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Abstract

We derive a cost functional for estimating the inverse of the observation function
in nonlinear dynamical systems. Limiting our search to invertible observation
functions confers numerous benefits, including a compact representation and no
local minima. Our approximation algorithms for optimizing this cost functional
are fast, and give diagnostic bounds on the quality of their solution. Our method
can be viewed as a manifold learning algorithm that utilizes a prior on the low-
dimensional manifold coordinates. The benefits of taking advantage of such priors
in manifold learning, and searching for the inverse observation functions in sys-
tem identification, are demonstrated empirically by learning to track moving tar-
gets from raw measurements in a sensor network setting and in an RFID tracking
experiment.

1 Introduction

Measurements from sensor systems typically serve as a proxy for latent variables of interest. To
recover these latent variables, the parameters of the sensor system must first be determined. When
the system has nonlinear dynamics and a nonlinear observation function, this is the classical problem
of system identification [9], and it is commonly solved either via regression, by assuming that latent
variables are observed during training. Often, however, latent states cannot be observed, and only
a diffuse prior on them is available, so marginalizing over the latent variables and searching for
the model parameters using EM has become a popular alternative [4, 10, 19]. Unfortunately, this
approach is prone to local minima, and require very careful initialization in practice. Using a simple
change-of-variable model we derive a simple and efficient approximation algorithm for estimating
the observation function in nonlinear dynamical systems when this function is invertible and when
the measurement noise is small. This is a similar problem to manifold learning, except a generative
model and a prior over the latent variables is explicitly available. Because our algorithm takes
advantage of an explicit prior on the latent variables, it recovers latent variables more accurately
than the manifold learning algorithms we are aware of. Our method is not susceptible to local
minima, and provides a guarantee on the quality of the recovered observation function. We identify
conditions under which our estimate of the mapping is asymptotically consistent, and empirically
evaluate the quality of our solutions and their stability under variations of the prior.

We demonstrate our method by learning to track a moving object in a field of completely uncal-
ibrated sensor nodes whose measurement functions are unknown. Given that the object moves
smoothly over time, our algorithm learns a function that maps the raw measurements from the sen-
sor network to the target’s location. In another experiment, we learn to track Radio Frequency ID
(RFID) tags given a sequence of voltage measurements induced by the tag in a set of antennae .
Given only these measurements and that the tag moves smoothly over time, we can recover a map-
ping from the voltages to the position of the tag. These results are surprising because no parametric



sensor model is available in either scenario. We are able to recover the measurement model up to an
affine transform given only raw measurement sequences and a diffuse prior on the state sequence.

2 A diffeomorphic warping model for unsupervised regression

We assume that the set X = {z;};...; of latent variables is drawn (not necessarily iid) from a known
distribution, px (X) = px(x1,--- ,xn). The set of measurements, Y = {y;}1...n is the output of
an unknown invertible nonlinearity applied to each latent variable, y; = fo(x;). We assume that
observations, y; € R, are higher-dimensional than latent variables z; € R%. Computing a MAP
estimate of fy requires marginalizing over X and maximizing over f. Expectation Maximization,
or some other form of coordinate ascent on a Jensen bound of the likelihood, is a common way of
estimating the parameters of this model, but such methods suffer from local minima.

Because we have assumed that fj is invertible and that there is no observation noise, this process
describes a change of variables. The true distribution, py (Y) over Y can be computed in closed
form using a generalization of the standard change of variables formula (see [14, thm 9.3.1] and [8,
chap 11]):
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The determinant corrects the volume of each infinitesimal volume element around f; 1(yL) by ac-
counting for the stretching induced by the nonlinearity. The change of variables formula immedi-
ately yields a likelihood over f, circumventing the need for integrating over the latent variables.

We assume fj diffeomorphically maps a ball centered about the origin containing the data onto its
image. In this case, there exists a function g defined on an open set containing the image of f such
that g(f(z)) = «, so that V fVg = I for all z in the open set [6]. Consequently, we can substitute
g for f~1in (1) and, taking advantage of the identity det(V f'Vf)~! = det VgVg', write its log
likelihood as

N
Iy(Y;g) =logpy(Y;g) =logpx(g(v1),---,9(yn)) + % Zlogdet (Vg(yi)'Va(yi)) .

For many common priors px, the maximum likelihood g yields an asymptotically consistent es-
timate of the true distribution py. When certain conditions on px are met (including stationarity,
ergodicity, and kth-order Markov approximability), a generalized version of the Shannon-McMillan-
Breiman theorem [1] guarantees that log py (Y; g) asymptotically converges to the relative entropy
rate between the true py (Y) and py (Y;g). This quantity is maximized when these two distribu-
tions are equal. Therefore, if the true py follows the change of variable model (1), the recovered g
converges to the true f in the sense that they both describe a change of variable from the prior
distribution px to the distribution py.

Note that although our generative model assumes no observation noise, some noise in Y can be
tolerated if we constrain our search over smooth functions g. This way, small perturbations in y due
to observation noise produce small perturbations in g(y).

3 Approximation algorithms for finding the inverse mapping

The cost function in Equation (2) is not concave and is likely to be hard to maximize exactly. This
is because although log det(A’A) is concave in A € R¥*P when d = D = 1, and log-convex
when d = 1, D > 1, for arbitrary d and D, it is neither concave nor log-convex over its domain. We
describe two approximate optimization algorithms that work well in practice.

We constrain our search for g to a subset of smooth functions by requiring that g have a finite
representation as a weighted sum of positive definite kernels k centered on observed data, g(y) =

Zf-vzl cik(y, y; ), with the weight vectors ¢; € R%. Accordingly, applying g to the set of observations
gives g(Y) = CK, where C = [c1-en] and K is the kernel matrix with K;; = k(y;,y;). In



addition, Vg(y) = CA(y), where A(y) is an N x D matrix whose ith row is M@;) We further
favor smoothness in g by adding to (2) a penalty term for the RKHS norm [17] of g. This norm has
the form ||g||? = tr CKC’, and is weighted by a scalar 3.

For simplicity, we require px to be a Gaussian with mean zero and inverse covariance (2x, though
our methods can be extended to any log-concave distributions. Substituting into (2) and adding the
smoothness penalty on g, we obtain:

N
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where the vec (-) operator stacks up the columns of its matrix argument into a column vector.

Our first algorithm for approximately solving this optimization problem constructs a semidefinite
relaxation using a standard approach that replaces outer products of vectors with positive definite
matrices. Rewrite (3) as

max  — tr (Mvec (C') vec (C) ) + Z log det ([tr Jklvec () vee (C7)' ]) 4)
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where the klth entry of the matrix argument of the logdet is as specified, and the matrix E¥ is zero
everywhere except for 1 in its ¢jth entry. This optimization is equivalent to
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subject to the additional constraint that rank(Z) = 1. Dropping the rank constraint yields a concave
relaxation for (3). Standard interior point methods [20] or subgradient methods [3] can efficiently
compute the optimal Z for this relaxed problem. A set of coefficients C can then be extracted from
the top eigenvectors of the optimal Z, yielding an approximate solution to (3). Since (6) without
the rank constraint is a relaxation of (3), the optimum of (6) is an upper bound on that of (3). Thus
we can bound the difference in the value of the extracted solution and that of the global maximum
of (3). As we will see in the following section, this method produces high quality solutions for a
diverse set of learning problems.

A simpler, more intuitive algorithm also provides good approximations, and runs much more
quickly. To circumvent the non-concavity of the logdet term, we replace it with moment constraints
on g. Simply removing the logdet term altogether would cause the optimal solution of (2) to become
g(y) = 0, since X = 0 is the most likely setting for the zero-mean Gaussian prior px. Instead,
motivated by the fact that each g(y;) should be equal to its corresponding latent z;, we eliminate the
logdet term, and instead require that the sample mean and covariance of ¢g(Y') match the expected
mean and covariance of the random variables X. The expected covariance of X, denoted by Ax,
can be computed by averaging the block diagonals of {2y ". However, the particular choice of Ax
only influences the final solution up to a scaling and rotatlon on g, so in practice, we set it to the
identity matrix. We thus obtain the following optimization problem:

min  vee (KC') Qxvec (KC') + MrCKC’ 7)
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where 1 is a column vector of 1s. This optimization problem searches for a g that transforms
observations into variables that are given high probability by px and match its stationary statistics.
This is a quadratic minimization with a single quadratic constraint, and so after eliminating the linear
constraints with a change of variables, can be solved as a generalized eigenvalue problem [5].



4 Related Work

Manifold learning algorithms and unsupervised nonlinear system identification algorithms solve
variants of the unsupervised regression problem considered here.

Our method provides a statistical model that augments manifold learning algorithms with a prior
on latent variables. Our spectral algorithm from Section 3 reduces to a variant of KPCA [15] when
X are draw iid from a spherical Gaussian. By further adopting a nearest-neighbors form for g
instead of the RBF form, we obtain an algorithm that is similar to embedding step of LLE [2, chap
5]. In addition to our use of dynamics, a notable difference between our method and principal
manifold methods [16] is that instead of learning a mapping from states to observations, we learn
mappings from observations to states. This reduces the storage and computational requirements
when processing high-dimensional data. As far as we are aware, in the manifold learning literature,
only Jenkins and Mataric [7] explicitly take temporal coherency into account, by increasing the
affinity of temporally adjacent points and applying Isomap [18].

State-of-the-art nonlinear system identification techniques seek to recover all the parameters of a
continuous hidden Markov chain with nonlinear state transitions and observation functions given
noisy observations [4, 10, 19]. Because these models are so rich and have so many unknowns, these
algorithms resort to coordinate ascent (for example, via EM), making them susceptible to local min-
ima. In addition, each iteration of coordinate ascent requires some form of nonlinear smoothing
over the latent variables, which is itself both computationally costly and becomes prone to local
minima when the estimated observation function becomes non-invertible during the iterations. Fur-
ther, because mappings from low-dimensional to high-dimensional vectors require many parameters
to represent, existing approaches tend to be unsuitable for large-scale sensor network or image anal-
ysis problems. Our algorithms do not have local minima, and represent the more compact inverse
observation function, where high-dimensional observations appear only in pairwise kernel evalua-
tions.

Comparisons with a semi-supervised variant of these algorithms [13] show that in some cases, weak
priors on the latent variables are extremely informative, and that additional labeled data is often only
necessary to fix the coordinate system.

S Experiments

The following experiments show that latent states and observation functions can be accurately and
efficiently recovered up to a linear coordinate transformation given only raw measurements and a
generic prior over the latent variables. We compare against various manifold learning and nonlinear
system identification algorithms. We also show that our algorithm is robust to variations in the
choice of the prior.

As a measure of quality, we report the affine registration error, the average residual per data point
after registering the recovered latent variables with their ground truth values using an affine trans-

formation: err = ming %\/Z?:l |Az; — 29 + b||2, where 20 is the ground truth setting for z;.
All of our experiments use a spherical Gaussian kernel. To define the Gaussian prior px, we start
with a linear Gaussian Markov chain s; = As;_1 + w;, where A and the covariance of w are block
diagonal and define d Markov chains that evolve independently from each other according to New-
tonian motion. The latent variables z; extract the position components of s;. The inverse covariance
matrix corresponding to this process can be obtained in closed form. More details and additional
experiments can be found in [2].

We begin with a low-dimensional data set to simplify visualization and to compare to systems
that do not scale well with the dimensionality of the observations. Figure 1(b) shows the embed-
ding of a 1500 step 2D random walk (shown in Figure 1(a)) into R® by the function f(z,y) =
(x,ycos(2y), ysin(2y)). Note that the 2D walk was not generated by a linear Gaussian model, as
it bounces off the edges of its bounding box. Lifted points were passed to our algorithm, which
returned the 2D variables shown in Figure 1(c). The true 2D coordinates are recovered up to a scale,
a flip, and some shrinking in the lower left corner. Therefore the recovered g is close the inverse of
the original mapping, up to a linear transform. Figure 1(d) shows states recovered by the algorithm
of Roweis and Ghahramani [4]. Smoothing with the recovered function simply projects the obser-
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Figure 1: (a) 2D ground truth trajectory. Brighter colors indicate greater distance to the origin. (b) Embedding
of the trajectory into R>. (c) Latent variables are recovered up to a linear transformation and minor distortion.
Roweis-Ghahramani (d), [somap (e), and Isomap+temporal coherence (f) recover low-dimensional coordinates
that exhibit folding and other artifacts that cannot be corrected by a linear transformation.

vations without unrolling the roll. The joint-max version of this algorithm took about an hour to
converge on a 1Ghz Pentium III, and converges only when started at solutions that are sufficiently
close to the true solution. Our spectral algorithm took about 10 seconds. Isomap (Figure 1(e)) per-
forms poorly on this data set due to the low sampling rate on the manifold and the fact that the true
mapping f is not isometric. Including temporal neighbors into Isomap’s neighborhood structure (as
per ST-Isomap) creates some folding, and the true underlying walk is not recovered (Figure 1(f)).
KPCA (not shown) chooses a linear projection that simply eliminates the first coordinate. We found
the optimal parameter settings for Isomap, KPCA, and ST-Isomap by a fine grid search over the
parameter space of each algorithm.

The upper bound on the log-likelihood returned by the relaxation (6) serves as a diagnostic on the
quality of our approximations. This bound was —3.9 x 103 for this experiment. Rounding the
result of the relaxation returned a g with log likelihood —5.5 x 10~3. The spectral approximation
(7) also returned a solution with log likelihood —5.5 x 103, confirming our experience that these
algorithms usually return similar solutions. For comparison, log-likelihood of KPCA'’s solution was
—1.69 x 1072, significantly less likely than our solutions, or the upper bound.

5.1 Learning to track in an uncalibrated sensor network

We consider an artificial distributed sensor network scenario where many sensor nodes are deployed
randomly in a field in order to track a moving target. See Figure 2(a). The location of the sensor
nodes is unknown, and the sensors are uncalibrated, so that it is not known how the position of the
target maps to the reported measurements. This situation arises when it is not feasible to calibrate
each sensor prior to deployment, or when variations in environmental conditions affect each sensor
differently. Given only the raw measurements produced by the network from watching a smoothly
moving target, we wish to learn a mapping from these measurements to the location of the target,
even though no functional form for the measurement model is available. A similar problem was
considered by [12], who sought to recover the location of sensor nodes using off-the-shelf manifold
learning algorithms.

Each latent state z; is the unknown position of the target at time ¢. The unknown function f(x;)
gives the set of measurements y; reported by the sensor network at time ¢. Figure 2(b) shows the time
series of measurements from observing the target. In this case, measurements were generated by
having each sensor s report its true distance d; to the target at time ¢, and passing it through a random
nonlinearity of the form o exp(—(3°d;). Note that only f, and not the measurement function of
each sensor needs be invertible. This is equivalent to requiring that a memoryless mapping from
measurements to positions must exist.
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Figure 2: (a) A target followed a smooth trajectory (dotted line) in a field of 100 randomly placed uncalibrated
sensors with random and unknown observation functions (circle). (b) Time series of measurements produced
by the sensor network in response to the target’s motion. (c) The recovered trajectory given only raw sensor
measurements, and no information about the observation function (other than smoothness and invertibility). It
is recovered up to scaling and a rotation. (d) To test the recovered mapping further, the target was made to
follow a zigzag pattern. (e) Output of g on the resulting measurements. The resulting trajectory is again similar
to the ground truth zigzag, up to minor distortion. (f) The mapping obtained by KPCA cannot recover the
zigzag, because KPCA does not utilize the prior on latent states.

Assuming only that the target vaguely follows linear-Gaussian dynamics, and given only the time
series of the raw measurements from the sensor network, our learning algorithm finds a transfor-
mation that maps observations from the sensor network to the position of the target up to a linear
coordinate transform ( Figure 2(c)). The recovered function g implicitly performs all the triangula-
tion necessary for recovering the position of the target, even though the position or characteristics of
the sensors were not known a priori. The bottom row of Figure 2 tests the recovered g by applying
it to a new measurement set. To show that this sensor network problem is not trivial, the Figure also
shows the output of the mapping obtained by KPCA.

5.2 Learning to Track with the Sensetable

The Sensetable is a hardware platform for tracking the position of radio frequency identification
(RFID) tags. It consists of 10 antennae woven into a flat surface 30 x 30 cm. As an RFID tag
moves along the flat surface, the strength of the RF signal induced by RFID tag in each antenna is
reported, producing a time series of 10 numbers. See Figure 3(a). We wish to learn a mapping from
these 10 voltage measurements to the 2D position of the RFID tag. Previously, such a mapping was
recovered by hand, by meticulous physical modeling of this system, followed by trial-and-error to
refine these mappings; a process that took about 3 months in total [11]. We show that it is possible
to recover this mapping automatically, up to an affine transformation, given only the raw time series
of measurements generated by moving the RFID tag by hand on the Sensetable for about 5 minutes.
This is a challenging task because the relationship between the tag’s position and the observed
measurements is highly oscillatory. See Figure 3(b). Once it is learned, we can use the mapping to
track RFID tags. This experiment serves as a real-world instantiation of the sensor network setup
of the previous section in that each antenna effectively acts as an uncalibrated sensor node, with an
unknown and highly oscillatory measurement function.

Figure 3(c) shows the ground truth trajectory of the RFID tag in this data set. Given only the 5
minute-long time series of raw voltage measurements, our algorithm recovered the trajectory shown
in Figure 3(d). These recovered coordinates are scaled down, and flipped about both axes compared
to the ground truth coordinates. There is also some additional shrinkage in the upper right corner,
but the coordinates are otherwise recovered accurately, with an affine registration error of 1.8 cm per
pixel.

Figure 4 shows the the result of LLE, KPCA, Isomap and ST-Isomap on this data set under their best
parameter settings (again found by a grid search on each algorithm’s search space). None of these
algorithms recover low-dimensional coordinates that resemble the ground truth. LLE, in addition to
collapsing the coordinates to one dimension, exhibits severe folding, obtaining an affine registration
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Figure 3: (a) A top view of the Sensetable RFID tag tracker. (b) The output of the Sensetable over a six second
period, while moving the tag from the left edge of the table to the right edge. The observation function is highly
complex and oscillatory. (c) The ground truth trajectory of the tag. Brighter points have greater ground truth

y-value. (d) The trajectory recovered by our spectral algorithm is correct up to flips about both axes, a scale
change, and some shrinkage along the edge.

Figure 4: From left to right, the trajectories recovered by LLE, KPCA, Isomap, ST-Isomap. All of these
trajectories exhibit folding and severe distortions.

error of 8.5 cm. KPCA also exhibited folding and large holes, with an affine registration error of
7.2 cm. Of these, Isomap performed the best with an affine registration error of 3.4 cm, though it
exhibited some folding and a large hole in the center. Isomap with temporal coherency performed
similarly, with a best affine registration error of 3.1 cm. Smoothing the output of these algorithms

using the prior sometimes improves their accuracy by a few millimeters, but more often diminishes
their accuracy by causing overshoots.

To further test the mapping recovered by our algorithm, we traced various trajectories with an RFID
tag and passed the resulting voltages through the recovered g. Figure 5 plots the results (after a

flip about the y-axis). These shapes resemble the trajectories we traced. Noise in the recovered
coordinates is due to measurement noise.

The algorithm is robust to perturbations in px. To demonstrate this, we generated 2000 random per-
turbations of the parameters of the inverse covariance of X used to generate the Sensetable results,
and evaluated the resulting affine registration error. The random perturbations were generated by
scaling the components of A and the diagonal elements of the covariance of w over four orders of
magnitude using a log uniform scaling. The affine registration error was below 3.6 cm for 38% of
these 2000 perturbations. Typically, only the parameters of the kernel need to be tuned. In practice,

we simply choose the kernel bandwidth parameter so that the minimum entry in K is approximately
0.1.
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Figure 5: Tracking RFID tags using the recovered mapping.



6 Conclusions and Future Work

We showed how to recover the latent variables in a dynamical system given an approximate prior
on the dynamics of these variables, and observations of these states through an unknown invertible
nonlinearity. The requirement that the observation function be invertible is similar to the require-
ment in manifold learning algorithms that the manifold not intersect itself. Our algorithm enhances
manifold learning algorithms by leveraging a prior on the latent variables. Because we search for a
mapping from observations to unknown states (as opposed to the opposite direction), we can devise
algorithms that are stable and avoid local minima. We applied this methodology to learning to track
objects given only raw measurements from sensors, with no constraints on the observation model
other than invertibility and smoothness.

We are currently evaluating various ways to relax the invertibility requirement on the observation
function by allowing invertibility up to a linear subspace. We are also exploring different prior
models, and experimenting with ways to jointly optimize over g and the parameters of px.
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