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Outline

• The Column Subset Selection Problem(CSSP)

– Definition, complexity

– Approximability framework

• Paper’s contribution on the CSSP

– Novel randomized algorithm

– Improved approximability results



The Column Subset Selection Problem
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Complexity of the CSSP

• NP-hardness of the CSSP is an open question.

• There are  for the matrix C

• Optimal solution can be found in                  
time.










k

n

mn)O(n
k



Notation and Linear Algebra
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Approximation Algorithm for the CSSP
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Overview of best-existing and  paper 
results
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Paper’s novel randomized algorithm
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Randomized Stage
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Deterministic Stage
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Intuition for 2-stgae algorithm

• The key idea:
– Select k linearly independent columns from A

• Randomized Stage: The sampling scores are biased 
toward outlier columns
– Leverage scores in the diagnostic regression analysis 

domain
– Resistance scores in the graph sparsification domain

[Srivastava & Spielman, STOC 2008]

• Deterministic Stage: RRQR factorizations were explicitly 
designed to identify sets of linearly independent 
columns



Proof step by step
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  :sConclusion

• Best Algorithm so far

• Paper’s Algorithm results
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