Uniform Approximation of Functions with Random Bases

Ali Rahimi Intel Research Ben Recht UW Madison

• **Goal:** Find a class \mathcal{F} which is easy to search over, but can approximate complex behavior.

Approximation Schemes

- Approximate $f(\mathbf{x})$ by $f_n(\mathbf{x}) = \sum_{k=1}^n c_k \phi_k(\mathbf{x}; \theta_k)$
- Jones (1992), $\tilde{f} \in L_1(\mathbb{R}^d)$ $\phi(\mathbf{x}; \mathbf{w}, b) = \cos(\mathbf{w}^* \mathbf{x} + b)$
- Barron (1993), $\nabla \tilde{f} \in L_1(\mathbb{R}^d)$ $\phi(\mathbf{x}; \mathbf{w}, b) = \sigma(\mathbf{w}^* \mathbf{x} + b)$
- Girosi & Anzellotti (1995), $f \in W_{2,s}(\mathbb{R}^d)$ $\phi(\mathbf{x}; \mathbf{z}) = \exp(-\|x z\|^2)$ with 2s > d
- Using nearly identical analysis, all of these schemes achieve

$$\|f - f_n\|_2 = O\left(\frac{1}{\sqrt{n}}\right)$$

Approximation Schemes

• Approximate $f(\mathbf{x})$ by $f_n(\mathbf{x}) = \sum_{k=1}^n c_k \phi_k(\mathbf{x}; \theta_k)$

Simultaneously optimize

- Parameter tuning is tricky...
- (Can achieve $\|f f_n\|_2 = O\left(\frac{1}{\sqrt{n}}\right)$ via a greedy "algorithm").

Randomize, don't optimize

- Approximate $f(\mathbf{x})$ by $f_n(\mathbf{x}) = \sum_{k=1}^n c_k \phi_k(\mathbf{x}; \theta_k)$ optimize sample • For which functions can we achieve $\|f - f_n\| = O\left(\frac{1}{\sqrt{n}}\right)$?
- How are these functions related to objects we already know and love?
- Practical Implementations

Function Class

- Fix parameterized basis functions $\phi(\mathbf{x}; \theta)$
- Fix a probability distribution $p(\theta)$

• Our target space will be:

$$\mathcal{F}_p \equiv \left\{ f = \int \alpha(\theta) \phi(\cdot; \theta) d\theta \ \left| \ \sup_{\theta} \left| \frac{\alpha(\theta)}{p(\theta)} \right| < \infty \right\}$$

• With the convention that

$$\left|\frac{\alpha(\theta)}{0}\right| = \begin{cases} 0 & \alpha(\theta) = 0\\ \infty & \text{otherwise} \end{cases}$$

Random Features: Example

- Fourier basis functions: $\phi(\mathbf{x}; \omega, b) = \cos(\omega^* \mathbf{x} + b)$
- Gaussian parameters $\omega \sim \mathcal{N}(0, \sigma^2 I)$ $b \sim \mathrm{unif}([0, 2\pi])$

• If
$$\tilde{f}(\omega) = \int_{\mathbb{R}^d} f(\mathbf{x}) e^{-i\omega^* \mathbf{x}} dx$$
, then $\sup_{\omega} \left| \frac{\tilde{f}(\omega)}{p(\omega)} \right| \le \infty$ means

that the frequency distribution of *f* has subgaussian tails.

$$\mathcal{F}_p \equiv \left\{ f = \int \alpha(\theta) \phi(\cdot; \theta) d\theta \ \left| \ \sup_{\theta} \left| \frac{\alpha(\theta)}{p(\theta)} \right| \le \infty \right\}$$

• **Thm:** Let f be in \mathcal{F}_p with $||f||_p = \sup_{\theta} \left| \frac{\alpha(\theta)}{p(\theta)} \right|$. Let $\theta_1, ..., \theta_n$ be sampled iid from p. Then with probability at least 1 - δ :

$$\min_{c_k} \left\| f - \sum_{k=1}^n c_k \varphi(\mathbf{x}; \theta_k) \right\|_2 \le \frac{\|f\|_p}{\sqrt{n}} \left(\sqrt{2} + \frac{\sqrt{2}}{2} \log(\frac{1}{\delta}) \right)$$

• If additionally, $\phi(x;\theta) = \phi(\theta'x)$, with $\phi: \mathbb{R} \to \mathbb{R}$ L-Lipschitz, $\phi(0)=0$, and $|\phi|<1$ and p has a finite second moment, then with probability at least 1- δ

$$\min_{c_k} \left\| f - \sum_{k=1}^n c_k \varphi(\mathbf{x}; \theta_k) \right\|_{\infty} \le \frac{\|f\|_p}{\sqrt{n}} \left(\sqrt{\log \frac{1}{\delta}} + 4LB\sqrt{\mathbb{E}\theta'\theta} \right)$$

where $B = \sup_{x \in X} \|x\|_2$

Reproducing Kernel Hilbert Spaces

 A symmetric function k:X×X → ℝ is a positive definite kernel if for all N

$$\sum_{i=1}^{N}\sum_{j=1}^{N}c_{i}c_{j}k(\mathbf{x}_{i},\mathbf{x}_{j})\geq 0$$

• Reproducing Kernel Hilbert Space: $\{f(\mathbf{x}) = \sum_{i=1}^{n} c_i \mathbf{k}(\mathbf{x}_i, \mathbf{x})\}$

$$\left\langle \sum_{j=1}^{n} c_j k(\mathbf{x}_j, \cdot), \sum_{k=1}^{m} d_k k(\mathbf{z}_k, \cdot) \right\rangle_k := \sum_{j=1}^{n} \sum_{k=1}^{m} c_j d_k \mathbf{k}(\mathbf{x}_j, \mathbf{z}_k)$$

• Extensive Applications: Support Vector Machines, Kernel Machines, etc.

$$k(\mathbf{x}, \mathbf{y}) = \int p(\theta) \phi(\mathbf{x}; \theta) \phi(\mathbf{y}; \theta) d\theta$$

• RKHS generated by k: $\mathcal{H} = \{f(\mathbf{x}) = \sum_{i=1}^{n} c_i \mathbf{k}(\mathbf{x}_i, \mathbf{x})\}$

$$\mathcal{F}_p \equiv \left\{ f = \int \alpha(\theta) \phi(\cdot; \theta) d\theta \ \left| \ \sup_{\theta} \left| \frac{\alpha(\theta)}{p(\theta)} \right| \le \infty \right\} \right.$$

• \mathcal{F}_{p} is *dense* in \mathcal{H}_{r} , and for any $f \in \mathcal{F}_{p}$

$$\|f\|_k \le \sup_{\theta} \left| \frac{\alpha(\theta)}{p(\theta)} \right|$$

Gaussian RKHS vs Random Features

• Representer Theorem: for many applications, the optimal function in an RKHS is of the form n

• **RKHS form is preferred:** when number of data points is small or the function is not smooth

 $\sum_{i=1} c_i \mathbf{k}(\mathbf{x}_i, \mathbf{x}) \qquad \text{given data set}$

 Random Features are preferred: when number of data points is very large or the Representer theorem doesn't apply

Fourier Random Features

$$k(\mathbf{x}, \mathbf{y}) = \exp(-\gamma \|\mathbf{x} - \mathbf{y}\|^2)$$

RKHS is dense in continuous functions

Random Decision Stumps

 $t \sim \operatorname{unif}([a, b])$ $i \sim \operatorname{unif}(\{1, \dots, d\})$

$$\phi(\mathbf{x};t,i) = \operatorname{sign}(x_i - t)$$

Boosting Features

$$k(\mathbf{x}, \mathbf{y}) = 1 - 2\frac{\|\mathbf{x} - \mathbf{y}\|_1}{b - a}$$

δ

-δ

Lay a random grid so that for any **x** and **y** $Pr[\mathbf{x} \text{ and } \mathbf{y} \text{ are binned together}] = k(\mathbf{x}, \mathbf{y})$

```
% Approximates Gaussian Process regression
% with Gaussian kernel of variance gamma
% lambda: regularization parameter
% dataset: X is dxN, y is 1xN
% test: xtest is dx1
```

% D: dimensionality of random feature

```
% training
w = randn(D, size(X,1));
b = 2*pi*rand(D,1);
Z = cos(sqrt(gamma)*w*X + repmat(b,1,size(X,2)));
alpha = (lambda*eye(size(X,2)+Z*Z')\(Z*y);
% testing
ztest = alpha(:)'*cos( sqrt(gamma)*w*xtest(:) + ...
+ repmat(b,1,size(X,2)) );
```

Dataset	Fourier+LS	Binning+LS	Exact SVM
Census	5%	7.5%	9%
regression	36 secs	$19 \mathrm{~mins}$	$13 \mathrm{~mins}$
18,000 instances 119 dims	D = 500	P = 30	SVMTorch

