Vandermonde Decomposition of the Prony Hankel Matrix

Badri Narayan Bhaskar

February 4, 2010

Let $S=\left\{n_{1}, \ldots, n_{s}\right\}$ be the indices of x corresponding to nonzero values so that $x_{S}:=$ $\left\{x_{n_{1}}, . ., x_{n_{s}}\right\}$ is the support of x. Then, the DFT coefficients are given by

$$
\begin{align*}
\hat{x}_{k} & =\sum_{n \in S} x_{n} \omega_{D}^{n k} \tag{1}\\
& =\sum_{l=1}^{s} h_{l} t_{l}^{D} \quad \text { where } h_{l}:=x_{n_{l}} \neq 0 \text { and } t_{l}:=\omega_{D}^{n_{l}} \tag{2}
\end{align*}
$$

so that

$$
\hat{x}_{m+k}=\left(h_{1} t_{1}^{m}\right) t_{1}^{k}+\cdots+\left(h_{s} t_{s}^{m}\right) t_{s}^{k} .
$$

Then the $(m+1)$ th column in the "Prony" Hankel matrix can be written as

$$
\left(\begin{array}{c}
\hat{x}_{m} \tag{3}\\
\vdots \\
\hat{x}_{m+k} \\
\vdots \\
\hat{x}_{m+s-1}
\end{array}\right)=\left(\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
t_{1} & t_{2} & \ldots & t_{s} \\
\vdots & \vdots & \ldots & \vdots \\
t_{1}^{k} & t_{2}^{k} & \ldots & t_{s}^{k} \\
\vdots & \vdots & \ldots & \vdots \\
t_{1}^{s-1} & t_{2}^{s-1} & \ldots & t_{s}^{s-1}
\end{array}\right)\left(\begin{array}{c}
h_{1} t_{1}^{m} \\
\vdots \\
h_{k} t_{k}^{m} \\
\vdots \\
h_{s} t_{s}^{m}
\end{array}\right) .
$$

Thus the Prony Matrix can be written as

$$
\begin{align*}
\left(\begin{array}{ccccc}
\hat{x}_{0} & \ldots & \hat{x}_{m} & \ldots & \hat{x}_{s-1} \\
\vdots & & \vdots & & \vdots \\
\hat{x}_{k} & \ldots & \hat{x}_{m+k} & \ldots & \hat{x}_{k+s-1} \\
\vdots & & \vdots & & \vdots \\
\hat{x}_{s-1} & \ldots & \hat{x}_{s+k-1} & \ldots & \hat{x}_{2 s-2}
\end{array}\right) & =\left(\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
t_{1} & t_{2} & \ldots & t_{s} \\
\vdots & \vdots & \ldots & \vdots \\
t_{1}^{k} & t_{2}^{k} & \ldots & t_{s}^{k} \\
\vdots & \vdots & \ldots & \vdots \\
t_{1}^{s-1} & t_{2}^{s-1} & \ldots & t_{s}^{s-1}
\end{array}\right)\left(\begin{array}{ccccc}
h_{1} & \ldots & h_{1} t_{1}^{m} & \ldots & h_{1} t_{1}^{s-1} \\
\vdots & & \vdots & & \vdots \\
h_{k} & \ldots & h_{k} t_{k}^{m} & \ldots & h_{k} t_{k}^{s-1} \\
\vdots & & \vdots & & \vdots \\
h_{s} & \ldots & h_{s} t_{s}^{m} & \ldots & h_{s} t_{s}^{s-1}
\end{array}\right) \tag{4}\\
& =V D V^{T} \tag{5}
\end{align*}
$$

where V is the Vandermonde matrix given by

$$
V=\left(\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
t_{1} & t_{2} & \ldots & t_{s} \\
\vdots & \vdots & \ldots & \vdots \\
t_{1}^{k} & t_{2}^{k} & \ldots & t_{s}^{k} \\
\vdots & \vdots & \ldots & \vdots \\
t_{1}^{s-1} & t_{2}^{s-1} & \ldots & t_{s}^{s-1}
\end{array}\right)
$$

and D is a diagonal matrix with $\left(h_{1}, \ldots, h_{s}\right)$ along the main diagonal. Now, note that the Prony matrix will be full ranked if x has exactly s non-zero elements.

Motivation for Prony's method

To students familiar with the theory of difference equations, the form in equation (2) is readily recognizable as a solution of a difference equation of order s. This observation was made in [1]. Thus, \hat{x} should satisfy the difference equation

$$
\begin{equation*}
\hat{x}_{k}+\lambda_{1} \hat{x}_{k-1}+\cdots+\lambda_{s} \hat{x}_{k-s}=0 \tag{6}
\end{equation*}
$$

where the corresponding generating polynomial

$$
\begin{equation*}
G(z)=1+\sum_{k=1}^{s} \lambda_{k} z^{k}, \tag{7}
\end{equation*}
$$

must have roots at t_{1}, \ldots, t_{s}. Writing (6) in vector form we have

$$
\left(\begin{array}{c}
x_{s} \tag{8}\\
\vdots \\
x_{s+k} \\
\vdots \\
x_{2 s-1}
\end{array}\right)+\left(\begin{array}{ccccc}
\hat{x}_{0} & \ldots & \hat{x}_{m} & \ldots & \hat{x}_{s-1} \\
\vdots & & \vdots & & \vdots \\
\hat{x}_{k} & \ldots & \hat{x}_{m+k} & \ldots & \hat{x}_{k+s-1} \\
\vdots & & \vdots & & \vdots \\
\hat{x}_{s-1} & \ldots & \hat{x}_{s+k-1} & \ldots & \hat{x}_{2 s-2}
\end{array}\right)\left(\begin{array}{c}
\lambda_{1} \\
\vdots \\
\lambda_{s}
\end{array}\right)=0
$$

When the sparsity of x is exactly s, we have established via the Vandermonde Factorization that the matrix in the above equation is invertible. Thus the $\lambda_{k} \mathrm{~s}$ and hence $t_{k} \mathrm{~s}$ can be found. By solving a linear system of equations, the $h_{k} \mathrm{~s}$ can also be found.

References

[1] A Novel Interpretation of Prony's Method, Pitstick et al. 1998
Proceedings of the IEEE, Vol 76 Issue 8 pp. 1052-1053

