B-Splines Approximation

Yuan Yuan
Industrial and Systems Engineering
University of Wisconsin Madison
Apr.27, 2010

Outline

- B-splines and their properties
- Subspace $\$_{k, t}$
- B-splines approximation
- Distance from continuous functions to $\$_{k, t}$
- Knots placement
- Questions?

B-spline—Definition

- Spline
- A piecewise polynomial function $f(x)$. Let $\xi:=\left(\xi_{i}\right)_{1}^{l+1}$ be a strictly increasing sequence of points, and let k be a positive integer. If P_{1}, \ldots, P_{l} is any sequence of l polynomials, each of order k (that is, of degree $<k$), then f (x) of order k is defined as:

$$
f(x):=P_{i}(x) \quad \text { if } \xi_{i}<x<\xi_{i+1} ; i=1, \ldots, l .
$$

3

B-spline—Definition (Cont'd)

- Linear space $\Pi_{<k, \xi}$
- Collection of all splines of order k with break sequence $\boldsymbol{\xi}=\left(\xi_{i}\right)_{1}^{l+1}$
- Dimension is $k l$
- Smoothness constraints
$-j u m p_{\xi_{i}} D^{j-1} f=0$ for $j=1, \ldots, v_{i}$ and $i=2, \ldots, l$
- subspace $\Pi_{<k, \xi, v}$ with $\operatorname{dim} k l-\sum_{i=2}^{l} v_{i}$
- Curry and Schoenberg Theorem
$-\Pi_{<k, \xi, v} \Longleftrightarrow \$_{k, 0, j}:=\left\{\sum_{\text {Knots }}^{i} \alpha_{i} B_{i, k, t}: \alpha_{i}\right.$ real, $\left.\forall i\right\}$
sequence

B-spline—Definition (Cont'd)

- B-splines (Basis splines for $\$_{k, t}$)
- Recurrence relation

$$
B_{i, k, \mathbf{t}}=\omega_{i, k}(x) B_{i, k-1}+\left(1-\omega_{i+1, k}\right) B_{i+1, k-1}
$$

$$
\text { with } \omega_{i, k}(x):=\frac{x-t_{i}}{t_{i+k-1}-t_{i}} \text { and } B_{i, 0}(x)=\left\{\begin{array}{cc}
1 & \text { if } t_{i} \leq x<t_{i+1} \\
0 & \text { otherwise }
\end{array}\right.
$$

- Knots sequence \mathbf{t}
- Let $\operatorname{dim} \$_{k, t}$ be n, then

$$
\mathbf{t}=\left(t_{1}, t_{2}, \ldots, t_{n+k}\right)=(\underbrace{\xi_{1}, \ldots, \xi_{1}}_{k}, \ldots, \underbrace{\xi_{i}, \ldots, \xi_{i}}_{v_{i}}, \ldots, \underbrace{\xi_{l+1}, \ldots, \xi_{l+1}}_{k})
$$

- Basis for $\Pi_{<k, \xi, v}$
$-f \in \Pi_{<k, \xi, v}$

B-splines properties

- Local support

$$
f \in \$_{<k, \mathbf{t}} f(x)=\sum_{i=j+1-k}^{j} \alpha_{i} B_{i, k, \mathbf{t}}(x) \text {, for } x \in\left[t_{j}, t_{j+1}\right]
$$

- Non-negativity

$$
B_{i, k, \mathrm{t}}(x) \geq 0, \forall i
$$

- Partition of unity

$$
\sum_{i=j+1-k}^{j} B_{i, k, \mathbf{t}}(x)=1, \text { for } x \in\left[t_{j}, t_{j+1}\right]
$$

B-splines Approximation

Given $\$_{k, t}$ with knots sequence $\mathbf{t}=\left(t_{1}, \ldots, t_{n+k}\right)=(a, \ldots, b)$, choosing $\tau_{1} \leq \ldots \leq \tau_{n}$ in a way such that τ_{i} belongs to one and only one knot span, the $k^{\text {th }}$ order spline approximation $A g$ to the continuous function g on $[a .$. $b]$, is constructed as follows:

$$
A g:=\sum_{i=1}^{n} g\left(\tau_{i}\right) B_{i, k, \mathbf{t}} \text { on }[a . b]
$$

Approximation error

- The approximation error

$$
\|g-A g\| \leq C \omega(g ;|\mathbf{t}|)
$$

with $\|g\|:=\max _{a \leq x \leq b}|g(x)|$, mesh size $|\mathbf{t}|:=\max _{i} \Delta t_{i}$, the modulus of continuity
$\omega(g ; h):=\max \{g(x)-g(y)|:|x-y| \leq h, x, y \in[a . b]\}$

- Distance from g to $\$_{k, t}$
$\operatorname{dist}\left(g, \$_{k, \mathbf{t}}\right):=\min \left\{g-s \|: s \in \$_{k, t}\right\} \leq C \omega(g ; \mid \mathbf{t})$

Approximation error (cont'd)

- Continuous function g

$$
g \in C^{(j)}[a . b], \operatorname{dist}\left(g, \$_{<k, t}\right) \leq C_{k} \mid \mathbf{t}^{j}\left\|D^{j} g\right\|
$$

- Local approximation error bound

$$
\begin{aligned}
& g \in C^{(k)}[a . . b],\|g-A g\|_{\left[t_{j} . t_{j+1}\right]} \leq C_{k}\left|I_{j}\right|^{k}\left\|D^{k} g\right\|_{I_{j}} \\
& \text { with } I_{j} \text { the interval }\left[t_{j+2-k} . t_{j+k-1}\right],\left|I_{j}\right| \text { the length }
\end{aligned}
$$

Knots placement

- To minimize approximation error in terms of knots is quite difficult

$$
-\$_{k, n}:=\bigcup\left\{f \in \$_{<k, t}: t_{1}=\cdots=t_{k}=a, t_{n+1}=\cdots=t_{n+k}=b\right\}
$$

A heuristic way

Idea: specify a group of knots sequences $\mathbf{t}_{1}, \ldots, \mathbf{t}_{N}$ such that $\min _{i=1, \ldots, N} C_{k}\left|\mathbf{t}_{i}\right|^{k}\left\|D^{k} g\right\| \sim \mathrm{O}$ (noise), define

$$
F g:=\sum_{r=1}^{N} \sum_{i} \alpha_{r, i} B_{i, k, \mathbf{t}_{r}}
$$

Using variable selection method (Lasso), select optimal bases optset $=\left\{B_{i, k, t_{r}}\right\}$, and then obtain knots according to the support of each basis in optset.

Example

Examples (Cont'd)

13

Examples (Cont'd)

Questions?

