Nuclear norm minimization for the planted clique and biclique problems Brendan P.W. Ames, Stephen A. Vavasis (2009)

Hyemin Jeon

Department of Industrial and Systems Engineering jeon5@wisc.edu

April 29, 2010

- Introduction
- Preliminaries: Results on norms of random matrices
- Maximum clique problem
 - Formulation
 - Optimality condition
 - Finding the solution
- Conclusion

Problems of interest

- Maximum clique problem : Given an undirected graph (V,E), find the largest clique.
- Maximum-edge biclique problem : Given a bipartite graph (U,V,E), find the complete bipartite subgraph K_{m,n} that maxmizes the product mn.

Results on norms of random matrices (1/3)

Consider a random matrix A with i.i.d. entries following distribution Ω . Define Ω as follows:

$$A_{ij} = \left\{ egin{array}{cc} 1 & ext{with probability p} \\ -rac{p}{(1-p)} & ext{with probability 1-p} \end{array}
ight.$$

Then mean(A_{ij}) = 0, variance(A_{ij}) = $\sigma^2 = \frac{p}{1-p}$

Theorem

For all integers i, $j, 1 \le j \le i \le n$, let A_{ij} be distributed according to Ω , and define define symmetrically $A_{ij} = A_{ji}$ for all i < j. Then the random symmetric matrix $A = [A_{ij}]$ satisfies

$$\|A\| \le 3\sigma\sqrt{n}$$

w.p. at least $1 - \exp(-cn^{1/6})$ for some constant c > 0 depending on σ .

Let A be a $\lceil yn \rceil \times n$ matrix whose entries are chosen according to Ω for fixed $y \in \mathbb{R}_+$. Then, w.p. at least $1 - c_1 \exp(-c_2 n^{c_3})$ where $c_1, c_2, c_3 > 0$ depend on p and y,

$$\|A\| \le c_4 \sqrt{n}$$

for some $c_4 > 0$ also depending on p, y.

Theorem (Chernoff Bounds)

Let X_1, \dots, X_k be a sequence of k independent Bernoulli trials with success probability p, and let $S = \sum_{i=1}^{k} X_i$. Then

$$P(S > (1 + \delta)pk) \le (rac{e^{\delta}}{(1 + \delta)^{(1+\delta)}})^{pk}$$
 for $\delta > 0$, and $P(|S - pk| > a\sqrt{k}) \le 2exp(-a^2/p) \quad orall a \in (0, p\sqrt{k}).$

Let A be an $n \times N$ matrix whose entries are chosen according to Ω . Let \tilde{A} be defined as follows. For (i,j) such that $A_{ij} = 1$, define $\tilde{A}_{ij} = 1$. For (i,j) such that $A_{ij} = -p/(1-p)$, take $\tilde{A}_{ij} = -n_j/(n-n_j)$, where n_j is the number of 1's in column j of A. Then there exist $c_1 > 0$ and $c_2 \in (0,1)$ depending on p such that

$$P(||A - \tilde{A}||_F^2 \le c_1 N) \ge 1 - (2/3)^N - Nc_2^n.$$

Let G=(V,E) be a simple graph. For any clique K of G, the adjacency matrix of the graph K' obtained by taking the union of K and the set of loops for each $v \in V(K)$ is a rank-one matrix with 1's in the entries indexed by $V(K) \times V(K)$, and 0's everywhere else. Therefore, a clique K of G containing n vertices can be found by solving the following rank minimization problem.

$$\begin{array}{l} \text{min rank}(X)\\ \text{s.t.} \sum_{i \in V} \sum_{j \in V} X_{ij} \geq n^2,\\ X_{ij} = 0 \quad \text{if } (i,j) \notin E \text{ and } i \neq j,\\ X \in [0,1]^{V \times V}. \end{array}$$

Maximum clique: Formulation (2/2)

Underestimating rank(X) with $||X||_*$, we obtain the following convex optimization problem.

$$\begin{array}{ll} (P_0) & \min \|X\|_* \\ & s.t. \sum_{i \in V} \sum_{j \in V} X_{ij} \geq n^2, \\ & X_{ij} = 0 & \textit{if } (i,j) \notin E \textit{ and } i \neq j. \end{array}$$

We generalize it to

$$(P) \quad \min \|X\|_*$$

$$s.t. \sum_{i \in V} \sum_{j \in V} X_{ij} \ge mn,$$

$$X_{ij} = 0 \quad if \ (i,j) \in \tilde{E},$$
where $X \in \mathbb{R}^{M \times N}, \ E \subseteq \{1, \cdots, M\} \times \{1, \cdots, N\}, \text{ and } \tilde{E} \text{ is the complement of } E.$

Hyemin Jeon (UW-Madison)

com

Lemma

Suppose $A \in \mathbb{R}^{m \times n}$ has rank r with svd $A = \sum_{k=1}^{r} \sigma_k u_k v_k^T$. Then ψ is a subgradient of $\|\cdot\|_*$ iff ψ is of the form

$$\psi = \sum_{k=1}^{r} u_k v_k^T + W,$$

where W satisfies $||W|| \le 1$ and the column space of W is orthogonal to u_k and the row space of W is orthogonal to v_k for all $k = 1, \dots, r$.

Using this, we can derive the optimality condition for (P) by straightforward application of KKT conditions.

Let $U^* \subset \{1, \dots, M\}$ with $|U^*| = m$, and $V^* \subset \{1, \dots, N\}$ with $|V^*| = n$. Let \bar{u}, \bar{v} be the characteristic vectors of U^*, V^* , respectively. Suppose $X^* = \bar{u}\bar{v}^T$ is feasible for (P) and there exists $W \in \mathbb{R}^{M \times N}, \ \lambda \in \mathbb{R}^{M \times N}$, and $\mu \in \mathbb{R}_+$ such that

$$W \overline{v} = 0, \overline{u}^T W = 0, \|W\| \le 1, \text{ and}$$

 $\frac{\overline{u} \overline{v}^T}{\sqrt{mn}} + W = \mu e e^T + \sum_{(i,j) \in \widetilde{E}} \lambda_{ij} e_i e_j^T.$

Then X^* is an optimal solution to (P). Moreover, for any $I \subset \{1, \dots, M\}, J \subset \{1, \dots, N\}$ such that $I \times J \subset E$, $|I| \cdot |J| \leq mn$. Furthermore, if ||W|| < 1 and $\mu > 0$, then X^* is the unique optimizer.

・ロト ・聞 ト ・ 国 ト ・ 国 ト … 国

Maximum clique: finding the solution

Given a graph G, how do we find X^* , W, and values for the multipliers to satisfy the optimality conditions?

 \rightarrow Take $\mu=1/\mathit{n}$ and define $\mathit{W},\ \lambda$ as the following:

• If
$$(i,j) \in V^* imes V^*$$
, $W_{ij} = 0, \ \lambda_{ij} = 0.$

• If $(i,j) \in E - (V^* \times V^*)$ such that $i \neq j$, $W_{ij} = 1/n$, $\lambda_{ij} = 0$.

• If
$$i \notin V^*$$
, $W_{ii} = 1/n$.

• If $(i, j) \notin E$, $i \notin V^*$, $j \notin V^*$, then $W_{ij} = -\gamma/n$, $\lambda_{ij} = -(1+\gamma)/n$ for some constant $\gamma \in \mathbb{R}$.

• If
$$(i,j) \notin E$$
, $i \in V^*$, $j \notin V^*$,

$$W_{ij}=-rac{p_j}{n(n-p_j)},\ \lambda_{ij}=-rac{1}{n}-rac{p_j}{n(n-p_j)},$$

where p_j is the number of edges from j to V^* .

If (i, j) ∉ E, i ∉ V*, j ∈ V*, choose W_{ij}, λ_{ij} symmetrically with the previous case.

We can easily check that this W satisfies

$$W\bar{v} = 0,$$

$$\frac{\bar{v}\bar{v}^{T}}{n} + W = \mu e e^{T} + \sum_{(i,j)\in\tilde{E}} \lambda_{ij} e_{i} e_{j}^{T}.$$

Which graphs G yield W defined as suggested such that $\|W\| < 1$?

- Adversarial case ($\gamma = 0$)
- Randomized case $(\gamma = -p/(1-p))$

Let V be a set of N vertices, and consider a subset $V^* \subset V$ with n vertices. We construct the edge set E as follows:

- For all $(i,j) \in V^* \times V^*$, $(i,j) \in E$
- Each of remaining N(N − 1)/2 − n(n − 1)/2 possible edges is added to E independently at random w.p. p ∈ [0, 1)

We wish to determine which n, N yield G as constructed above such that with high probability $X^* = \bar{v}\bar{v}^T$ is optimal for the convex relaxation (P_0) of the clique problem.

There exists an $\alpha > 0$ depending on p such that for all G constructed as suggested with $n \ge \alpha \sqrt{N}$, the clique defined by $V^* \times V^*$ is the unique maximum clique of G and will correspond to the unique solution of P_0 with probability tending exponentially to 1 as $N \to \infty$.

Maximum clique and maximum biclique problems, both of which are NP-hard, can be solved in polynomial time using nuclear norm minimization, provided that the input graph consists of a single clique or biclique plus diversionary edges.