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Abstract. We prove an optimal estimate of the smallest singular value
of a random subgaussian matrix, valid for all dimensions. For an N × n
matrix A with independent and identically distributed subgaussian entries,
the smallest singular value of A is at least of the order

√
N −√n− 1 with

high probability. A sharp estimate on the probability is also obtained.

1. Introduction

1.1. Singular values of subgaussian matrices. Extreme singular values of
random matrices has been of considerable interest in mathematical physics,
geometric functional analysis, numerical analysis and other fields. Consider
an N × n real matrix A with N ≥ n. The singular values sk(A) of A are the

eigenvalues of |A| =
√

AtA arranged in the non-increasing order. Of particular
significance are the largest and the smallest singular values

(1.1) s1(A) = sup
x: ‖x‖2=1

‖Ax‖2, sn(A) = inf
x: ‖x‖2=1

‖Ax‖2.

A natural matrix model is given by matrices whose entries are independent
real random variables with certain moment assumptions. In this paper, we
shall consider subgaussian random variables ξ – those whose tails are dominated
by that of the standard normal random variable. Namely, a random variable
ξ is called subgaussian if there exists B > 0 such that

(1.2) P(|ξ| > t) ≤ 2 exp(−t2/B2) for all t > 0.

The minimal B in this inequality is called the subgaussian moment of ξ. In-
equality (1.2) is often equivalently formulated as the moment condition

(1.3) (E|ξ|p)1/p ≤ CB
√

p for all p ≥ 1,

where C is an absolute constant. The class of subgaussian random variables
includes many random variables that arise naturally in applications, such as
normal, symmetric ±1 and general bounded random variables.
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In this paper, we study N × n real random matrices A whose entries are
independent and identically distributed mean zero subgaussian random vari-
ables. The asymptotic behavior of the extreme singular values of A is well
understood. If the entries have unit variance and the dimension n grows to
infinity while the aspect ratio n/N converges to a constant λ ∈ (0, 1), then

s1(A)√
N

→ 1 +
√

λ,
sn(A)√

N
→ 1−

√
λ

almost surely. This result was proved in [23] for Gaussian matrices, and in [2]
for matrices with independent and identically distributed entries with finite
fourth moment. In other words, we have asymptotically

(1.4) s1(A) ∼
√

N +
√

n, sn(A) ∼
√

N −√n.

Considerable efforts were made recently to establish non-asymptotic esti-
mates similar to (1.4), which would hold for arbitrary fixed dimensions N and
n; see the survey [14] on the largest singular value, and the discussion below
on the smallest singular value.

Estimates in fixed dimensions are essential for many problems of geometric
functional analysis and computer science. Most often needed are upper bounds
on the largest singular value and lower bounds on the smallest singular value,
which together yield that A acts as a nice isomorphic embedding of Rn into
RN . Such bounds are often satisfactory even if they are known to hold up to
a constant factor independent of the dimension.

The largest singular value is relatively easy to bound above, up to a constant
factor. Indeed, a standard covering argument shows that s1(A) is at most of

the optimal order
√

N for all fixed dimensions, see Proposition 2.3 below. The
smallest singular value is significantly harder to control. The efforts to prove
optimal bounds on sn(A) have a long history, which we shall now outline.

1.2. Tall matrices. A result of [4] provides an optimal bound for tall matrices,
those with aspect ratio λ = n/N satisfies λ < λ0 for some sufficiently small
constant λ0 > 0. Conferring with (1.4), one should expect that tall matrices
satisfy

(1.5) sn(A) ≥ c
√

N with high probability.

It was indeed proved in [4] that for tall ±1 matrices one has

(1.6) P
(
sn(A) ≤ c

√
N

) ≤ e−cN

where λ0 > 0 and c > 0 are absolute constants.
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1.3. Almost square matrices. As we move toward square matrices, thus
making the aspect ratio λ = n/N arbitrarily close to 1, the problem of esti-
mating the smallest singular value becomes harder. One still expects (1.5) to
be true as long as λ < 1 is any constant. Indeed, this was proved in [18] for
arbitrary aspect ratios λ < 1− c/ log n and for general random matrices with
independent subgaussian entries. One has

(1.7) P
(
sn(A) ≤ cλ

√
N

) ≤ e−cN ,

where cλ > 0 depends only on λ and the maximal subgaussian moment of the
entries.

In subsequent work [1], the dependence of cλ on the aspect ratio in (1.7)
was improved for random ±1 matrices; however the probability estimate there
was weaker than in (1.7). An estimate for subgaussian random matrices of all
dimensions was obtained in [21]. For any ε ≥ CN−1/2, it was shown that

P
(
sn(A) ≤ ε(1− λ)(

√
N −√n)

) ≤ (Cε)N−n + e−cN .

However, because of the factor (1 − λ), this estimate is suboptimal and does
not correspond to the expected asymptotic behavior (1.4).

1.4. Square matrices. The extreme case for the problem of estimating the
singular value is for the square matrices, where N = n. Asymptotic (1.4) is
useless for square matrices. However, for “almost” square matrices, those with
constant defect N − n = O(1), the quantity

√
N − √n is of order 1/

√
N , so

asymptotics (1.4) heuristically suggests that these matrices should satisfy

(1.8) sn(A) ≥ c√
N

with high probability.

This conjecture was proved recently in [22] for all square subgaussian matrices:

(1.9) P
(
sn(A) ≤ ε√

N

)
≤ Cε + e−cN .

1.5. New result: bridging all classes of matrices. In this paper, we prove
the conjectural bound for sn(A) valid for all subgaussian matrices in all fixed
dimensions N, n. The bound is optimal for matrices with all aspect ratios we
encountered above.

Theorem 1.1. Let A be an N × n random matrix, N ≥ n, whose elements
are independent copies of a mean zero subgaussian random variable with unit
variance. Then, for every ε > 0, we have

(1.10) P
(
sn(A) ≤ ε

(√
N −√n− 1

)) ≤ (Cε)N−n+1 + e−cN

where C, c > 0 depend (polynomially) only on the subgaussian moment B.
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For tall matrices, Theorem 1.1 clearly amounts to the known estimates (1.5),

(1.6). For square matrices (N = n), the quantity
√

N − √N − 1 is of order

1/
√

N , so Theorem 1.1 amounts to the known estimates (1.8), (1.9). Finally,
for matrices that are arbitrarily close to square, Theorem 1.1 yields the new
optimal estimate

(1.11) sn(A) ≥ c(
√

N −√n) with high probability.

This is a version of the asymptotics (1.4), now valid for all fixed dimensions.
This bound was explicitly conjectured e.g. in [26].

Theorem 1.1 seems to be new even for Gaussian matrices. Some early
progress was made by Edelman [6] and Szarek [24] who in particular proved
(1.9) for Gaussian matrices, see also the subsequent work by Edelman and
Sutton [7]. Gordon’s inequality [11] can be used to prove that, for Gaussian

matrices, Esn(A) ≥ √
N −√n, see Theorem II.13 in [5]. One can further use

the concentration of measure inequality on the Euclidean sphere to estimate
the probability as

P
(
sn(A) ≤

√
N −√n− t

) ≤ e−t2/2, t > 0.

However, this bound is not optimal, and it becomes useless for matrices that
are close to square, when N − n = o(

√
n).

The form of estimate (1.10) may be expected if one recalls the classical ε-net
argument, which underlies many proofs in geometric functional analysis. By
(1.1), we are looking for a lower bound on ‖Ax‖ that would hold uniformly for
all vectors x on the unit Euclidean sphere Sn−1. For every fixed x ∈ Sn−1, the
quantity ‖Ax‖2

2 is the sum of N independent random variables (the squares of
the coordinates of Ax). Therefore, the deviation inequalities make us to expect

that ‖Ax‖2 is of the order
√

N with probability exponential in N , i.e. 1−e−cN .
We can run this argument separately for each vector x in a small net N of the
sphere Sn−1, and then take the union bound to make the estimate uniform over
x ∈ N . It is known how to choose a net N of cardinality exponential in the
dimension n− 1 of the sphere, i.e. |N | ≤ eC(n−1). Therefore, with probability

1− eC(n−1)e−cN , we have a good lower bound on ‖Ax‖2 ∼
√

N for all vectors
x in the net N . Finally, one transfers this estimate from the net to the whole
sphere Sn−1 by approximation.

The problem with this argument is that the constants C and c are not the
same. Therefore, our estimate on the probability 1 − eC(n−1)e−cN is positive
only for tall matrices, when N ≥ (C/c)n. To reach out to matrices of arbitrary
dimensions, one needs to develop much more sensitive versions of the ε-net
arguments. Nevertheless, the end result stated in Theorem 1.1 exhibits the
same two forces played against one another – the probability quantified by the
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dimension N and the complexity of the sphere Sn−1 quantified by its dimension
n− 1.

1.6. Small ball probabilities, distance problems, and additive struc-
ture. Our proof of Theorem 1.1 is a development of our method in [22] for
square matrices. Dealing with rectangular matrices is in several ways consid-
erably harder. Several new tools are developed in this paper, which may be of
independent interest.

One new key ingredient is a small ball probability bound for sums of inde-
pendent random vectors in Rd. We consider the sum S =

∑
k akXk where Xk

are i.i.d. random variables and ak are real coefficients. We then estimate the
probability that such sum falls into a given small Euclidean ball in Rd. Useful
upper bounds on the small ball probability must depend on the additive struc-
ture of the coefficients ak. The less structure the coefficients carry, the more
spread the distribution of S is, so the smaller is the small ball probability. Our
treatment of small ball probabilities is a development of the Littlewood-Offord
theory from [22], which is now done in arbitrary dimension d as opposed in
d = 1 in [22]. While this paper was being written, Friedland and Sodin [9] pro-
posed two different ways to simplify and improve our argument in [22]. With
their kind permission, we include in Section 3 a multi-dimensional version of
an unpublished argument of Friedland and Sodin [10], which is considerably
simpler than our original proof.

We use small the ball probability estimates to prove an optimal bound for the
distance problem: how close is a random vector from an independent random
subspace? Consider a vector X in RN with independent identically distributed
coordinates and a subspace H spanned by N − m independent copies of X.
In Section 4, we show that the distance is at least of order

√
m with high

probability, and we obtain the sharp estimate on this probability:

(1.12) P
(
dist(X,H) < ε

√
m

) ≤ (Cε)m + e−cN .

This bound is easy for a standard normal vector X in RN , since dist(X,H) is
in this case the Euclidean norm of the standard normal vector in Rm. However,
for discrete distributions, such as for X with ±1 random coordinates, estimate
(1.12) is non-trivial. In [22], it was proved for m = 1; in this paper we extend
the distance bound to all dimensions.

To prove (1.12), we first use the small ball probability inequalities to compute
the distance to an arbitrary subspace H. This estimate necessarily depends on
the additive structure of the subspace H; the less structure, the better is our
estimate, see Theorem 4.2. We then prove the intuitively plausible fact that
random subspaces have no arithmetic structure, see Theorem 4.3. This together
leads to the desired distance estimate (1.12).
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The distance bound is then used to prove our main result, Theorem 1.1.
Let X be some column of the random matrix A and H be the span of the
other columns. The simple rank argument shows that the smallest singular
value sn(A) = 0 if and only if X ∈ H for some column. A simple quantitative
version of this argument is that a lower estimate on sn(A) yields a lower bound
on dist(X, H).

In Section 6, we show how to reverse this argument for random matrices –
deduce a lower bound on the smallest singular value sn(A) from lower bound
(1.12) on the distance dist(X,H). Our reverse argument is harder than its
version for square matrices from [22], where we had m = 1. First, instead
of one column X we now have to consider all linear combinations of d ∼
m/2 columns; see Lemma 6.2. To obtain a distance bound that would be
uniformly good for all such linear combinations, one would normally use an ε-
net argument. However, the distance to the (N −m)-dimensional subspace H
is not sufficiently stable for this argument to be useful for small m (for matrices
close to square). We therefore develop a decoupling argument in Section 7 to
bypass this difficulty.

Once this is done, the proof is quickly completed in Section 8.

Acknowledgement. We are grateful to Shuheng Zhou, Nicole Tomczak-Jae-
germann, Radoslaw Adamczak, and the anonymous referee for pointing out
several inaccuracies in our argument. The second named author is grateful for
his wife Lilia for her love and patience during the years this paper was being
written.

2. Notation and preliminaries

Throughout the paper, positive constants are denoted C,C1, C2, c, c1, c2, . . .
Unless otherwise stated, these are absolute constants. In some of our argu-
ments they may depend (polynomially) on specified parameters, such as the
subgaussian moment B.

The canonical inner product on Rn is denoted 〈·, ·〉, and the Euclidean norm
on Rn is denoted ‖ · ‖2. The Euclidean distance from a point a to a subset
D in Rn is denoted dist(a,D). The Euclidean ball of radius R centered at a
point a is denoted B(a, R). The unit Euclidean sphere centered at the origin
is denoted Sn−1. If E is a subspace of Rn, its unit Euclidean sphere is denoted
S(E) := Sn−1 ∩ E.

The orthogonal projection in Rn onto a subspace E is denoted PE. For a
subset of coordinates J ⊆ {1, . . . , n}, we sometimes write PJ for PRJ where it
causes no confusion.

2.1. Nets. Consider a subset D of Rn, and let ε > 0. Recall that an ε-net of
D is a subset N ⊆ D such that for every x ∈ D one has dist(x,N ) ≤ ε.
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The following Lemma is a variant of the well known volumetric estimate.

Proposition 2.1 (Nets). Let S be a subset of Sn−1, and let ε > 0. Then there
exists an ε-net of S of cardinality at most

2n
(
1 +

2

ε

)n−1

.

The published variants of his lemma (e.g. [19], Lemma 2.6) have exponent
n rather than n−1. Since the latter exponent will be crucial for our purposes,
we include the proof of this lemma for the reader’s convenience.

Proof. Without loss of generality we can assume that ε < 2, otherwise any sin-
gle point forms a desired net. Let N be an ε-separated subset of S of maximal
cardinality. By maximality, N is an ε-net of S. Since N is ε-separated, the
balls B(x, ε/2) with centers x ∈ N are disjoint. All these balls have the same
volume, and they are contained in the spherical shell B(0, 1+ε/2)\B(0, 1−ε/2).
Therefore, comparing the volumes, we have

|N | · vol(B(0, ε/2)) ≤ vol
(
B(0, 1 + ε/2) \B(0, 1− ε/2)

)
.

Dividing both sides of this inequality by vol(B(0, 1)), we obtain

|N | · (ε/2)n ≤ (1 + ε/2)n − (1− ε/2)n.

Using the inequality (1 + x)n − (1− x)n ≤ 2nx(1 + x)n−1 valid for x ∈ (0, 1),
we conclude that |N | is bounded as desired. This completes the proof. ¤

The following well known argument allows one to compute the norm of a
linear operator using nets. We have not found a published reference to this
argument, so we include it for the reader’s convenience.

Proposition 2.2 (Computing norm on nets). Let N be a ε-net of Sn−1 and
M be a δ-net of Sm−1. Then for any linear operator A : Rn → Rm

‖A‖ ≤ 1

(1− ε)(1− δ)
sup

x∈N , y∈M
|〈Ax, y〉|.

Proof. Every z ∈ Sn−1 has the form z = x + h, where x ∈ N and ‖h‖2 ≤ ε.
Since ‖A‖ = supz∈Sn−1 ‖Az‖2, the triangle inequality yields

‖A‖ ≤ sup
x∈N

‖Ax‖2 + max
‖h‖2≤ε

‖Ah‖2.

The last term in the right hand side is bounded by ε‖A‖. Therefore we have
shown that

(1− ε)‖A‖ ≤ sup
x∈N

‖Ax‖2.

Fix x ∈ N . Repeating the above argument for ‖Ax‖2 = supy∈Sm−1 |〈Ax, y〉|
yields the bound

(1− δ)‖Ax‖2 ≤ sup
y∈M

|〈Ax, y〉|.
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The two previous estimates complete the proof. ¤
Using nets, one easily proves the well known basic bound O(

√
N) on the

norm of a random subgaussian matrix:

Proposition 2.3 (Norm). Let A be an N × n random matrix, N ≥ n, whose
elements are independent copies of a subgaussian random variable. Then

P
(‖A‖ > t

√
N

) ≤ e−c0t2N for t ≥ C0,

where C0, c0 > 0 depend only on the subgaussian moment B.

Proof. Let N be a (1/2)-net of SN−1 and M be a (1/2)-net of Sn−1. By
Proposition 2.1, we can choose these nets such that

|N | ≤ 2N · 5N−1 ≤ 6N , |M| ≤ 2n · 5n−1 ≤ 6n.

For every x ∈ N and y ∈M, the random variable 〈Ax, y〉 is subgaussian (see
Fact 2.1 in [18]), thus

P
(|〈Ax, y〉| > t

√
N

) ≤ C1e
−c1t2N for t > 0,

where C1, c1 > 0 depend only on the subgaussian moment B. Using Lemma 2.2
and taking the union bound, we obtain

P
(‖A‖ > t

√
N

) ≤ 4|N ||M| max
x∈N, y∈M

P
(|〈Ax, y〉| > t

√
d
) ≤ 4·6N ·6N ·C1e

−c1t2N .

This completes the proof. ¤

2.2. Compressible and incompressible vectors. In our proof of Theo-
rem 1.1, we will make use of a partition of the unit sphere Sn−1 into two sets
of compressible and incompressible vectors. These sets were first defined in
[22] as follows.

Definition 2.4 (Compressible and incompressible vectors). Let δ, ρ ∈ (0, 1).
A vector x ∈ Rn is called sparse if |supp(x)| ≤ δn. A vector x ∈ Sn−1 is called
compressible if x is within Euclidean distance ρ from the set of all sparse
vectors. A vector x ∈ Sn−1 is called incompressible if it is not compressible.
The sets of compressible and incompressible vectors will be denoted by Comp =
Comp(δ, ρ) and Incomp = Incomp(δ, ρ) respectively.

We now recall without proof two simple results. The first is Lemma 3.4 from
[22]:

Lemma 2.5 (Incompressible vectors are spread). Let x ∈ Incomp(δ, ρ). Then
there exists a set σ = σ(x) ⊆ {1, . . . , n} of cardinality |σ| ≥ 1

2
ρ2δn and such

that

(2.1)
ρ√
2n

≤ |xk| ≤ 1√
δn

for all k ∈ σ.
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The other result is a variant of Lemma 3.3 from [22], which establishes the
invertibility on compressible vectors, and allows us to focus on incompressible
vectors in our proof of Theorem 1.1. While Lemma 3.3 was formulated in [22]
for a square matrix, the same proof applies to N × n matrices, provided that
N ≥ n/2.

Lemma 2.6 (Invertibility for compressible vectors). Let A be an N×n random
matrix, N ≥ n/2, whose elements are independent copies of a subgaussian
random variable. There exist δ, ρ, c3 > 0 depending only on the subgaussian
moment B such that

P
(

inf
x∈Comp(δ,ρ)

‖Ax‖2 ≤ c3

√
N

) ≤ e−c3N .

¤

3. Small ball probability and the arithmetic structure

Starting from the works of Lévy [16], Kolmogorov [13] and Esséen [8], a
number of results in probability theory was concerned with the question how
spread the sums of independent random variables are. It is convenient to
quantify the spread of a random variable in the following way.

Definition 3.1. The Lévy concentration function of a random vector S in Rm

is defined for ε > 0 as

L(S, ε) = sup
v∈Rm

P(‖S − v‖2 ≤ ε).

An equivalent way of looking at the Lévy concentration function is that it
measures the small ball probabilities – the likelihood that the random vector
S enters a small ball in the space. An exposition of the theory of small ball
probabilities can be found in [17].

One can derive a simple but rather weak bound on Lévy concentration func-
tion from Paley-Zygmund inequality.

Lemma 3.2. Let ξ be a random variable with mean zero, unit variance, and
finite fourth moment. Then for every ε ∈ (0, 1) there exists p ∈ (0, 1) which
depends only on ε and on the fourth moment, and such that

L(ξ, ε) ≤ p.

Remark. In particular, this bound holds for subgaussian random variables, and
with p that depends only on ε and the subgaussian moment.

Proof. We use Paley-Zygmund inequality, which states for a random variable
Z that

(3.1) P(|Z| > ε) ≥ (EZ2 − ε2)2

EZ4
, ε > 0,
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see e.g. [18], Lemma 3.5.
Let v ∈ R and consider the random variable Z = ξ − v. Then

EZ2 = 1 + v2.

By Hölder inequality, we have

B := Eξ4 ≥ (Eξ2)2 = 1,

so, using Minkowski inequality, we obtain

(EZ4)1/4 ≤ B1/4 + v ≤ B1/4(1 + v) ≤ B1/421/2(1 + v2)1/2.

Using this in (3.1), we conclude that

P(|ξ − v| > ε) ≥ (1 + v2 − ε2)2

4B(1 + v2)2
=

1

4B

(
1− ε2

1 + v2

)2

≥ 1− ε2

4B
.

This completes the proof. ¤

We will need a much stronger bound on the concentration function for sums
of independent random variables. Here we present a multi-dimensional version
of the inverse Littlewood-Offord inequality from [22]. While this paper was in
preparation, Friedland and Sodin [9] proposed two different ways to simplify
and improve our argument in [22]. We shall therefore present here a multi-
dimensional version of one of arguments of Friedland and Sodin [10], which is
considerably simpler than our original proof.

We consider the sum

S =
N∑

k=1

akξk

where ξk are independent and identically distributed random variables, and ak

are some vectors in Rm. The Littlewood-Offord theory describes the behavior
of the Lévy concentration function of S in terms of the additive structure of
the vectors ak.

In the scalar case, when m = 1, the additive structure of a sequence
a = (a1, . . . , aN) of real numbers ak can be described in terms of the shortest
arithmetic progression into which it (essentially) embeds. This length is con-
veniently expressed as the essential least common denominator of a, defined as
follows. We fix parameters α, γ ∈ (0, 1), and define

LCDα,γ(a) := inf
{

θ > 0 : dist(θa,ZN) < min(γ‖θa‖2, α)
}

.

The requirement that the distance is smaller than γ‖θa‖2 forces to consider
only non-trivial integer points as approximations of θa – only those in a non-
trivial cone around the direction of a. One typically uses this definition with γ
a small constant, and for α = c

√
N with a small constant c > 0. The inequality
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dist(θa,ZN) < α then yields that most coordinates of θa are within a small
constant distance from integers.

The definition of the essential least common denominator carries over natu-
rally to higher dimensions and thus allows one to control the arithmetic struc-
ture of a sequence a = (a1, . . . , aN) of vectors ak ∈ Rm. To this end, we define
the product of such multi-vector a and a vector θ ∈ Rm as

θ · a = (〈θ, a1〉, . . . , 〈θ, aN〉) ∈ RN .

A more traditional way of looking at θ · a is to regard it as the product of the
matrix a with rows ak and the vector θ.

Then we define, for α > 0 and γ ∈ (0, 1),

LCDα,γ(a) := inf
{
‖θ‖2 : θ ∈ Rm, dist(θ · a,ZN) < min(γ‖θ · a‖2, α)

}
.

The following theorem gives a bound on the small ball probability for a
random sum S =

∑N
k=1 akξk in terms of the additive structure of the coefficient

sequence a. The less structure in a, the bigger its least common denominator
is, and the smaller is the small ball probability for S.

Theorem 3.3 (Small ball probability). Consider a sequence a = (a1, . . . , aN)
of vectors ak ∈ Rm, which satisfies

(3.2)
N∑

k=1

〈ak, x〉2 ≥ ‖x‖2
2 for every x ∈ Rm.

Let ξ1, . . . , ξN be independent and identically distributed, mean zero random
variables, such that L(ξk, 1) ≤ 1− b for some b > 0. Consider the random sum

S =
∑N

k=1 akξk. Then, for every α > 0 and γ ∈ (0, 1), and for

ε ≥
√

m

LCDα,γ(a)
,

we have

L(S, ε
√

m) ≤
( Cε

γ
√

b

)m

+ Cme−2bα2

.

Remark. The non-degeneracy condition (3.2) is meant to guarantee that the
system of vectors (ak) is genuinely m-dimensional. It disallows these vectors
to lie on or close to any lower-dimensional subspace of Rm.

Halász [12] developed a powerful approach to bounding concentration func-
tion; his approach influenced our arguments below. Halász [12] operated under
a similar non-degeneracy condition on the vectors ak: for every x ∈ Sm−1, at
least cN terms satisfy |〈ak, x〉| ≥ 1. After properly rescaling ak by the factor√

c/N , Halász’s condition is seen to be more restrictive than (3.2).
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3.1. Proof of the Small Ball Probability Theorem. To estimate the Lévy
concentration function we apply the Esséen Lemma, see e.g. [25], p. 290.

Lemma 3.4. Let Y be a random vector in Rm. Then

sup
v∈Rm

P(‖Y − v‖2 ≤
√

m) ≤ Cm

∫

B(0,
√

m)

|φY (θ)| dθ

where φY (θ) = E exp(2πi〈θ, Y 〉) is the characteristic function of Y .

Applying Lemma 3.4 to the vector Y = S/ε and using the independence of
random variables ξ1, . . . , ξN , we obtain

(3.3) L(S, ε
√

m) ≤ Cm

∫

B(0,
√

m)

N∏

k=1

|φ(〈θ, ak〉/ε)| dθ,

where φ(t) = E exp(2πitξ) is the characteristic function of ξ := ξ1. To estimate
this characteristic function, we follow the conditioning argument of [20], [22].
Let ξ′ be an independent copy of ξ and denote by ξ̄ the symmetric random
variable ξ − ξ′. Then

|φ(t)|2 = E exp(2πitξ̄) = E cos(2πtξ̄).

Using the inequality |x| ≤ exp(−1
2
(1 − x2)), which is valid for all x ∈ R, we

obtain

|φ(t)| ≤ exp
(
− 1

2

(
1− E cos(2πtξ̄)

))
.

By conditioning on ξ′ we see that our assumption L(ξ, 1) ≤ 1− b implies that
P(|ξ̄| ≥ 1) ≥ b. Therefore

1− E cos(2πtξ̄) ≥ P(|ξ̄| ≥ 1) · E
(
1− cos(2πtξ̄) | |ξ̄| ≥ 1

)

≥ b · 4

π2
E

(
min
q∈Z

|2πtξ̄ − 2πq|2 | |ξ̄| ≥ 1
)

= 16b · E
(

min
q∈Z

|tξ̄ − q|2 | |ξ̄| ≥ 1
)
.

Substituting of this into (3.3) and using Jensen’s inequality, we get

L(S, ε
√

m)

≤ Cm

∫

B(0,
√

m)

exp
(
− 8bE

( N∑

k=1

min
q∈Z

|ξ̄〈θ, ak〉/ε− q|2
∣∣∣ |ξ̄| ≥ 1

))
dθ

≤ CmE
( ∫

B(0,
√

m)

exp
(
− 8b min

p∈ZN

∥∥∥ ξ̄

ε
θ · a− p

∥∥∥
2

)
dθ

∣∣∣ |ξ̄| ≥ 1
)

≤ Cm sup
z≥1

∫

B(0,
√

m)

exp(−8bf 2(θ)) dθ,
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where
f(θ) = min

p∈ZN

∥∥∥z

ε
θ · a− p

∥∥∥
2
.

The next and major step is to bound the size of the recurrence set

I(t) :=
{

θ ∈ B(0,
√

m) : f(θ) ≤ t}.
Lemma 3.5 (Size of the recurrence set). We have

vol(I(t)) ≤
( Ctε

γ
√

m

)m

, t < α/2.

Proof. Fix t < α/2. Consider two points θ′, θ′′ ∈ I(t). There exist p′, p′′ ∈ ZN

such that ∥∥∥z

ε
θ′ · a− p′

∥∥∥
2
≤ t,

∥∥∥z

ε
θ′′ · a− p′′

∥∥∥
2
≤ t.

Let
τ :=

z

ε
(θ′ − θ′′), p := p′ − p′′.

Then, by the triangle inequality,

(3.4) ‖τ · a− p‖2 ≤ 2t.

Recall that by the assumption of the theorem,

LCDα,γ(a) ≥
√

m

ε
.

Therefore, by the definition of the least common denominator, we have that
either

‖τ‖2 ≥
√

m

ε
,

or otherwise

(3.5) ‖τ · a− p‖2 ≥ min(γ‖τ · a‖2, α).

In the latter case, since 2t < α, inequalities (3.4) and (3.5) together yield

2t ≥ γ‖τ · a‖2 ≥ γ‖τ‖2,

where the last inequality follows from condition (3.2).
Recalling the definition of τ , we have proved that every pair of points θ′, θ′′ ∈

I(t) satisfies:

either ‖θ′ − θ′′‖2 ≥
√

m

z
=: R or ‖θ′ − θ′′‖2 ≤ 2tε

γz
=: r.

It follows that I(t) can be covered by Euclidean balls of radii r, whose centers
are R-separated in the Euclidean distance. Since I(t) ⊂ B(0,

√
m), the number

of such balls is at most

vol(B(0,
√

m + R/2))

vol(B(0, R/2))
=

(2
√

m

R
+ 1

)m

≤
(3
√

m

R

)m

.
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(In the last inequality we used that R ≤ √
m because z ≥ 1). Recall that

the volume of a Euclidean ball of radius r in Rm is bounded by (Cr/
√

m)m.
Summing these volumes, we conclude that

vol(I(t)) ≤
(3Cr

R

)m

,

which completes the proof of the lemma. ¤
Proof of Theorem 3.3. We decompose the domain into two parts. First, by the
definition of I(t), we have∫

B(0,
√

m)\I(α/2)

exp(−8bf 2(θ)) dθ ≤
∫

B(0,
√

m)

exp(−2bα2) dθ

≤ Cm exp(−2bα2).(3.6)

In the last line, we used the estimate |vol(B(0,
√

m)| ≤ Cm.
Second, by the integral distribution formula and using Lemma 3.5, we have

∫

I(α/2)

exp(−8bf 2(θ)) dθ =

∫ α/2

0

16bt exp(−8bt2)|vol(I(t))| dt

≤ 16b
( Cε

γ
√

m

)m
∫ ∞

0

tm+1 exp(−8bt2) dt

≤
( C ′ε

γ
√

b

)m√
m ≤

( C ′′ε

γ
√

b

)m

.(3.7)

Combining (3.6) and (3.7) completes the proof of Theorem 3.3. ¤

3.2. Least common denominator of incompressible vectors. We now
prove a simple fact that the least common denominator of any incompressible
vector a in RN is at least of order

√
N . Indeed, by Lemma 2.5 such a vector

has many coordinates of order 1/
√

N . Therefore, to make a dilation θa of this

vector close to an integer point, one has to scale a by at least θ &
√

N . We
now make this heuristic reasoning formal.

Lemma 3.6 (LCD of incompressible vectors). For every δ, ρ ∈ (0, 1) there
exist c1(δ, ρ) > 0 and c2(δ) > 0 such that the following holds. Let a ∈ RN be
an incompressible vector: a ∈ Incomp(δ, ρ). Then, for every 0 < γ < c1(δ, ρ)
and every α > 0, one has

LCDα,γ(a) > c2(δ)
√

N.

Remark. The proof gives c1(δ, ρ) = 1
2
ρ2
√

δ and c2(δ) = 1
2

√
δ.

Proof. By Lemma 2.5, there exists a set σ1 ⊆ {1, . . . , N} of size

|σ1| ≥ 1

2
ρ2δN
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and such that

(3.8)
ρ√
2N

≤ |ak| ≤ 1√
δN

for k ∈ σ1.

Let θ := LCDα,γ(a). Then there exists p ∈ ZN such that

‖θa− p‖2 < γ‖θa‖2 = γθ.

This shows in particular that θ > 0; dividing by θ gives∥∥∥a− p

θ

∥∥∥
2

< γ.

Then by Chebychev inequality, there exists a set σ2 ⊆ {1, . . . , N} of size

|σ2| > N − 1

2
ρ2δN

and such that

(3.9)
∣∣∣ak − pk

θ

∣∣∣ <

√
2

ρ
√

δ
· γ√

N
for k ∈ σ2.

Since |σ1|+ |σ2| > N , there exists k ∈ σ1 ∩ σ2. Fix this k. By the left hand
side of (3.8), by (3.9) and the assumption on γ we have:

∣∣∣pk

θ

∣∣∣ ≥ ρ√
2N

−
√

2

ρ
√

δ
· γ√

N
> 0.

Thus |pk| > 0; since pk is an integer, this yields |pk| ≥ 1. Similarly, using the
right hand side of (3.8), (3.9) and the assumption on γ, we get

∣∣∣pk

θ

∣∣∣ ≤ 1√
δN

+

√
2

ρ
√

δ
· γ√

N
<

2√
δN

.

Since |pk| ≥ 1, this yields

|θ| >
√

δN

2
.

This completes the proof. ¤

4. The distance problem and arithmetic structure

Here we use the Small Ball Probability Theorem 3.3 to give an optimal
bound for the distance problem: how close is a random vector X in RN from
an independent random subspace H of codimension m?

If X has the standard normal distribution, then the distance does not de-
pend on the distribution of H. Indeed, for an arbitrary fixed H, the distance
dist(X,H) is distributed identically with the Euclidean norm of a standard
normal random vector in Rm. Therefore,

dist(X, H) ∼ √
m with high probability.
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More precisely, standard computations give for every ε > 0 that

(4.1) P
(
dist(X,H) < ε

√
m

) ≤ (Cε)m.

However, if X has a more general distribution with independent coordinates,
the distance dist(X, H) may strongly depend on the subspace H. For example,
if the coordinates of X are ±1 symmetric random variables. then for H =
{x : x1 + x2 = 0} the distance equals 0 with probability 1/2, while for

H = {x : x1 + · · ·+ xN = 0} the distance equals 0 with probability ∼ 1/
√

N .
Nevertheless, a version of the distance bound (4.1) remains true for general

distributions if H is a random subspace. For spaces of codimension m = 1,
this result was proved in [22]. In this paper, we prove an optimal distance
bound for general dimensions.

Theorem 4.1 (Distance to a random subspace). Let X be a vector in RN

whose coordinates are independent and identically distributed mean zero sub-
gaussian random variables with unit variance. Let H be a random subspace in
RN spanned by N −m vectors, 0 < m < c̃N , whose coordinates are indepen-
dent and identically distributed mean zero subgaussian random variables with
unit variance, independent of X. Then, for every v ∈ RN and every ε > 0, we
have

P
(
dist(X,H + v) < ε

√
m

) ≤ (Cε)m + e−cN ,

where C, c, c̃ > 0 depend only on the subgaussian moments.

Remark. To explain the term e−cN , consider ±1 symmetric random variables.
Then with probability at least 2−n the random vector X coincides with one of
the random vectors that span H, which makes the distance equal zero.

We will deduce Theorem 4.1 from a more general inequality that holds for
arbitrary fixed subspace H. This bound will depend on the arithmetic structure
of the subspace H, which we express using the least common denominator.

For α > 0 and γ ∈ (0, 1), the essential least common denominator of a
subspace E in RN is defined as

LCDα,γ(E) := inf{LCDα,γ(a) : a ∈ S(E)}.
Clearly,

LCDα,γ(E) = inf
{
‖θ‖2 : θ ∈ E, dist(θ,ZN) < min(γ‖θ‖2, α)

}
.

Then Theorem 3.3 quickly leads to the following general distance bound:

Theorem 4.2 (Distance to a general subspace). Let X be a vector in RN whose
coordinates are independent and identically distributed mean zero subgaussian
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random variables with unit variance. Let H be a subspace in RN of dimension
N −m > 0. Then for every v ∈ RN , α > 0, γ ∈ (0, 1), and for

ε ≥
√

m

LCDα,γ(H⊥)
,

we have

P
(
dist(X, H + v) < ε

√
m

) ≤
(Cε

γ

)m

+ Cme−cα2

where C, c > 0 depend only on the subgaussian moment.

Proof. Let us write X in coordinates, X = (ξ1, . . . , ξN). By Lemma 3.2 and the
remark below it, all coordinates of X satisfy the inequality L(ξk, 1/2) ≤ 1− b
for some b > 0 that depends only on the subgaussian moment of ξk. Hence the
random variables ξk/2 satisfy the assumption in Theorem 3.3.

Next, we connect the distance to a sum of independent random vectors:

(4.2) dist(X,H + v) = ‖PH⊥(X − v)‖2 =
∥∥∥

N∑

k=1

akξk − w
∥∥∥

2
,

where
ak = PH⊥ek, w = PH⊥v,

and where e1, . . . , eN denotes the canonical basis of RN . Therefore, the se-
quence of vectors a = (a1, . . . , aN) is in the isotropic position:

N∑

k=1

〈ak, x〉2 = ‖x‖2
2 for any x ∈ H⊥,

so we can use Theorem 3.3 in the space H⊥ (identified with Rm by a suitable
isometry).

For every θ = (θ1, . . . , θN) ∈ H⊥ and every k we have 〈θ, ak〉 = 〈PH⊥θ, ek〉 =
〈θ, ek〉 = θk, so

θ · a = θ

where the right hand side is considered as a vector in RN . Therefore the least
common denominator of a subspace can be expressed by that of a sequence of
vectors a = (a1, . . . , aN):

LCDα,γ(H
⊥) = LCDα,γ(a).

The theorem now follows directly from Theorem 3.3. ¤
In order to deduce the Distance Theorem 4.1, it will now suffice to bound

below the least common denominator of a random subspace H⊥. Heuristically,
the randomness should remove any arithmetic structure from the subspace,
thus making the least common denominator exponentially large. Our next
results shows that this is indeed true.
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Theorem 4.3 (Structure of a random subspace). Let H be a random subspace
in RN spanned by N − m vectors, 1 ≤ m < c̃N , whose coordinates are in-
dependent and identically distributed mean zero subgaussian random variables
with unit variance. Then, for α = c

√
N , we have

P
(
LCDα,c(H

⊥) < c
√

NecN/m
) ≤ e−cN ,

where c ∈ (0, 1) and c̃ ∈ (0, 1/2) depend only on the subgaussian moment.

Assuming that this result holds, we can complete the proof of the Distance
Theorem 4.1.

Proof of Theorem 4.1. Consider the event

E :=
{

LCDα,c(H
⊥) ≥ c

√
NecN/m

}
.

By Theorem 4.3, P(Ec) ≤ e−cN .
Condition on a realization of H in E . By the independence of X and H,

Theorem 4.2 used with α = c
√

N and γ = c gives

P
(
dist(X,H) < ε

√
m | E) ≤ (C1ε)

m + Cme−c1N

for every

ε > C2

√
m

N
e−cN/m.

Since m ≤ c̃N , with an appropriate choice of c̃ we get

C2

√
m

N
e−cN/m ≤ 1

C1

e−c3N/m and Cme−c1N ≤ e−c3N .

Therefore, for every ε > 0,

P
(
dist(X,H) < ε

√
m | E) ≤ (C1ε)

m + 2e−c3N ≤ (C1ε)
m + e−c4N .

By the estimate on the probability of Ec, this completes the proof. ¤

4.1. Proof of the Structure Theorem 4.3. Note first, that throughout
the proof we can assume that N > N0, where N0 is a suitably large number,
which may depend only the subgaussian moment. Indeed, the assumption on
m implies that N > m/c̃ ≥ 1/c̃. Choosing c̃ > 0 suitably small depending on
the subgaussian moment, we can make N0 suitably large.

Let X1, . . . , XN−m denote the independent random vectors that span the
subspace H. Consider an (N −m)×N random matrix B with rows Xk. Then

H⊥ ⊆ ker(B).

Therefore, for every set S in RN we have:

(4.3) inf
x∈S

‖Bx‖2 > 0 implies H⊥ ∩ S = ∅.
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This observation will help us to “navigate” the random subspace H⊥ away
from undesired sets S on the unit sphere.

We start with a variant of Lemma 3.6 of [22]; here we use the concept of
compressible and incompressible vectors in RN rather than Rn.

Lemma 4.4 (Random subspaces are incompressible). There exist δ, ρ ∈ (0, 1)
such that

P
(
H⊥ ∩ SN−1 ⊆ Incomp(δ, ρ)

) ≥ 1− e−cN .

Proof. Let B be the (N−m)×N matrix defined above. Since N−m > (1−c̃)N
and c̃ < 1/2, we can apply Lemma 2.6 for the matrix B. Thus, there exist
δ, ρ ∈ (0, 1) such that

P
(

inf
x∈Comp(δ,ρ)

‖Bx‖2 ≥ c3

√
N

) ≥ 1− e−c3N .

By (4.3), H⊥ ∩ Comp(δ, ρ) = ∅ with probability at least 1− e−c3N . ¤

Fix the values of δ and ρ given by Lemma 4.4 for the rest of this section.
We will further decompose the set of incompressible vectors into level sets SD

according to the value of the least common denominator D. We shall prove
a nontrivial lower bound on infx∈SD

‖Bx‖2 > 0 for each level set up to D of
the exponential order. By (4.3), this will mean that H⊥ is disjoint from every
such level set. Therefore, all vectors in H⊥ must have exponentially large least
common denominators D. This is Theorem 4.3.

Let α = µ
√

N , where µ > 0 is a small number to be chosen later, which
depends only on the subgaussian moment. By Lemma 3.6,

LCDα,c(x) ≥ c0

√
N for every x ∈ Incomp.

Definition 4.5 (Level sets). Let D ≥ c0

√
N . Define SD ⊆ SN−1 as

SD :=
{
x ∈ Incomp : D ≤ LCDα,c(x) < 2D

}
.

To obtain a lower bound for ‖Bx‖2 on the level set, we proceed by an ε-net
argument. To this end, we first need such a bound for a single vector x.

Lemma 4.6 (Lower bound for a single vector). Let x ∈ SD. Then for every
t > 0 we have

(4.4) P
(‖Bx‖2 < t

√
N

) ≤
(
Ct +

C

D
+ Ce−cα2

)N−m

.

Proof. Denoting the elements of B by ξjk, we can write the j-th coordinate of
Bx as

(Bx)j =
N∑

j=1

ξjkxk =: ζj, j = 1, . . . , N −m.
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Now we can use the Small Ball Probability Theorem 3.3 in dimension m = 1
for each of these random sums. By Lemma 3.2 and the remark below it,
L(ξjk, 1/2) ≤ 1 − b for some b > 0 that depends only on the subgaussian
moment of ξjk. Hence the random variables ξjk/2 satisfy the assumption in
Theorem 3.3. This gives for every j and every t > 0:

P(|ζj| < t) ≤ Ct +
C

LCDα,c(x)
+ Ce−cα2 ≤ Ct +

C

D
+ Ce−cα2

.

Since ζj are independent random variables, we can use Tensorization Lemma 2.2
of [22] to conclude that for every t > 0,

P
( N−m∑

j=1

|ζj|2 < t2(N −m)
)
≤

(
C ′′t +

C ′′

D
+ C ′′e−cα2

)N−m

.

This completes the proof, because ‖Bx‖2
2 =

∑N−m
j=1 |ζj|2 and N ≤ 2(N −m)

by the assumption. ¤

Next, we construct a small ε-net of the level set SD. Since this set lies in
SN−1, Lemma 2.1 yields the existence of an (

√
N/D)-net of cardinality at most

(CD/
√

N)N . This simple volumetric bound is not sufficient for our purposes,
and this is the crucial step where we explore the additive structure of SD to
construct a smaller net.

Lemma 4.7 (Nets of level sets). There exists a (4α/D)-net of SD of cardinality

at most (C0D/
√

N)N .

Remark. Recall that α is chosen as a small proportion of
√

N . Hence Lemma 4.7
gives a better bound than the standard volumetric bound in Lemma 2.1.

Proof. We can assume that 4α/D ≤ 1, otherwise the conclusion is trivial. For
x ∈ SD, denote

D(x) := LCDα,c(x).

By the definition of SD, we have D ≤ D(x) < 2D. By the definition of the
least common denominator, there exists p ∈ ZN such that

(4.5) ‖D(x)x− p‖2 < α.

Therefore ∥∥∥x− p

D(x)

∥∥∥
2

<
α

D(x)
≤ α

D
≤ 1

4
.

Since ‖x‖2 = 1, it follows that

(4.6)
∥∥∥x− p

‖p‖2

∥∥∥
2

<
2α

D
.
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On the other hand, by (4.5) and using that ‖x‖2 = 1, D(x) ≤ 2D and
4α/D ≤ 1, we obtain

(4.7) ‖p‖2 < D(x) + α ≤ 2D + α ≤ 3D.

Inequalities (4.6) and (4.7) show that every point x ∈ SD is within Euclidean
distance 2α/D from the set

N :=
{ p

‖p‖2

: p ∈ ZN ∩B(0, 3D)
}

.

A known volumetric argument gives a bound on the number of integer points
in B(0, 3D):

|N | ≤ (1 + 9D/
√

N)N ≤ (C0D/
√

N)N

(where in the last inequality we used that by Definition 4.5 of the level sets,

D > c0

√
N). Finally, there exists a (4α/D)-net of SD with the same cardi-

nality as N , and which lies in SD. Indeed, to obtain such a net, one selects
one (arbitrary) point from the intersection of SD with a ball of radius 2α/D
centered at each point from N . This completes the proof. ¤

Lemma 4.8 (Lower bound for a level set). There exist c1, c2, µ ∈ (0, 1) such

that the following holds. Let α = µ
√

N ≥ 1 and D ≤ c1

√
Nec1N/m. Then

P
(

inf
x∈SD

‖Bx‖2 < c2N/D
) ≤ 2e−N .

Proof. By Lemma 2.3, there exists K ≥ 1 that depends only on the subgaussian
moment and such that

P(‖B‖ > K
√

N) ≤ e−N .

Therefore, in order to complete the proof, it is enough to find ν > 0 which
depends only on the subgaussian moment, and such that the event

E :=
{

inf
x∈SD

‖Bx‖2 <
νN

2D
and ‖B‖ ≤ K

√
N

}

has probability at most e−N .
We claim that this holds with the following choice of parameters:

ν =
1

(3CC0)2e
, µ =

ν

9K
, c1 = cµ2 ≤ ν,

where C ≥ 1 and c ∈ (0, 1) are the constants from Lemma 4.6 and C0 ≥ 1 is
the constant from Lemma 4.7.

By choosing c̃ in the statement of Theorem 4.3 suitably small, we can assume
that N > ν−2 (this is because by the assumptions, N > m/c̃ ≥ 1/c̃). We apply

Lemma 4.6 with t = ν
√

N/D. Then the choice of α and c1 and our assumption



22 MARK RUDELSON AND ROMAN VERSHYNIN

on D, one easily checks that the term Ct dominates in the right hand side of
(4.4):

t ≥ 1/D and t ≥ e−cα2

.

This gives for arbitrary x0 ∈ SD:

P
(
‖Bx0‖2 <

νN

D

)
≤

(3Cν
√

N

D

)N−m

.

Now we use Lemma 4.7, which yields a small (4α/D)-net N of SD. Taking
the union bound, we get

p := P
(

inf
x0∈N

‖Bx0‖2 <
νN

D

)
≤

(C0D√
N

)N(3Cν
√

N

D

)N−m

.

Denote C1 := 3CC0. Using the fact that c1 ≤ ν and our assumption on D, we
have:

(4.8) p ≤ CN
1

( D√
N

)m

νN−m ≤ CN
1 (νeνN/m)mνN−m ≤ C2N

1 νN = e−N .

Assume E occurs. Fix x ∈ SD for which ‖Bx‖2 < νN
2D

; it can be approximated
by some element x0 ∈ N as

‖x− x0‖2 ≤ 4µ
√

N

D
.

Therefore, by the triangle inequality we have

‖Bx0‖2 ≤ ‖Bx‖2 + ‖B‖ · ‖x− x0‖2 ≤ νN

2D
+ K

√
N · 4µ

√
N

D
<

νN

D
,

where in the last inequality we used our choice of µ.
We have shown that the event E implies the event that

inf
x0∈N

‖Bx0‖2 <
νN

D
,

whose probability is at most e−N by (4.8). The proof is complete. ¤

Proof of Theorem 4.3. Consider x ∈ SN−1 such that

LCDα,c(x) < c1

√
Nec1N/m,

where c1 is the constant from Lemma 4.8. Then, by the Definition 4.5 of the
level sets, either x is compressible or x ∈ SD for some D ∈ D, where

D := {D : c0

√
N ≤ D < c1

√
Nec1N/m, D = 2k, k ∈ N}.

Therefore, recalling the definition of the least common denominator of the
subspace

LCDα,c(H
⊥) = inf

x∈S(H⊥)
LCDα,c(x),
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we can decompose the desired probability as follows:

p := P
(
LCDα,c(H

⊥) < c1

√
Nec1N/m

) ≤ P(H⊥ ∩ Comp 6= ∅)
+

∑
D∈D

P(H⊥ ∩ SD 6= ∅).

By Lemma 4.4, the first term in the right hand side is bounded by e−cN .
Further terms can be bonded using (4.3) and Lemma 4.8:

P(H⊥ ∩ SD 6= ∅) ≤ P(
inf

x∈SD

‖Bx‖2 = 0
) ≤ 2e−N .

Since there are |D| ≤ C ′N terms in the sum, we conclude that

p ≤ e−cN + C ′Ne−N ≤ e−c′N .

This completes the proof. ¤

5. Decomposition of the sphere

Now we begin the proof of Theorem 1.1. We will make several useful reduc-
tions first.

Without loss of generality, we can assume that the entries of A have a
an absolutely continuous distribution. Indeed, we can add to each entry an
independent Gaussian random variable with small variance σ, and later let
σ → 0.

Similarly, we can assume that n ≥ n0, where n0 is a suitably large number
that depends only on the subgaussian moment B.

We let

N = n− 1 + d

for some d ≥ 1. We can assume that

(5.1) 1 ≤ d ≤ c0n,

with suitably small constant c0 > 0 that depends only on the subgaussian
moment B. Indeed, as we remarked in the Introduction, for the values of d
above a constant proportion of n, Theorem 1.1 follows from (1.7). Note that

√
N −√n− 1 ≤ d√

n
.
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Using the decomposition of the sphere Sn−1 = Comp ∪ Incomp, we break
the invertibility problem into two subproblems, for compressible and incom-
pressible vectors:

(5.2) P
(
sn(A) ≤ ε

(√
N −√n− 1

)) ≤ P(
sn(A) ≤ ε

d√
n

)

≤ P(
inf

x∈Comp(δ,ρ)
‖Ax‖2 ≤ ε

d√
n

)
+ P

(
inf

x∈Incomp(δ,ρ)
‖Ax‖2 ≤ ε

d√
n

)
.

A bound for the compressible vectors follows from Lemma 2.6. Using (5.1)
we get

ε
d√
n
≤ c0

√
n ≤ c0

√
N.

Hence, Lemma 2.6 implies

(5.3) P
(

inf
x∈Comp(δ,ρ)

‖Ax‖2 ≤ ε
d√
n

)
≤ e−c3N .

It remains to find a lower bound on ‖Ax‖ for the incompressible vectors x.

6. Invertibility via uniform distance bounds

In this section, we reduce the problem of bounding ‖Ax‖2 for incompressible
vectors x to the distance problem that we addressed in Section 4.

Let X1, . . . , Xn ∈ RN denote the columns of the matrix A. Given a subset
J ⊆ {1, . . . , n} of cardinality d, we consider the subspace

HJ := span(Xk)k∈J ⊂ RN .

For levels K1, K2 > 0 that will only depend on δ, ρ, we define the set of
totally spread vectors

(6.1) SpreadJ :=
{

y ∈ S(RJ) :
K1√

d
≤ |yk| ≤ K2√

d
for all k ∈ J

}
.

In the following lemma, we let J be a random subset uniformly distributed
over all subsets of {1, . . . , n} of cardinality d. To avoid confusion, we often
denote the probability and expectation over the random set J by PJ and EJ ,
and with respect to the random matrix A by PA and EA.

Lemma 6.1 (Total spread). For every δ, ρ ∈ (0, 1), there exist K1, K2, c0 > 0
which depend only on δ, ρ, and such that the following holds. For every x ∈
Incomp(δ, ρ), the event

E(x) :=
{ PJx

‖PJx‖2

∈ SpreadJ and
ρ
√

d√
2n

≤ ‖PJx‖2 ≤
√

d√
δn

}

satisfies PJ(E(x)) > cd
0.
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Remark. The proof gives K1 = ρ
√

δ/2, K2 = 1/K1, c0 = ρ2δ/2e. In the rest
of the proof, we shall use definition (6.1) of SpreadJ with these values of the
levels K1, K2.

Proof. Let σ ⊂ {1, . . . , n} be the subset from Lemma 2.5. Recall that the
parameters δ and ρ depend only on the subgaussian moment B (see Lemma
2.6). By choosing the constant c0 in (5.1) appropriately small, we may assume
that d ≤ |σ|/2. Then, using Stirling’s approximation we have

PJ(J ⊂ σ) =

(|σ|
d

)/(
n

d

)
>

(ρ2δ

2e

)d

= cd
0.

If J ⊂ σ, then summing (2.1) over k ∈ J , we obtain the required two-sided
bound for ‖PJx‖2. This and (2.1) yields PJx

‖PJx‖2 ∈ SpreadJ . Hence E(x) holds.

¤
Lemma 6.2 (Invertibility via distance). Let δ, ρ ∈ (0, 1). There exist C1, c1 >
0 which depend only on δ, ρ, and such that the following holds. Let J be any
d-element subset of {1, . . . , n}. Then for every ε > 0

(6.2) P
(

inf
x∈Incomp(δ,ρ)

‖Ax‖2 < c1ε

√
d

n

)
≤ Cd

1 · P
(

inf
z∈SpreadJ

dist(Az, HJc) < ε
)
.

Remark. The proof gives K1 = ρ
√

δ/2, K2 = 1/K1, c1 = ρ/
√

2, C1 = 2e/ρ2δ.

Proof. Let x ∈ Incomp(δ, ρ). For every subset J of {1, . . . , n} we have

‖Ax‖2 ≥ dist(Ax,HJc) = dist(APJx, HJc).

In case the event E(x) of Lemma 6.1 holds, we use the vector z = PJx
‖PJx‖2 ∈

SpreadJ to check that

‖Ax‖2 ≥ ‖PJx‖2 D(A, J),

where the random variable

D(A, J) = inf
z∈SpreadJ

dist(Az,HJc)

is independent of x. Moreover, using the estimate on ‖PJx‖2 in the definition
of the event E(x), we conclude that

(6.3) E(x) implies ‖Ax‖2 ≥ c1

√
d

n
D(A, J).

Define the event

F :=
{
A : PJ(D(A, J) ≥ ε) > 1− cd

0

}
,

where c0 is the constant from Lemma 6.1. Chebychev inequality and Fubini
theorem then yield

PA(F c) ≤ c−d
0 EAPJ(D(A, J) < ε) = c−d

0 EJPA(D(A, J) < ε).
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Since the entries of A are independent and identically distributed, the proba-
bility PA(D(A, J) < ε) does not depend on J . Therefore, the right hand side
of the previous inequality coincides with the right hand side of (6.2).

Fix any realization of A for which F occurs, and fix any x ∈ Incomp(δ, ρ).
Then

PJ(D(A, J) ≥ ε) + PJ(E(x)) > (1− cd
0) + cd

0 = 1,

so we conclude that

(6.4) PJ

(E(x) and D(A, J) ≥ ε
)

> 0.

We have proved that for every x ∈ Incomp(δ, ρ) there exists a subset J = J(x)
that satisfies both E(x) and D(A, J) ≥ ε. Using this J in (6.3), we conclude
that every matrix A for which the event F occurs satisfies

inf
x∈Incomp(δ,ρ)

‖Ax‖2 ≥ εc1

√
d

n
.

This and the estimate of PA(F c) completes the proof. ¤

7. The uniform distance bound

In this section, we shall estimate the distance between a random ellipsoid
and a random independent subspace. This is the distance that we need to
bound in the right hand side of (6.2).

Throughout this section, we let J be a fixed subset of {1, . . . , n}, |J | = d.
We shall use the notation introduced in the beginning of Section 6. Thus, HJ

denotes a random subspace, and SpreadJ denotes the totally spread set whose
levels K1, K2 depend only on δ, ρ in the definition of incompressibility.

We will denote by K,K0, C, c, C1, c1, . . . positive numbers that depend only
on δ, ρ and the subgaussian moment B.

Theorem 7.1 (Uniform distance bound). For every t > 0,

P
(

inf
z∈SpreadJ

dist(Az, HJc) < t
√

d
)
≤ (Ct)d + e−cN .

Recall that HJc is the span of n − d independent random vectors. Since
their distribution is absolutely continuous (see the beginning of Section 5),
these vectors are almost surely in general position, so

(7.1) dim(HJc) = n− d.

Without loss of generality, in the proof of Theorem 7.1 we can assume that

(7.2) t ≥ t0 = e−c̄N/d

with a suitably small c̄ > 0.



27

7.1. First approach: nets and union bound. We would like to prove
Theorem 7.1 by a typical ε-net argument. Theorem 4.1 will give a useful prob-
ability bound for an individual z ∈ Sn−1. We might then take a union bound
over all z in an ε-net of SpreadJ and complete by approximation. However,
the standard approximation argument will leave us with a larger error e−cd on
the probability, which is unsatisfactory for small d. To improve upon this step,
we shall improve upon this approach using decoupling in Section 7.2.

For now, we start with a bound for an individual z ∈ Sn−1.

Lemma 7.2. Let z ∈ Sn−1 and v ∈ RN . Then for every t that satisfies (7.2)
we have

P
(
dist(Az, HJc + v) < t

√
d
)
≤ (C1t)

2d−1.

Proof. Denote the entries of matrix A by ξij. Then the entries of the random
vector Az,

ζi := (Az)i =
n∑

j=1

ξijzj, j = 1, . . . , N,

are independent and identically distributed mean zero random variables. More-
over, since the random variables ξij are subgaussian and

∑n
j=1 z2

j = 1, the

random variables ζi are also subgaussian (see Fact 2.1 in [18]).
Therefore the random vector X = Az and the random subspace H = HJc

satisfy the assumptions of Theorem 4.1 with m = N − (n − d) = 2d − 1 (we
used (7.1) here). An application of Theorem 4.1 completes the proof. ¤

We will use this bound for every z in an ε-net of SpreadJ . To extend the
bound to the whole set SpreadJ by approximation, we need a certain stability
of the distance. This is easy to quantify and prove using the following repre-
sentation of the distance in matrix form. Let P be the orthogonal projection
in RN onto (HJc)⊥, and let

(7.3) W := PA|RJ .

Then for every v ∈ RN , the following identity holds:

(7.4) dist(Az,HJc + v) = ‖Wz − w‖2, where w = Pv.

Since |J | = d and almost surely dim(HJc)⊥ = N − (n − d) = 2d − 1, the
random matrix W acts as an operator from a d-dimensional subspace into a
(2d− 1)-dimensional subspace. Although the entries of W are not necessarily
independent, we expect W to behave as if this was the case. To this end,
we condition on the realization of the subspace (HJc). Now the operator P
becomes a fixed projection, and the columns of W become independent random
vectors. Then W satisfies a version of Proposition 2.3:
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Proposition 7.3. Let P be an orthogonal projection in RN of rank d and let
W = PA|RJ be a random matrix. Then

P
(‖W‖ > t

√
d
) ≤ e−c0t2d for t ≥ C0.

Proof. The argument is similar to that of Proposition 2.3. Let N be a (1/2)-
net of S(RJ) and M be a (1/2)-net of S(PRN). Note that for x ∈ N , y ∈M,
we have 〈Wx, y〉 = 〈Ax, y〉. The proof is completed as in Proposition 2.3. ¤

Using Proposition7.3, we can choose a constant K0 that depends only on
the subgaussian moment, and such that

(7.5) P
(‖W‖ > K0

√
d
) ≤ e−d.

With this bound on the norm of W , we can run the approximation argument
and prove the distance bound in Lemma 7.2 uniformly over all z ∈ SpreadJ .

Lemma 7.4. Let W be a random matrix as in Proposition 7.3. Then for every
t that satisfies (7.2) we have

(7.6) P
(

inf
z∈SpreadJ

‖Wz‖2 < t
√

d and ‖W‖ ≤ K0

√
d
)
≤ (C2t)

d.

Proof. Let ε = t/K0. By Proposition 2.1, there exists an ε-net N of SpreadJ ⊆
S(RJ) of cardinality

|N | ≤ 2d
(
1 +

2

ε

)d−1

≤ 2d
(3K0

t

)d−1

.

Consider the event

E :=
{

inf
z∈N

‖Wz‖2 < 2t
√

d
}

.

Taking the union bound and using the representation (7.4) in Lemma 7.2, we
obtain

P(E) ≤ |N | ·max
z∈N

P
(‖Wz‖2 ≤ 2t

√
d
) ≤ 2d

(3K0

t

)d−1

(2C1t)
2d−1 ≤ (C2t)

d.

Now, suppose the event in (7.6) holds, i.e. there exists z′ ∈ SpreadJ such that

‖Wz′‖2 < t
√

d and ‖W‖ ≤ K0

√
d.

Choose z ∈ N such that ‖z − z′‖2 ≤ ε. Then by the triangle inequality

‖Wz‖2 ≤ ‖Wz′‖2 + ‖W‖ · ‖z − z′‖2 < t
√

d + K0

√
d · ε ≤ 2t

√
d.

Therefore, E holds. The bound on the probability of E completes the proof. ¤
Lemma 7.4 together with (7.5) yield that

P
(

inf
z∈SpreadJ

‖Wz‖2 < t
√

d
)
≤ (C2t)

d + e−d.
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By representation (7.4), this is a weaker version of Theorem 7.2, with e−d in-
stead of e−cN . Unfortunately, this bound is too weak for small d. In particular,
for square matrices we have d = 1, and the bound is useless.

In the next section, we will refine our current approach using decoupling.

7.2. Refinement: decoupling. Our problem is that the probability bound
in (7.5) is too weak. We will bypass this by decomposing our event according
to all possible values of ‖W‖, and by decoupling the information about ‖Wz‖2

from the information about ‖W‖.
Proposition 7.5 (Decoupling). Let W be an N×d matrix whose columns are
independent random vectors. Let β > 0 and let z ∈ Sd−1 be a vector satisfying
|zk| ≥ β√

d
for all k ∈ {1, . . . , d}. Then for every 0 < a < b, we have

P
(‖Wz‖2 < a, ‖W‖ > b

) ≤ 2 sup
x∈Sd−1,w∈RN

P
(
‖Wx−w‖2 <

√
2

β
a
)
P
(
‖W‖ >

b√
2

)
.

Proof. If d = 1 then ‖W‖ = ‖Wz‖2, so the probability in the left hand side
is zero. So, let d ≥ 2. Then we can decompose the index set {1, . . . , n} into
two disjoint subsets I and H whose cardinalities differ by at most 1, say with
|I| = dd/2e.

We write W = WI + WH where WI and WH are the submatrices of W
with columns in I and H respectively. Similarly, for z ∈ SpreadJ , we write
z = zI + zH .

Since ‖W‖2 ≤ ‖WI‖2 + ‖WH‖2, we have

P
(‖Wz‖2 < a, ‖W‖ > b

)
= pI + pH ,

where

pI = P
(‖Wz‖2 < a, ‖WH‖ > b/

√
2
)

= P
(‖Wz‖2 < a

∣∣ ‖WH‖ > b/
√

2
)
P
(‖WH‖ > b/

√
2
)
,

and similarly for pH . It suffices to bound pI ; the argument for pH is similar.
Writing Wz = WIzI + WHzH and using the independence of the matrices

WI and WH , we conclude that

pI ≤ sup
w∈RN

P
(‖WIzI − w‖2 < a

)
P
(‖WH‖ > b/

√
2
)

≤ sup
w∈RN

P
(‖WzI − w‖2 < a

)
P
(‖W‖ > b/

√
2
)
.(7.7)

(In the last line we used WIzI = WzI and ‖WH‖ ≤ ‖W‖).
By the assumption on z and since |I| ≥ d/2, we have

‖zI‖2 =
( ∑

k∈I

|zk|2
)1/2

≥ β√
2
.
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Hence for x := zI/‖zI‖2 and u := w/‖zI‖2, we obtain

P
(‖WzI − w‖2 < a

) ≤ P(‖Wx− u‖2 <
√

2a/β
)
.

Together with (7.7), this completes the proof. ¤

We use this decoupling in the following refinement of Lemma 7.4.

Lemma 7.6. Let W be a random matrix as in (7.3), where P is the orthogonal
projection of RN onto the random subspace (HJc)⊥, defined as in Theorem 7.1.
Then for every s ≥ 1 and every t that satisfies (7.2), we have

P
(

inf
z∈SpreadJ

‖Wz‖2 < t
√

d and sK0

√
d < ‖W‖ ≤ 2sK0

√
d
)

(7.8)

≤ (C3te
−c3s2

)d + e−cN .

Proof. Let ε = t/2sK0. By Proposition 2.1, there exists an ε-net N of
SpreadJ ⊆ S(RJ) of cardinality

|N | ≤ 2d
(
1 +

2

ε

)d−1

≤ 2d
(6sK0

t

)d−1

.

Consider the event

E :=
{

inf
z∈N

‖Wz‖2 < 2t
√

d and ‖W‖ > sK0

√
d
}

.

We condition on the realization of the subspace HJc as above, to make the
columns of W independent. By the definition (6.1) of SpreadJ , any z ∈ N
satisfies the condition of the Decoupling Proposition 7.5 with β = K1. Taking
the union bound and then using Lemma 7.5, we obtain

P(E | HJc) ≤ |N | ·max
z∈N

P
(‖Wz‖2 ≤ 2t

√
d and ‖W‖ > sK0

√
d | HJc

)

≤ |N | · 2 max
z∈S(RJ ), w∈RN

P
(
‖Wz − w‖2 <

√
2

K1

· 2t
√

d | HJc

)

· P
(
‖W‖ >

sK0

√
d√

2
| HJc

)
.

Assume now that LCDα,c(H
⊥
Jc) ≥ c

√
NecN/m, where α and c are as in Theo-

rem 4.3. Then using Proposition 7.3 and representation (7.4), we conclude as
in the proof of Theorem 4.1 that

P(E | HJc) ≤ 4d
(6sK0

t

)d−1

· (C ′t)2d−1 · e−c′s2d

for any t satisfying (7.2). Since s ≥ 1 and d ≥ 1, we can bound this as

P(E | HJc) ≤ (C3te
−c3s2

)d.
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Therefore, by Theorem 4.3,

P(E) ≤ P(E | LCDα,c(H
⊥
Jc) ≥ c

√
NecN/m) + P(LCDα,c(H

⊥
Jc) < c

√
NecN/m)

≤ (C3te
−c3s2

)d + e−cN .

Now, suppose the event in (7.8) holds, i.e. there exists z′ ∈ SpreadJ such that

‖Wz′‖2 < t
√

d and sK0

√
d < ‖W‖ ≤ 2sK0

√
d.

Choose z ∈ N such that ‖z − z′‖2 ≤ ε. Then by the triangle inequality

‖Wz‖2 ≤ ‖Wz′‖2 + ‖W‖ · ‖z − z′‖2 < t
√

d + 2sK0

√
d · ε ≤ 2t

√
d.

Therefore, E holds. The bound on the probability of E completes the proof. ¤

Proof of the Uniform Distance Theorem 7.1. Recall that, without loss of gen-
erality, we assumed that (7.2) held. Let k1 be the smallest natural number
such that

(7.9) 2k1 ·K0

√
d > C0

√
N,

where C0 and K0 are constants from Lemmas 2.3 and 7.6 respectively. Sum-
ming the probability estimates of Lemma 7.4 and Lemma 7.6 for s = 2k,
k = 1, . . . , k1, we conclude that

P
(

inf
z∈SpreadJ

‖Wz‖2 < t
√

d
)

≤ (C2t)
d +

∑

s=2k, k=1,...,k1

(
(C3te

−c3s2

)d + e−cN
)

+ P(‖W‖ > C0

√
N)

≤ (C4t)
d + k1e

−cN + P(‖A‖ > C0

√
N).

By (7.9) and Lemma 2.3, the last expression does not exceed (Ct)d + e−cN . In
view of representation (7.4), this completes the proof. ¤

8. Completion of the proof

In Section 6, we reduced the invertibility problem for incompressible vectors
to computing the distance between a random ellipsoid and a random subspace.
This distance was estimated in Section 7. These together lead to the following
invertibility bound:

Theorem 8.1 (Invertibility for incompressible vectors). Let δ, ρ ∈ (0, 1).
There exist C, c > 0 which depend only on δ, ρ, and such that the following
holds. For every t > 0,

P
(

inf
x∈Incomp(δ,ρ)

‖Ax‖2 < t
d√
n

)
≤ (Ct)d + e−cN .
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Proof. Without loss of generality, we can assume that (7.2) holds. We use

Lemma 6.2 with ε = t
√

d and then Theorem 7.1 to get the bound (C ′t)d on
the desired probability. This completes the proof. ¤

Proof of Theorem 1.1. This follows directly from (5.2), (5.3), and Theorem 8.1.
¤
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