Spectrum Sensing – an application of sparse signal recovery

Back projection with sub-sampled DFT matrices (Maximum Correlation Estimation)

Matt Malloy – CS 838 project

Outline

- Spectrum Sensing
- Sub-sampled DFT matrices
- Block sparsity
 - On the reconstruction of block-sparse signals with an optimal number of measurements [Stojnic, Parvaresh, Hassibi, '09]
- Something easier than solving L1 minimization
 - *Back projection + thresholding*
 - Related work
 - Proof: Asymptotic probability of error for 1-sparse signals
 - Proof: Bound for s-sparse signals
- Numerical results comparing back projection to standard CS approach

What is spectrum sensing? Measurement and classification of the radio spectrum into used and unused bands

Quickly and reliably detect open radio spectrum Cognitive radio context

Many practical constraints

- Energy detection
- Coherent detection
- Feature detection

- Dynamic range
- Duration of observation

Is spectrum occupation sparse?

Example - Digital TV spectrum
38 x 6 MHz channels
44 MHz – 88 MHz and 470 MHz – 698 MHz
Madison has 6 occupied channels (CBS 3, NBC 15, PBS 21, ABC 27, FOX 47,CW 57) *Digital TV bands in Madison are 6-sparse*

No guarantee but much literature either assumes or shows that certain case are.

Traditional approach – sample in frequency

$$y(t) = \sum_{m=1}^{M} s_m(t) + w_m(t)$$

$$x_n = \langle y(t), \phi_n(t) \rangle$$

$$= \int y(t) e^{-j2\pi \frac{n}{T}t} dt$$

$$= Y(f)|_{f=n/T}$$

$$= \sum_{m=1}^{M} b_m S_m(f)|_{f=n/T} + w$$

Really just take time domain measurements and hit with DFT matrix

$$\mathbf{x} = \mathbf{U}^H \mathbf{y}$$
 time domain measurements

Signal recovery with sub-sampled Fourier matrices

Compressed Sensing Approach

$$\mathbf{y}_p = \mathbf{U}_p \mathbf{x}$$

$$\hat{\mathbf{x}} = \arg\min_{\mathbf{x}} ||\mathbf{x}||_1$$

subject to $\mathbf{y}_p = \mathbf{U}_p \mathbf{x}$

Back projection + thresholding1) Back projection
$$\tilde{\mathbf{x}} = \mathbf{U}_p^H \mathbf{y}_p = \mathbf{U}_p^H \mathbf{U}_p \mathbf{x}$$
2) Threshold $\hat{x}_j = \begin{cases} \tilde{x}_j & \text{if } \tilde{x}_j & \text{is in s largest elements of } \tilde{\mathbf{x}} \\ 0 & \text{else} \end{cases}$

1-sparse signals-sparse signal* $Pr(\hat{\mathbf{x}} = \mathbf{x}) = (1 - e^{-p})^{N-1}$ $Pr(\hat{\mathbf{x}} = \mathbf{x}) \ge (1 - e^{-\frac{p}{4s}})^N$ $p > \log(N-1)$ $p > 4s \log N$

Example

Related work:

- [1] Necessary and Sufficient Conditions for Sparsity Pattern Recovery [Fletcher, Rangan, Goyal, 2009]
 - Same technique with Gaussian matrices

$$\tilde{\mathbf{x}} = \mathbf{A}_p^T \mathbf{y}_p$$
 $[\mathbf{A}]_{i,j} \sim \mathcal{N}\left(0, \frac{1}{N}\right)$

• Result
$$p > \frac{8(1+||\mathbf{x}||^2)}{x_{min}^2} \log(N-s)$$

 $p > 8(1+s)\log(N-s)$ account dynamic range issue

OMP – Orthogonal matching pursuit algorithms

Uses back projection to find largest element of **x**, remove contribution, and repeat

Trivial case when
$$p = n$$

 $\tilde{\mathbf{x}} = \mathbf{U}_p^H \mathbf{U}_p \mathbf{x}$
 $\tilde{\mathbf{x}} = \mathbf{I} \mathbf{x}$

Elements of $U_p^H U_p$

$$[\mathbf{U}_{\mathbf{p}}^{H}\mathbf{U}_{\mathbf{p}}]_{u,v} = \frac{1}{N} \sum_{i=1}^{p} e^{j2\pi \frac{(\ell_{i}-1)(u-1)}{N}} e^{-j2\pi \frac{(\ell_{i}-1)(v-1)}{N}}$$
$$= \frac{1}{N} \sum_{i=1}^{p} e^{j2\pi \frac{(\ell_{i}-1)(u-v)}{N}}$$

Diagonal elements

$$[\mathbf{U_p}^H \mathbf{U_p}]_{u,u} = \frac{p}{N}$$

Thresholding step – pick largest entry (in 1-sparse case)

$$\hat{x}_{j} = \begin{cases} \frac{N}{p} \tilde{x}_{j} & |\tilde{x}_{j}|^{2} > |\tilde{x}_{i}|^{2} & \forall i \neq j \\ 0 & else \end{cases}$$
1-sparse error analysis
Probability of error is just probability that any of *N-1* 'noise' elements exceed *p/N*
independent of magnitude of non-zero entry

$$Pr(\hat{x}_{i} = x_{i}) = Pr\left(\left|x_{s}|^{2}\right|\left[\bigcup_{p}^{H} \bigcup_{p}\right]_{s,i}\right|^{2} < |x_{s}|^{2}\left(\frac{p}{N}\right)^{2}\right) \qquad i \neq s$$

$$Pr(\hat{x}_{i} = x_{i}) = Pr\left(Z < \left(\frac{p}{N}\right)^{2}\right)$$

$$Z \sim \chi_{2}^{2} \sim \exp\left(\frac{N^{2}}{p}\right)$$

$$F_{Z}(z) = 1 - e^{-\frac{N^{2}}{r}z}$$

$$Pr(\hat{x}_{i} = x_{i}) = 1 - e^{-\left(\frac{N^{2}}{r}\right)\left(\frac{p}{N}\right)^{2}}$$

$$Pr(\hat{x}_{i} = x_{i}) = 1 - e^{-\left(\frac{N^{2}}{r}\right)\left(\frac{p}{N}\right)^{2}}$$

$$Pr(\hat{x}_{i} = x_{i}) = 1 - e^{-p}$$
Error probability for entire signal

$$Pr(\hat{x} = \mathbf{x}) = (1 - e^{-p})^{N-1}$$

$$p > \log(N-1)$$

s-sparse error analysis

Set of indices where x lives $I_s = \{i : x_i \neq 0\} \checkmark$ After thresholding, error occurs if $\tilde{x}_i \sim \begin{cases} \mathcal{CN}\left(0, \frac{sP}{N^2}\right) & i \notin I_s \\ \mathcal{CN}\left(\frac{P}{N}, \frac{sP}{N^2}\right) & i \in I_s \end{cases}$ worst 'no signal' entry exceeds magnitude of worst 'signal' entry $P_E = Pr(\hat{\mathbf{x}} \neq \mathbf{x}) = Pr\left(\max_{i \notin I_s} |\tilde{x}_i|^2 > \min_{i \in I_s} |\tilde{x}_i|^2\right)$ Define a suboptimal threshold at $\frac{1}{2N}$ $Pr(\hat{\mathbf{x}} = \mathbf{x}) = 1 - P_E = \geq Pr\left(\bigcap_{i \in I} \left[|\tilde{x}_i|^2 < \left(\frac{P}{2N}\right)^2 \right] \cap \bigcap_{i \in I} \left[|\tilde{x}_i|^2 > \left(\frac{P}{2N}\right)^2 \right] \right)$ $= Pr\left(\left|\underbrace{Y}_{\mathcal{CN}(0,\frac{sP}{V^2})}\right|^2 < \left(\frac{P}{2N}\right)^2\right)^{\frac{1}{2}}$ $= \left(1 - e^{-\frac{p}{4s}}\right)^N$ $Pr(\hat{\mathbf{x}} = \mathbf{x}) \ge \left(1 - e^{-\frac{p}{4s}}\right)^N$

Numerical Results – Increasing s

Numerical Results – Large N

Questions?

