An Improved Approximation Algorithm for the Column Subset Selection Problem

Authors: Christos Boutsidis(RPI)
Michael W. Mahoney(Stanford)
Petros Drineas(RPI)
Presenter: Chia-Chun Tsai
Department of Industrial and Systems Engineering
April, 29, 2010

Outline

- The Column Subset Selection Problem(CSSP)
- Definition, complexity
- Approximability framework
- Paper's contribution on the CSSP
- Novel randomized algorithm
- Improved approximability results

The Column Subset Selection Problem

Input: matrix $A \in \mathbf{R}^{m \times n}$, integer $k<n$
Output:matrix $C \in \mathbf{R}^{\mathbf{m \times k}}$ with k columnsof A
Combinatoial Optimization Problem :

$$
\min _{C}\left\|A-C C^{+} A\right\|_{\xi}
$$

$\xi=2, F$ standsfor the spectralor the Frobeniusnorm

Complexity of the CSSP

- NP-hardness of the CSSP is an open question.
- There are $\binom{n}{k}$ for the matrix C
- Optimal solution can be found in $\mathbf{O}\left(\mathbf{n}^{\mathbf{k}} \mathbf{m n}\right)$ time.

Notation and Linear Algebra

SVD of a matrix $A \in \mathbf{R}^{\mathbf{m \times n}}$ with $\operatorname{rank}(A)=\rho$

$$
A=U_{A} \Sigma_{A} V_{A}{ }^{T}=\left(\begin{array}{ll}
U_{k} & U_{\rho-k}
\end{array}\right)\left(\begin{array}{ll}
\sum_{k} & 0 \\
0 & \Sigma_{\rho-k}
\end{array}\right)\binom{V_{k}^{T}}{V_{\rho-k}^{T}}
$$

Why SVD?

$$
A_{k}=U_{k} \sum_{k} V_{k}^{T}=\arg \left\{\min _{Y \in R^{n \times N}, r \operatorname{ank}(Y \leqslant k}\|A-Y\|_{\xi}\right\}
$$

Pseudoinverse of \mathbf{C} is $\mathbf{C}^{+}=V_{c} \Sigma_{c}^{+} U_{c}^{T}$
Why C ${ }^{+}$A?

$$
C^{+} A=\arg \left\{\min _{X \in R^{2 x \times x}}\|A-C X\|_{\zeta}\right\}
$$

Approximation Algorithm for the CSSP

SVD provides a lower bound for the CSSP:

$$
\left\|A-A_{k}\right\|_{\xi} \leq\left\|A-C_{o p t} C_{o p t}^{+} A\right\|_{\xi}
$$

Weseek algorithmswith upper bounds of thefrom :

$$
\left\|A-C C^{+} A\right\|_{\xi} \leq p(k, n)\left\|A-A_{k}\right\|_{\xi}
$$

$p(k, n)$ is typically a polynomial function

Overview of best-existing and paper results

Spectralnorm :
Gu \& Eisenstat, 1996 Determinitic, $O\left(\mathrm{mn}^{2}\right)$ time

$$
\left\|A-C C^{+} A\right\|_{2} \leq O\left(k^{\frac{1}{2}}(n-k)^{\frac{1}{2}}\right)\left\|A-A_{k}\right\|_{2}
$$

Paper's Algorithm, 2009 Randomized, $\mathbf{O}\left(\mathrm{mn}^{2}\right)$ time

$$
\left\|A-C C^{+} A\right\|_{2} \leq O\left(k^{\frac{3}{4}}(n-k)^{\frac{1}{4}}\right)\left\|A-A_{k}\right\|_{2}
$$

Frobeniusnorm :
Deshpande\& Vempala, 2006 Randomized, O(mnk)time

$$
\left\|A-C C^{+} A\right\|_{F} \leq \sqrt{(K+1)!}\left\|A-A_{k}\right\|_{F}
$$

Paper's Algorithm, 2009 Randomized, $O\left(\mathrm{mn}^{2}\right)$ time

$$
\left\|A-C C^{+} A\right\|_{F} \leq O(K \sqrt{\log K})\left\|A-A_{k}\right\|_{F}
$$

Paper's novel randomized algorithm

$\mathrm{A}, \mathrm{K} \rightarrow \stackrel{\text { Randomized }}{\rightarrow} \hat{\mathbf{C}} \rightarrow \xrightarrow{\text { Determinitc }} \rightarrow \mathbf{C}$ Stage Stage

2 stagecolumnselection
RandomizedStage: $A \rightarrow C \in R^{m \times c}, C=O(k \log k)$
DeterminisiceStage: $\hat{C} \rightarrow C \in R^{m \times k}$

Randomized Stage

$$
\text { A,k } \rightarrow \begin{gathered}
\text { Ramdomized } \\
\text { Stage }
\end{gathered} \rightarrow \hat{\mathbf{C}}
$$

RandomizedSampling:

1. You give a score to everycolumnof A :

$$
\mathbf{p}_{\mathbf{i}}=\frac{\frac{1}{2}\left\|\left(V_{k}\right)_{(i)}\right\|_{2}^{2}}{\sum_{j=1}^{n}\left\|\left(V_{k}\right)_{(j)}\right\|_{2}^{2}}+\frac{\frac{1}{2}\left\|\left(\sum_{\rho-k} V_{\rho-k}^{T}\right)^{(i)}\right\|_{2}^{2}}{\sum_{j=1}^{n}\left\|\left(\sum_{\rho-k} V_{\rho-k}^{T}\right)^{(j)}\right\|_{2}^{2}}
$$

2. You selectthei - th column with probability $\min \left\{1, \mathrm{cp}_{\mathrm{i}}\right\}$

Strongaprroximation guarantee $(\xi=F)$:

$$
\left\|A-\hat{C} \hat{C C^{+}} A\right\|_{F} \leq(1+\varepsilon)\left\|A-A_{k}\right\|_{F}
$$

[Reference: Drineas,Mahoney, \& Muthuk rishnan,SIMAX 2008]

Deterministic Stage

Somemorenotation:

$$
\begin{aligned}
& C=O(k \log k) \\
& S_{1} \in R^{m \times c} \text { is a samplingmatrixs.t } \hat{C}=A S_{1}
\end{aligned}
$$

$$
D_{1} \in R^{c \times c} \text { is a diagonal matrixs.t } D_{i i}=1 / \sqrt{\min \left\{1, c p_{i}\right\}}
$$

RRQR factorization on $V_{k}^{T} S_{1} D_{1} \in R^{k \times c}$
$\left(V_{k}^{T} S_{1} D_{1}\right) \Pi=Q R$
Extract k columnafterthis RRQR factorization.
[Reference Pan, LAA 2000, Gu \& Eisentstat SISC1996]

Intuition for 2-stgae algorithm

- The key idea:
- Select k linearly independent columns from A
- Randomized Stage: The sampling scores are biased toward outlier columns
- Leverage scores in the diagnostic regression analysis domain
- Resistance scores in the graph sparsification domain [Srivastava \& Spielman, STOC 2008]
- Deterministic Stage: RRQR factorizations were explicitly designed to identify sets of linearly independent columns

Proof step by step

$S \in R^{n \times k}$ denotes a sampling operator such that

$$
C=A S
$$

The proof :

$$
\begin{aligned}
\left\|A-C C^{+} A\right\|_{2}= & \|A-A S(A S) A\|_{2} \\
& \leq\left\|A-A S\left(A_{k} S\right)^{+} A_{k}\right\|_{2} \\
& =\left\|\left(A_{k}+A_{\rho-k}\right)-\left(A_{k}+A_{\rho-k}\right) S\left(A_{k} S\right)^{+} A_{k}\right\|_{2} \\
& \leq\left\|A_{k}-\left(A_{k} S\right)\left(A_{k} S\right)^{+} A_{k}\right\|_{2}+\left\|A_{\rho-k}\right\|_{2}+\left\|A_{\rho-k} S\left(A_{k} S\right)^{+} A_{k}\right\|_{2}
\end{aligned}
$$

$\left\|\mathbf{A}-\mathbf{C C}^{+} \mathbf{A}\right\|_{2} \leq \underbrace{\left\|\mathbf{A}_{\mathbf{k}}-\left(\mathbf{A}_{\mathbf{k}} \mathbf{S}\right)\left(\mathbf{A}_{\mathbf{k}} \mathbf{S}\right)^{+} \mathbf{A}_{\mathbf{k}}\right\|_{2}}_{1}+\underbrace{\left\|\mathbf{A}_{\boldsymbol{\rho}-\mathbf{k}}\right\|_{2}}_{2}+\underbrace{\left\|\mathbf{A}_{\boldsymbol{\rho}-\mathbf{k}} \mathbf{S}\left(\mathbf{A}_{\mathbf{k}} \mathbf{S}\right)^{+} \mathbf{A}_{\mathbf{k}}\right\|_{2}}_{3}$

1. $\left\|A_{k}-\left(A_{k} S\right)\left(A_{k} S\right)^{+} A_{k}\right\|_{2}=\left\|A_{k}-I A_{k}\right\|_{2}=0$
(it is non - trivial to prove that $\left.\left(\mathrm{A}_{\mathbf{k}} S\right)\left(A_{k} S\right)^{+}=I\right)$
2. $\left\|A_{\rho-k}\right\|_{2}=\left\|A-A_{k}\right\|_{2}$
(This trivial comesfrom the SVD of A)
3. $\left\|A_{\rho-k} S\left(A_{k} S\right)^{+} A_{k}\right\|_{2} \leq\left\|A_{\rho-k} S\right\|_{2}\left\|\left(A_{k} S\right)^{+} A_{k}\right\|_{2}$
(Standard property for matrixnorms)
$\left\|A_{\rho-k} S\right\|_{2} \leq O\left((n-k)^{\frac{1}{4}}\right)\left\|A-A_{k}\right\|$
(proof based on [Rudelson\& Vershynin,JACM 2007])
$\left\|\left(A_{k} S\right)^{+} A_{k}\right\|_{2} \leq O(\sqrt{k(k \log k-1)})$
(proof based on [Pan, LAA 2000])

Past work : Algorithmto bound $\left\|\mathbf{A}-\mathbf{C C}^{+} A\right\|_{2}$

Determinisic algorithms
Develope by the numerical linear algebra people (G. Golub, G.W Stewart,..)

Best Result: The algorithm in [Gu \& Eisenstat,SISC1996] runs in $O\left(\mathrm{mn}^{2}\right)$ time and gaurantees that

$$
\left\|A-C C^{+} A\right\|_{2} \leq O(\sqrt{1+k(n-k)})\left\|A-A_{k}\right\|_{2}
$$

Deep connections with the so-called Rank Revealing QR (RRQR) factorization.

Past work : Algorithmto bound $\left\|\mathbf{A}-\mathbf{C C}^{+} A\right\|_{F}$

 RandomizedalgorithmsDevelopeby the theoriticd computersciencepeople (A.Frieze,R.Kannan,S.Vempala,..)

Best Result:The algorithmin [Deshpande\& Vempala,
SODA 2006]runs in $O(\mathbf{m n k}+\mathrm{kn})$ timeand gaurantees that with high probability

$$
\left\|A-C C^{+} A\right\|_{F} \leq \sqrt{(k+1)!}\left\|A-A_{k}\right\|_{F}
$$

Algorithmidea: Assigna probability to each columnof
A, and thensample the columnsof A based on these probability.

Conclusion s: $\left\|A-C C^{+} A\right\|_{\xi} \leq p(k, n)\left\|A-A_{k}\right\|_{\xi}$

- Best Algorithm so far

	Reference	$\mathrm{p}(\mathrm{k}, \mathrm{n})$	Time
$\xi=2$	[Gu,Eisenstat,96]	$O\left(k^{\frac{1}{2}}(n-k)^{\frac{1}{2}}\right)$	$O\left(m n^{2}\right)$
$\xi=F$	[Desphande,Vempala,06]	$\sqrt{(k+1)!}$	$O(m n k)$

- Paper's Algorithm results

	Reference	$\mathrm{p}(\mathrm{k}, \mathrm{n})$	Time
$\xi=2$	$[$ This paper,09]	$O\left(k^{\frac{3}{4}}(n-k)^{\frac{1}{4}}\right)$	$O\left(m n^{2}\right)$
$\xi=F$	This paper,09]	$O(k \sqrt{\log k})$	$O\left(m n^{2}\right)$

Thanks

