgn(x,5); y(1) = abs(y(1)); n = length(y);

gamma = logspace(-2.5,0,20);

sos = zeros(size(gamma));

fprintf(’X_* = %.2f, (y-x) = %.2f\n\n’,norm_nuc(toeplitz(x)),sum_square_abs(y-x));

fprintf(’.-------------------------------------------------------.\n’)

fprintf(’| Status | gamma | (z-x) | (z-y) | Z_* |\n’)

fprintf(’|-------------------------------------------------------|\n’)

for k = 1:length(gamma)

cvx_begin quiet

variable Z(n,n) toeplitz hermitian;

z = Z(1,:);

minimize sum_square_abs(z-y) + gamma(k)*norm_nuc(Z);

subject to

Z(1) == x(1);

cvx_end

z=Z(1,:);sos(k) = sum_square_abs(z-x);

fprintf(’| %8s | %8.4f | %8.2f | %8.2f | %6.2f |\n’, ...

cvx_status, gamma(k), sos(k), sum_square_abs(y-z), norm_nuc(Z));

end

fprintf(’.-------------------------------------------------------.\n’)

fprintf(’\nAfter Nuclear Norm minimization...\n’);

fprintf(’Best distance from true x = %.2f\n\n’,min(sos));

W = cadzow_denoise(toeplitz(y),3); w = W(1,:);

fprintf(’\nAfter Cadzow denoising...\n’);

fprintf(’Best distance from true x = %.2f\n\n’,sum_square_abs(w-x));

12 / 15
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Simulation Time

X_* = 120.00, (y-x) = 2.21

.-------------------------------------------------------.

| Status | gamma | (z-x) | (z-y) | Z_* |

|-------------------------------------------------------|

| Solved | 0.0043 | 1.78 | 0.42 | 124.18 |

| Solved | 0.0058 | 1.78 | 0.42 | 124.16 |

| Solved | 0.0078 | 1.77 | 0.42 | 124.15 |

| Solved | 0.0106 | 1.76 | 0.42 | 124.12 |

| Solved | 0.0144 | 1.75 | 0.42 | 124.08 |

| Solved | 0.0195 | 1.74 | 0.42 | 124.04 |

| Solved | 0.0264 | 1.72 | 0.43 | 123.98 |

| Solved | 0.0357 | 1.70 | 0.44 | 123.90 |

| Solved | 0.0483 | 1.68 | 0.45 | 123.81 |

| Solved | 0.0654 | 1.65 | 0.47 | 123.71 |

| Solved | 0.0886 | 1.62 | 0.51 | 123.60 |

| Solved | 0.1199 | 1.61 | 0.58 | 123.47 |

| Solved | 0.1624 | 1.62 | 0.70 | 123.32 |

| Solved | 0.2198 | 1.68 | 0.89 | 123.13 |

| Solved | 0.2976 | 1.84 | 1.20 | 122.89 |

| Solved | 0.4030 | 2.18 | 1.75 | 122.64 |

| Solved | 0.5456 | 2.88 | 2.73 | 122.41 |

| Solved | 0.7386 | 4.22 | 4.49 | 122.21 |

.-------------------------------------------------------.

After Nuclear Norm minimization...

Best distance from true x = 1.61

After Cadzow denoising...

Best distance from true x = 0.25 13 / 15
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Conclusions and Future Work

I The Nuclear Norm Minimization is too sensitive to λ.

I With the positive semidefinite constraint, cvx failed to return
a solution.

I Penalize shrinkage?

I Reformulate the problem as an SDP and try again?

I Must find out why Cadzow does so well.
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Thank You!

Questions?

15 / 15
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