Nuclear norm minimization for the planted clique and biclique problems
 Brendan P.W. Ames, Stephen A. Vavasis (2009)

Hyemin Jeon

Department of Industrial and Systems Engineering jeon5@wisc.edu

April 29, 2010

Outline

- Introduction
- Preliminaries: Results on norms of random matrices
- Maximum clique problem
- Formulation
- Optimality condition
- Finding the solution
- Conclusion

Problems of interest

- Maximum clique problem :

Given an undirected graph (V, E), find the largest clique.

- Maximum-edge biclique problem :

Given a bipartite graph $(\mathrm{U}, \mathrm{V}, \mathrm{E})$, find the complete bipartite subgraph $K_{m, n}$ that maxmizes the product $m n$.

Results on norms of random matrices $(1 / 3)$

Consider a random matrix A with i.i.d. entries following distribution Ω. Define Ω as follows:

$$
A_{i j}= \begin{cases}1 & \text { with probability } \mathrm{p} \\ -\frac{p}{(1-p)} & \text { with probability 1-p }\end{cases}
$$

Then mean $\left(A_{i j}\right)=0, \operatorname{variance}\left(A_{i j}\right)=\sigma^{2}=\frac{p}{1-p}$

Theorem

For all integers $i, j, 1 \leq j \leq i \leq n$, let $A_{i j}$ be distributed according to Ω, and define define symmetrically $A_{i j}=A_{j i}$ for all $i<j$. Then the random symmetric matrix $A=\left[A_{i j}\right]$ satisfies

$$
\|A\| \leq 3 \sigma \sqrt{n}
$$

w.p. at least $1-\exp \left(-c n^{1 / 6}\right)$ for some constant $c>0$ depending on σ.

Results on norms of random matrices $(2 / 3)$

Theorem

Let A be a $\lceil y n\rceil \times n$ matrix whose entries are chosen according to Ω for fixed $y \in \mathbb{R}_{+}$. Then, w.p. at least $1-c_{1} \exp \left(-c_{2} n^{c_{3}}\right)$ where $c_{1}, c_{2}, c_{3}>0$ depend on p and y,

$$
\|A\| \leq c_{4} \sqrt{n}
$$

for some $c_{4}>0$ also depending on p, y.

Theorem (Chernoff Bounds)

Let X_{1}, \cdots, X_{k} be a sequence of k independent Bernoulli trials with success probability p, and let $S=\sum_{i=1}^{k} X_{i}$. Then

$$
\begin{gathered}
P(S>(1+\delta) p k) \leq\left(\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right)^{p k} \text { for } \delta>0, \text { and } \\
P(|S-p k|>a \sqrt{k}) \leq 2 \exp \left(-a^{2} / p\right) \quad \forall a \in(0, p \sqrt{k})
\end{gathered}
$$

Results on norms of random matrices $(3 / 3)$

Theorem

Let A be an $n \times N$ matrix whose entries are chosen according to Ω. Let \tilde{A} be defined as follows. For (i, j) such that $A_{i j}=1$, define $\tilde{A}_{i j}=1$. For (i, j) such that $A_{i j}=-p /(1-p)$, take $\tilde{A}_{i j}=-n_{j} /\left(n-n_{j}\right)$, where n_{j} is the number of 1 's in column j of A. Then there exist $c_{1}>0$ and $c_{2} \in(0,1)$ depending on p such that

$$
P\left(\|A-\tilde{A}\|_{F}^{2} \leq c_{1} N\right) \geq 1-(2 / 3)^{N}-N c_{2}^{n}
$$

Maximum clique: Formulation (1/2)

Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a simple graph. For any clique K of G , the adjacency matrix of the graph K^{\prime} obtained by taking the union of K and the set of loops for each $v \in V(K)$ is a rank-one matrix with 1's in the entries indexed by $V(K) \times V(K)$, and 0 's everywhere else. Therefore, a clique K of G containing n vertices can be found by solving the following rank minimization problem.

$$
\begin{aligned}
& \min \operatorname{rank}(X) \\
& \text { s.t. } \sum_{i \in V} \sum_{j \in V} X_{i j} \geq n^{2} \\
& \quad X_{i j}=0 \quad \text { if }(i, j) \notin E \text { and } i \neq j, \\
& \quad X \in[0,1]^{V \times V}
\end{aligned}
$$

Maximum clique: Formulation (2/2)

Underestimating $\operatorname{rank}(X)$ with $\|X\|_{*}$, we obtain the following convex optimization problem.

$$
\begin{aligned}
& \left(P_{0}\right) \quad \min \|X\|_{*} \\
& \text { s.t. } \sum_{i \in V} \sum_{j \in V} X_{i j} \geq n^{2} \text {, } \\
& X_{i j}=0 \quad \text { if }(i, j) \notin E \text { and } i \neq j .
\end{aligned}
$$

We generalize it to

$$
\begin{aligned}
(P) \quad \min & \|X\|_{*} \\
\text { s.t. } & \sum_{i \in V} \sum_{j \in V} X_{i j} \geq m n \\
& X_{i j}=0 \quad \text { if }(i, j) \in \tilde{E}
\end{aligned}
$$

where $X \in \mathbb{R}^{M \times N}, E \subseteq\{1, \cdots, M\} \times\{1, \cdots, N\}$, and \tilde{E} is the complement of E.

Maximum clique: optimality conditions (1/2)

Lemma

Suppose $A \in \mathbb{R}^{m \times n}$ has rank r with svd $A=\sum_{k=1}^{r} \sigma_{k} u_{k} v_{k}^{T}$. Then ψ is a subgradient of $\|\cdot\|_{*}$ iff ψ is of the form

$$
\psi=\sum_{k=1}^{r} u_{k} v_{k}^{T}+W
$$

where W satisfies $\|W\| \leq 1$ and the column space of W is orthogonal to u_{k} and the row space of W is orthogonal to v_{k} for all $k=1, \cdots, r$.

Using this, we can derive the optimality condition for (P) by straightforward application of KKT conditions.

Maximum clique: optimality conditions (2/2)

Theorem

Let $U^{*} \subset\{1, \cdots, M\}$ with $\left|U^{*}\right|=m$, and $V^{*} \subset\{1, \cdots, N\}$ with
$\left|V^{*}\right|=n$. Let \bar{u}, \bar{v} be the characteristic vectors of U^{*}, V^{*}, respectively.
Suppose $X^{*}=\bar{u} \bar{v}^{\top}$ is feasible for (P) and there exists
$W \in \mathbb{R}^{M \times N}, \lambda \in \mathbb{R}^{M \times N}$, and $\mu \in \mathbb{R}_{+}$such that

$$
\begin{gathered}
W \bar{v}=0, \bar{u}^{T} W=0,\|W\| \leq 1, \text { and } \\
\frac{\bar{u}^{T}}{\sqrt{m n}}+W=\mu e e^{T}+\sum_{(i, j) \in \tilde{E}} \lambda_{i j} e_{i} e_{j}^{T}
\end{gathered}
$$

Then X^{*} is an optimal solution to (P). Moreover, for any $I \subset\{1, \cdots, M\}, J \subset\{1, \cdots, N\}$ such that $I \times J \subset E,|I| \cdot|J| \leq m n$. Furthermore, if $\|W\|<1$ and $\mu>0$, then X^{*} is the unique optimizer.

Maximum clique: finding the solution

Given a graph G , how do we find X^{*}, W, and values for the multipliers to satisfy the optimality conditions?
\rightarrow Take $\mu=1 / n$ and define W, λ as the following:

- If $(i, j) \in V^{*} \times V^{*}, W_{i j}=0, \lambda_{i j}=0$.
- If $(i, j) \in E-\left(V^{*} \times V^{*}\right)$ such that $i \neq j, W_{i j}=1 / n, \lambda_{i j}=0$.
- If $i \notin V^{*}, W_{i i}=1 / n$.
- If $(i, j) \notin E, i \notin V^{*}, j \notin V^{*}$, then $W_{i j}=-\gamma / n, \lambda_{i j}=-(1+\gamma) / n$ for some constant $\gamma \in \mathbb{R}$.
- If $(i, j) \notin E, i \in V^{*}, j \notin V^{*}$,

$$
W_{i j}=-\frac{p_{j}}{n\left(n-p_{j}\right)}, \quad \lambda_{i j}=-\frac{1}{n}-\frac{p_{j}}{n\left(n-p_{j}\right)},
$$

where p_{j} is the number of edges from j to V^{*}.

- If $(i, j) \notin E, i \notin V^{*}, j \in V^{*}$, choose $W_{i j}, \lambda_{i j}$ symmetrically with the previous case.

Maximum clique: finding the solution

We can easily check that this W satisfies

$$
\begin{aligned}
W \bar{v} & =0, \\
\frac{\overline{\bar{v}} \bar{v}^{T}}{n}+W & =\mu e e^{T}+\sum_{(i, j) \in \tilde{E}} \lambda_{i j} e_{i} e_{j}^{T} .
\end{aligned}
$$

Which graphs G yield W defined as suggested such that $\|W\|<1$?

- Adversarial case $(\gamma=0)$
- Randomized case $(\gamma=-p /(1-p))$

Maximum clique: the randomized case

Let V be a set of N vertices, and consider a subset $V^{*} \subset V$ with n vertices. We construct the edge set E as follows:

- For all $(i, j) \in V^{*} \times V^{*},(i, j) \in E$
- Each of remaining $N(N-1) / 2-n(n-1) / 2$ possible edges is added to E independently at random w.p. $p \in[0,1)$

We wish to determine which n, N yield G as constructed above such that with high probability $X^{*}=\bar{v} \bar{v}^{\top}$ is optimal for the convex relaxation $\left(P_{0}\right)$ of the clique problem.

Maximum clique: the randomized case

Theorem

There exists an $\alpha>0$ depending on p such that for all G constructed as suggested with $n \geq \alpha \sqrt{N}$, the clique defined by $V^{*} \times V^{*}$ is the unique maximum clique of G and will correspond to the unique solution of P_{0} with probability tending exponentially to 1 as $N \rightarrow \infty$.

Conclusion

Maximum clique and maximum biclique problems, both of which are NP-hard, can be solved in polynomial time using nuclear norm minimization, provided that the input graph consists of a single clique or biclique plus diversionary edges.

