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of sparse signal recovery

Back projection with sub-sampled DFT 
matrices 
(Maximum Correlation Estimation)
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Outline

● Spectrum Sensing

● Sub-sampled DFT matrices

● Block sparsity
● On the reconstruction of block-sparse signals with an optimal number 

of measurements [Stojnic, Parvaresh, Hassibi, '09]

● Something easier than solving L1 minimization
● Back projection + thresholding
● Related work
● Proof: Asymptotic probability of error for 1-sparse signals
● Proof: Bound for s-sparse signals

● Numerical results comparing back projection to standard CS approach



  

What is spectrum sensing? 
Measurement and classification of the radio spectrum into 
used and unused bands

Quickly and reliably detect open radio spectrum
Cognitive radio context

● Energy detection
● Coherent detection
● Feature detection

Many practical constraints

● Dynamic range
● Duration of observation



  

Is spectrum occupation sparse?

Example - Digital TV spectrum
38 x 6 MHz channels
44 MHz – 88 MHz and 470 MHz – 698 MHz
Madison has 6 occupied channels (CBS 3, NBC 15, PBS 21, 
ABC 27, FOX 47,CW 57) 
Digital TV bands in Madison are 6-sparse

No guarantee but much literature either assumes or shows that 
certain case are.



  

Really just take time domain measurements and hit with DFT matrix

Traditional approach – sample in frequency

time domain 
measurements

We'll ignore noise



  

is chosen at without 
replacement from 1,...,N

Signal recovery with sub-sampled Fourier matrices 

Randomly throw 
out (N-p)  time 
domain samples

time domain 
measurements

frequency domain 
measurements

Deterministic, s-sparse



  

Back projection + thresholding 

1) Back projection

2) Threshold if       is in s largest elements of 
else

Compressed Sensing Approach

1-sparse signal s-sparse signal*  

*equal magnitude sparse entries



  

Example

Potential Issues
● s must be known for thresholding
● dynamic range issue
● noise analysis?

Potential Advantages
● Deterministic time



  

Related work:
 
[1] Necessary and Sufficient Conditions for Sparsity Pattern Recovery [Fletcher, 

Rangan, Goyal, 2009]

● Same technique with Gaussian matrices

● Result

 
 

account dynamic range issue

OMP – Orthogonal matching pursuit algorithms

Uses back projection to find largest element of x, remove contribution, and repeat



  

Trivial case when p = n

Interesting when p < N 



  

Elements of

Diagonal elements

Off diagonal elements Convergence in distribution for large N

CLT for large~ish p



  

Increasing N



  

Consider 1-sparse case

is just sth row



  

independent of magnitude of non-zero entry

Thresholding step – pick largest entry (in 1-sparse case)

1-sparse error analysis
Probability of error is just probability that any of N-1 'noise' elements exceed p/N

Error probability for 1 entry

Error probability for entire signal



  

Numerical results – s = 1

Average L1 CPU time 
Average back projection CPU time  



  

s-sparse error analysis

Define a suboptimal threshold at 

Set of indices where x lives

After thresholding, error occurs if 
worst 'no signal' entry exceeds 
magnitude of worst 'signal' entry



  

Numerical Results – Increasing s   

Increasing s



  

Numerical Results   –  Large N   



  

Questions?    
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