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Computing Low Rank Approximations

• Needed to capture only the “meaningful” 
dimensions

• Traditionally : SVD and Frobenius norm

• SVD also optimal in L2 norm

• Here : L2 norm
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Why L2?

• Data in the form of  <instance , attributes>

• L2 norm measures linear structure : fixing any 
attribute linearly influences other attributes

• L2 norm = maximum singular value. So the 
maximum singular vector yields the dimension 
which captures maximum structure in the 
data.



Drawback in existing methods

• Lanczos method and Orthogonal iteration. 

• Perform matrix vector multiplications for the 
most part

• At every multiplication, A has to be moved 
into memory

• Make this more tractable by

1. Sparsifying A , or

2. Quantizing A



To measure error :

• gives a measure of the amount of linear 
structure present in an “A – like” matrix 

• Will be used to measure error between using 
the actual and approximated matrix. 



The main result



Furedi and Komlos , 1980:









Proof contd…



And finally…

• By making the variance of the random entries 
in the matrix to be unity , we get the result in 
theorem 2.1

• The result of the sparse approximation of A 
can be obtained by letting the variance to be a 
a function of `s’ , a parameter in the 
sparsification result.
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