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Introduction

Consider the variable selection problem in linear model

y = Xβ + ε (1)

where X is a n × p matrix. We are interested in p > n case.

Suppose the true β is β0 with support A
The aim of model selection is to identify A as close as possible
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Criteria for Good Variable Selection Procedure

Suppose that we have an estimator β̂ = (β̂1, . . . , β̂p)′ by n
observations

Model Selection Consistency: P({j : β̂j 6= 0} = A)→ 1 as n→∞
Model selection consistency is stronger than the ordinary consistency
of parameter estimator.

Sign Consistency: P(sign(β̂) = sign(β0))→ 1 as n→∞
Oracle Property:

Selection consistency: P({j : β̂j 6= 0} = A)→ 1

Asymptotic normality:
√

n(β̂A − βA,0)→ N(0,CA,A), where
1
nX ′X → C

The oracle property says that our estimator has the same efficiency as
estimator of βA based on the submodel with βAc = 0 known in
advance
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Variable Selection when p < n

AIC, BIC, subset selection: Combinatoric, NP hard, computational
intensive when p is large

LASSO: min 1
2n

∑n
i=1(Yi − x′iβ)2 + λ

∑d
i=1 |βj |

LASSO is not model selection consistent for general design X

Bridge: min 1
2n

∑n
i=1(Yi − x′iβ)2 + λ

∑p
i=1 |βj |γ where 0 < γ < 1

SCAD: min 1
2n

∑n
i=1(Yi − x′iβ)2 +

∑p
i=1 pλ(|βj |)

Adaptive Lasso: min 1
2n

∑n
i=1(Yi − x′iβ)2 + λn

∑p
i=1 wj |βj |
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SCAD

p′λ(θ) = λ

{
I (θ ≤ λ) +

(aλ− θ)+
(a− 1)λ

I (θ > λ)

}
(2)

for some a > 2 and θ > 0. It is a quadratic spline function with two knots
at λ and aλ.
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SCAD

Theorem

If λn → 0,
√

nλn →∞ and liminfn→∞liminfθ→0+
p′λn (θ)

λn
> 0 then there

exists a local minimizer such that

Selection consistency: P({j : β̂j 6= 0} = A)→ 1

Asymptotic normality:
√

n(β̂A − βA,0)→ N(0,CA,A)

One shortcoming of SCAD is that it is not convex.
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Adaptive LASSO

min
1

2n

n∑
i=1

(Yi − x′iβ)2 + λn

p∑
i=1

wj |βj |

The weights is chosen by w = 1/|β̂|γ where β̂ is the OLS

Theorem

if
√

nλ→ 0 and λnn(γ−1)/2 →∞. Then the adaptive lasso estimates must
satisfy the following:

Selection consistency: P({j : β̂j 6= 0} = A)→ 1

Asymptotic normality:
√

n(β̂A − βA,0)→ N(0,CA,A)

Adaptive LASSO is convex. It can be efficiently solved by LAR algorithm
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Variable Selection in High Dimension – Overview

AIC, BIC, best subset selection fails

LASSO: still provide sparsity solution, model selection consistency:
Irrepresentable conditions

Direct SCAD, adaptive LASSO fails. We need to do some
modification.

Dantzig selector: (Candes and Tao 2007)

min‖ζ‖1 subject to ‖X′Mr‖∞ ≤ λdσ

where λd > 0 and r = y− XMζ

Sure Independence Screen: Two step procedure, first reduce the
dimension by screening than do model selection.
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LASSO in High Dimensions

Definition

Irrepresentable Condition: There exists a positive constant vector ξ
such that

|CA,Ac (CA,A)−1sign(βA,0)| ≤ 1− ξ

Theorem

Under some technical regularity conditions, Irrepresentable Condition
imples that LASSO sign consistency for pn = o(nck). for any λn satisfies
λn√
n

= o(nc/2) and 1
pn

( λn√
n

)2k →∞
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Dantzig Selector

In noiseless case, under RIP, one could recover β exactly by solving

min

p∑
i=1

|βj |, subject to Xβ = y

When the measurement device is subject to some small amount of
noise. Candes and Tao (2007) proposed following convex program

min

p∑
i=1

|βj |, subject to ‖X ∗ r‖∞ ≤ λpσ

for some λp > 0, where r = y − Xβ is residual.

This can be solved by linear programming

DS and LASSO are highly related. In many cases they provide the
same solution path.(James, Radchenko and Lv 2009)
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Good Propertis of DS

Theorem

Suppose β0 is any S-sparse vector such that δ2S + θS ,2S < 1, choose
λp =

√
2log(p), then with large probability,

‖β̂ − β0‖2 ≤ C1log(p)Sσ2

Some limitation of DS:

RIP is too strong for statistics. Only random design can satisfy it. No
fixed design can achieve this property at my knowledge.

p still can not too large. if p = o(en) then the above theorem is
useless in some sense.
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Sure Independent Screening

Suppose X has been standardized The componentwise regression is

w = XT y (3)

SIS: For any given γ ∈ (0, 1), sort the p componentwise magnitudes
of the vector w in a decreasing order

Aγ = {1 ≤ i ≤ p : |wi | is among the first [γn] largest of all} (4)

SIS selects d = [γn] < n parameters, and reduce the dimension less
than n. SCAD, adaptive LASSO, Dantzig selector can applied to
achieve good properties, if SIS satisfies sure screening property

P(A ⊂ Aγ)→ 1 (5)
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Relation to the Ridge Regression

Consider the ridge regression

wλ = (XTX + λIp)−1XT y (6)

wλ → β̂LS as λ→ 0

λwλ → w as λ→∞
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Theorem

Under some regularity conditions, if 2κ+ τ < 1 then there is some
θ < 1− 2κ− τ such that when γ ∼ cn−θ with c > 0, we have, for some
C > 0

P(A ⊂ Aγ) = 1− O(exp{−Cn1−2κ/log(n)}) (7)

Theorem

(SIS-DS) Assume that δ2s + θs,2s ≤ t < 1, and choose λd =
√

2log(d),
then with large probability,we have

‖β̂ − β0‖2 ≤ C
√

log(d)sσ2

The above theorem reduce the factor log(p) to log(d) with d < n
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A Simulation Example

Two models with (n, p) = (200, 1000) and (n, p) = (800, 20000). The
sizes s of the true models are 8 and 18.

The non-zero coefficients are randomly chosen as follows. Let
a = 4log(n)/n1/2 and 5log(n)/n1/2 for two different models, pick
non-zero coefficients of the form (−1)u(a + |z |) for each model,
where u ∼ Bernoulli(0.4) and z ∼ N(0, 1)

The l2 norms ‖β‖ of the two simulated models are set 6.795 and
8.908

These settings are not trivial since there is non-negligible sample
correlation between the predictors
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Thank You!
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