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Abstract

Pursuing a line of work begun by Whitney, Nash showed that every C1 manifold of dimension d can
be embedded in R2d+2 in such a manner that the local structure at each point is preserved isometrically.
We provide an analog of this result for discrete subsets of Euclidean space. For perfect preservation
of infinitesimal neighborhoods we substitute near-isometric embedding of neighborhoods of bounded
cardinality.

There are a variety of empirical situations, abstracted to metric space tasks, in which small distances
are meaningful and reliable, but larger ones are not. Such situations arise in source coding, image pro-
cessing, computational biology, and other applications, and are the motivation for widely-used heuristics
such as Isomap and Locally Linear Embedding.

In such situations we offer the possibility of dimension reductions unobtainable with global methods,
because the dimension of our locally (1 + ε)-distorting embedding is proportional to ε−2 log k, where k
is the cardinality of the neighborhoods where distances are preserved and is independent of the number
of points in the metric space.

One may view our work as a local version of the widely-used Johnson-Lindenstrauss lemma. We use
a device of Nash, together with more recent metric embedding methods, to compose local dimensionality
reducing embeddings within a global immersion (that preserves short distances), and with mild additional
assumptions, a global embedding that also keeps distant points well-separated. We provide an efficient
randomized algorithm for the embeddings.
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1 Introduction

In many large-scale data processing applications, local distances convey more useful information than large
distances and are sufficient for uncovering low-dimensional structure. Such situations would arise if the
large distances are inaccurate or do not reflect the intrinsic geometry of the application. Moreover, there
are a variety of situations that rely only on local distances, including nearest-neighbor search, the com-
putation of vector quantization rate-distortion curves [21], and popular data-segmentation and clustering
algorithms [35]. In all of these cases, it is often desirable to reduce the dimension of the data set for reduc-
tions of storage requirements or algorithm running times. If the long distances are unimportant, we may be
able to reduce the dimensionality only preserving the local information, and such reduction can be into a far
lower dimension than what is possible when attempting to preserve distances between all pairs of points.

Two overwhelmingly influential papers posited that if a high-dimensional data set lies on the embedding
of a low-dimensional Riemannian manifold, the intrinsic dimensionality could then be found by examining
only the nearest neighbor distances of the graph. The first algorithm, known as Isomap, uses Dijkstra’s al-
gorithm on the nearest neighbors graph to compute the global distances and then applies multi-dimensional
scaling to the computed distances to find a low dimensional embedding of the data [37]. The second, Local
Linear Embedding, computes the best linear approximation of each set of neighbors, and then stitches the
neighborhoods together by solving an eigenvalue problem constraining the mappings of overlapping neigh-
borhoods [33]. Based on these initial results and their accompanying empirical examples, these two papers
gave rise to an active field, commonly referred to as manifold learning, and the ensuing years have seen a
multitude of applications of these algorithms in areas as diverse as protein folding [16], motion planning in
robotics [25], data-mining microarray assays [29], and face recognition [23]. All of these applications use
the L2 distance, even if it is not perfectly justified, because of its tractability and empirical power. More-
over, there have been a variety of alternative algorithms proposed to reduce dimensionality nearest neighbor
distances problems, employing kernel methods [13], generative probabilistic models [15], semidefinite pro-
gramming [39] or neural networks [24].

Despite their wide appeal, all of these algorithms assume some sort of manifold model underlies the
data, and make implicit assumptions about intrinsic curvature, Riemmanian metrics, or volume. More im-
portantly, not one of these manifold learning algorithms come with any provable guarantees for discrete
data sets, and many authors have pointed out that the geometric assumptions of these algorithms are not
reasonable in practice. For example, the algorithms are quite sensitive to the determination of neighborhood
structure [9], have problems recovering non-convex domains or manifolds with nontrivial homology [18],
and cannot recover manifold structures that require more than one coordinate chart [30].

From a more theoretical perspective, the concept of a “local embedding” was first introduced in the con-
text of metric space embedding in [2]. Local embeddings share the same objective as manifold learning: to
find a mapping of a metric space into a low-dimensional metric space where distances of close neighbors are
preserved more faithfully than those of distant neighbors. The field of metric embedding has been an active
field of research both in mathematics and computer science and has emerged as a powerful tool in many algo-
rithmic application areas. Two cornerstone theorems in this field are a theorem of Bourgain [14] stating that
that any n-point metric space embeds in L2 with O(log n) distortion, and the Johnson-Lindenstrauss [26]
dimension reduction lemma which says that any n-point subset of L2 embeds with (1 + ε)-distortion in `D

2

where D = O(ε−2 log n). Both these theorems have many algorithmic consequences. Randomized con-
structions of a variety of these embeddings are given in [5], fast implementations of these embeddings are
provided in [6], and deterministic constructions have been proposed in [19, 36].

Abraham, Bartal and Neiman [2] show that many of the known classic embedding results can be ex-
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tended to the context of local embeddings. In particular, generalizing Bourgain’s result (and [1]) they provide
local embeddings requiring only O(log k) dimensions to achieve distortion O(log k) on the neighborhoods
with at most k-points, assuming the the metric obeys a certain weak growth rate condition. This number
k could have no relation to n, and in practice could be arbitrarily smaller than n. It should be emphasized
that this type of embedding is an immersion, that is it preserves well the short distances but may arbitrarily
distort the long ones. This is reasonable, for instance, if we desire a compact distance oracle [38] for close
neighbors.

In this paper, we provide a local version of the Johnson-Lindenstrauss Lemma. Such a construction is
challenging to achieve because all of the previously discussed algorithms based on the this Lemma require a
globally consistent choice of random variables. For this reason, results extending the Johnson-Lindenstrauss
Lemma to the projection of smooth manifolds end up depending on the dimension where the manifold is
embedded and both the volume and curvature of the manifold [10]. We show that for any ε > 0, only
O(ε−2 log(k)) dimensions are required embedding with distortion 1 + ε on the neighborhoods with at most
k-points, assuming the the metric obeys the weak growth rate condition defined by Abraham, Bartal and
Neiman. Furthermore, as been recently addressed by Schechtman and Shraibman [34], the weak growth
rate assumption is necessary. For the special case when our set X is isometric to an ultrametric [3] show
an embedding in dimension O(ε−3 log k). Our result both improves on this result and extends it to more
general metric spaces.

For general metrics, this embedding is an immersion, but under the assumption that the metric has low
dimensionality we can transform our immersion into a global embedding such that distances between far
points can be bounded below so they don’t destroy the local structure. This extension to a global embedding
is useful in many applications of dimension reduction where it is necessary to maintain the local neighbor-
hoods such as nearest neighbor search. Unlike the results in manifold learning, we make no assumptions
that our data lie on some compact manifold, and further assume nothing about the volume or cardinality of
our data set.

As an example application where our algorithm ideally suited, the principal computational problem in
vector quantization is formally one of clustering (with `2

2 costs), but the parameters are different than in
the classification literature: primarily, one studies here the limit that k (the number of clusters) tends to ∞,
while the distortion (the average distance to a codeword) tends to 0. Known algorithms for construction of
near-optimal clusterings are exponential in at least one of k or the dimension of the space. Our embedding
is well-suited to taking advantage of dimensionality reduction for this problem, since our target dimension
depends only on the size of the small regions in which the L2 distance needs to be preserved.

Our methods owe a substantial debt to seminal papers in several areas of mathematics. Pursuing a line
of work begun by Whitney [40, 41], Nash showed that every Riemannian manifold of dimension D could
be embedded in R2D+2 by a C1 mapping such that the metric at each point is preserved isometrically [28].
Nash achieves this embedding using a device which locally perturbs a non-distance preserving embedding
provided by Whitney. The randomized trigonometric embedding of Section 3.1 is adapted from Nash’s
deterministic embedding procedure, and we give a probabilistic analysis showing that with high probability
this yields an embedding of the local distances in each neighborhood. As observed in [31] in the context
of fast algorithms for pattern recognition, our random trigonometric functions form an embedding into a
Euclidean space where the inner product approximates a positive definite shift-invariant kernel function.
In our case, we sample frequencies from a Gaussian distribution and use the smoothness properties of the
gaussian kernel k(x, y) = exp(−γ‖x− y‖2) to ensure the quality of our randomized Nash device.

To assemble these embedded neighborhoods into a global immersion (i.e., a mapping which preserves
local structure, but may not be injective), we employ probabilistic partitioning [11] of our metric space in
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Section 2. These partitions, developed in [1, 2, 3], decompose the metric space into clusters of bounded
diameter and allow the coordinates of the embedding to smoothly transition between neighborhoods. With
the additional assumption that the metric space has low doubling dimension [8, 22] we ensure in section 3.3
that our mapping is not only injective but also keeps distant points distant by combining recent techniques
on embedding metrics in their intrinsic dimension [4] and local scaling distortion embeddings [2]. Finally,
we guarantee the existence of our embedding using Lovász’s powerful Local Lemma[20], and rely on algo-
rithmic implementations of the LLL by Beck, and Molloy and Reed to provide a randomized algorithm to
generate our local embedding [7, 12, 27].

Summary of Results. Given a discrete set of points X of cardinality n in U -dimensional Euclidean space
we construct a low dimension local embedding, one that preserves distances to close neighbors with a 1 + ε
multiplicative error. The main result of this paper is summarized by the following theorem.

Let k ∈ N. For a point x ∈ X and r ≥ 0, the ball at radius r around x is defined as B(x, r) = {z ∈
X | ‖x − z‖ ≤ r}. For a point x ∈ X let ∆k(x) be the largest radius r such that |B(x, r)| ≤ k. For a pair
x, y ∈ X , define: ∆k(x, y) = max{∆k(x),∆k(y)}.

Theorem 1. Let k ∈ N. Given X a discrete subset of RU , then for any ε > 0 there exists an embedding
Φ̂ : X → RD, where D = O(log k/ε2) with the following properties:

a. ‖Φ̂(x)− Φ̂(y)‖ ≤ (1 + ε)‖x− y‖ for all x,y ∈ X

b. For all x, y ∈ X , let ∆∗
k(x, y) = c1ε∆k(x, y)/ log k, then:

‖Φ̂(x)− Φ̂(y)‖ ≥


(1 + ε)−1‖x− y‖ if ‖x− y‖ ≤

√
ε∆∗

k(x, y)
(1 + ε′)−1‖x− y‖ if ‖x− y‖ =

√
ε′∆∗

k(x, y) s.t. ε < ε′ ≤ 1
1
2∆∗

k(x, y) if ∆∗
k(x, y) < ‖x− y‖ ≤ 1

2∆k(x, y),

(1)

where c1 < 1 is a universal constant.

In the case that that X satisfies a weak growth rate condition (i.e., as in [2], there exists constants
α > β ≥ 1 such that for every x ∈ X and r > 0, |B(x, αr)| ≤ |B(x, r)|β), then Theorem 1 provides
(1 + ε)-distortion for all k-neighborhoods in X . In order to maintain separation among pairs of points at
distances greater than 1

2∆k(x, y), we need to make use of additional information about the metric space X .
Our embedding dimension will depend on the doubling dimension dim(X) of X , and on a weak growth
rate assumption about X , but not on the cardinality of X .

Theorem 2. Let k ∈ N, and X a discrete subset of RU . Suppose that X satisfies a weak growth rate
assumption then for any ε, θ > 0 there exists an embedding Φ̄ : X → RD, where D = O(log k/ε2 +
dim(X)/θ) such that Theorem 1 holds, and additionally if ‖x− y‖ ≥ 1

2∆k(x, y) then:

‖Φ̄(x)− Φ̄(y)‖ ≥ ∆k(x, y) · c2θ
√

ε/ log1+θ k, (2)

for some universal constant c2.
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2 Preliminaries

One of the tools we use are local probabilistic partitions. In particular, the following constructions are
generalizations of the local probabilistic partitions of [2], and their analysis appears in [3]:

For any point x ∈ X and a subset S ⊆ X let d(x, S) = mins∈S d(x, s). The diameter of X is denoted
diam(X) = maxx,y∈X d(x, y).

Definition 1 (Probabilistic Partition). A partition P of X is a collection of disjoint set of clusters C(P ) =
{C1, C2, . . . , Ct} such that X = ∪jCj . A partition is called ∆-bounded where ∆ : P → R+ if for all j,
diam(Cj) ≤ ∆(Cj). For x ∈ X we denote by P (x) the cluster containing x. A probabilistic partition P̂ of
a finite metric space (X, d) is a distribution over a set P of partitions of X . Such a partition is ∆-bounded
if it is ∆-bounded for every P ∈ P̂ .

Definition 2 (Locally Padded Probabilistic Partition). Let P̂ be a ∆-bounded probabilistic partition of
(X, d). Let L(x) denote the event that B(x, η · ∆(P (x))) ⊆ P (x). For δ ∈ (0, 1], P̂ is called (η, δ)-
locally padded if

Pr[L(x)|
∧
z∈Z

L(z)] ≥ δ.

holds for any x ∈ X and Z ⊆ X \B(x, 16∆(P (x))).

Lemma 3 (Locally Padded Cardinality-Based Probabilistic Partitions). Let (X, d) be a finite metric space.
Let k ∈ N. There exists a ∆-bounded probabilistic partition P̂ of (X, d) with the following properties:

• For any P ∈ P and any x ∈ X: |P (x)| ≤ k.

• For any P ∈ P is and any x ∈ X: 2−6 ≤ ∆(P (x))/∆k(x) ≤ 2−4.

• P̂ is (η(δ), δ)-locally padded for η(δ) = 2−11 ln k · ln(1/δ), where δ ∈ (1/k, 1].

Lemma 4. Let (X, d) be a finite metric space. Let k ∈ N and ξ > 0. Let {P̂(t)}t∈T be a collection of size
|T | ≥ 8 log k/ξ of independent ∆-bounded probabilistic partitions of (X, d) as in Lemma 3. Let δ = 1− ξ

and L(δ)
t (x) denote the event that B(x, η(δ) ·∆(P (t)(x))) ⊆ P (t)(x), where η(δ) = 2−11 ln k · ln(1/δ). Then

with positive probability for every x ∈ X there exists a set T (δ)(x) ⊆ T of size |T (δ)(x)| ≥ (1 − 2ξ)|T |
such that L(δ)

t (x) occurs for all t ∈ T .

3 Local Dimensionality Reduction

In this section we describe the embedding and analysis to prove Theorem 11. The main ingredients are a set
of probabilistic partitions described in Section 2, and a compact embedding, based on a randomization of a
device of Nash, provided in Section 3.1. Our construction proceeds in three steps. We prove the existence of
an embedding Φ satisfying all of the properties in Theorem 1 for all x, y ∈ X which are “close neighbors”
in the sense that ‖x − y‖ ≤ ∆∗

k(x, y). For farther neighbors, we use an simple additional construction in
Section 3.3.

1We note that the constants may differ but a rescaling of the parameter ε would yield this formulation of the theorem.
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3.1 The Randomized Nash Device

For any ω ∈ RU and σ > 0, we define the function ϕ : RU → R2 as

ϕ(x;σ, ω) =
1
σ

[
cos(σω′x)
sin(σω′x)

]
(3)

where ω′x denotes the inner product between ω and x. ϕ(x;σ, ω) maps onto a circle with radius σ−1 in
R2. These functions were used by Nash in his construction of C1-isometric embeddings of Riemannian
manifolds [28], with the parameters chosen to correct errors in the metric. Note that as the parameter σ
grows, the frequencies of the embedding function grow, but the amplitude becomes increasingly small.
Using this procedure, Nash was able to correct the metric at every point in a manifold.

In this section we present a sequence of random parameter settings for these functions ϕ, first studied
in [31], that with high probability approximate small distances in discrete metrics and bound large distances
away from zero. Fix σ > 0 and let ω be a sample from a U -dimensional Gaussian N (0, IU ). For this
choice of parameters, one may interpret Equation (3) as a random projection wrapped onto the circle. Using
the intuition provided by the Johnson-Lindenstrauss lemma, one would expect nearby points x and y to be
mapped to nearby points on the circle since the sine and cosine are Lipshitz. This intuition can be further
reinforced by considering the expected distance between two points.

Claim 5. For any x and y in RU , |ϕ(x;σ, ω)−ϕ(y;σ, ω)|2 = 2σ−2
t (1−cos(σω′(x−y))) and E[|ϕ(x;σ, ω)−

ϕ(y;σ, ω)|2] = 2σ−2(1− exp(−1
2σ2‖x− y‖2).

The first part of this claim can be verified using standard trigonometric identities, and the expectation
follows because, for any z ∈ RU , E[cos(ω′z)] = exp(−1

2‖z‖
2). For small distances relative to σ−1, a

Taylor expansion reveals that 2σ−2(1− exp(−1
2σ2‖x− y‖2) is nearly the squared distance between x and

y. For large distances, this function is equal to 2σ−2 and is bounded away from zero. The main result of this
section is to note that these random variables are very well concentrated about their expected value and hence
inherent their distance preserving property from this Gaussian kernel function. Hence, a concatenation of
several ϕ corresponding to different samples of ω will provide a low-dimensional embedding.

Let σ1, . . . , σD > 0 be given real numbers bounded above by σm, and let ω1, . . . , ωD be D samples from
a U -dimensional Gaussian N (0, IU ). Let ϕ(t)(x) := ϕ(x;σt, ωt) and, for x and y ∈ RU , let Θ : X → R2D

denote the mapping Θ = 1√
D

⊕
1≤t≤D ϕ(t). The main result of this section is the following Lemma.

Lemma 6. Let 1
2 > ε > 0 and x and y ∈ RU .

a. ‖Θ(x)−Θ(y)‖2 ≤ (1 + ε)‖x− y‖2 with probability exceeding 1− exp(−D
2 ( ε2

2 − ε3

3 )).

b. If ‖x− y‖ ≤
√

ε
σm

, ‖Θ(x)−Θ(y)‖2 ≥ (1− ε)‖x− y‖2 with probability exceeding 1− exp(−3Dε2

32 ).

c. If ‖x− y‖ ≥ 1√
2σm

, ‖Θ(x)−Θ(y)‖2 ≥ 1
4σ2

m
with probability exceeding 1− exp(−D

32).

The randomized embedding Θ maps onto a product of circles of varying radii, a compact set diffeomor-
phic to the D-torus. The different values of σ will be necessary in the following sections to stitch together
regions of the metric space with differing densities, but the important point is all of the concentration re-
sults are only a function of the largest value of the σt. Intuitively, one can interpret this as saying the high
frequency information is the dominant source of error in the approximation.

5



To prove part (a) of Lemma 6, note that 1− cos(α) ≤ α2/2 for all α. Let ` = ‖x− y‖. τi := ω′
i(x− y)

is distributed as a one-dimensional Gaussian distribution N (0, `2) and τ1, . . . , τD are independent and we
have

‖Θ(x)−Θ(y)‖2 =
1
D

D∑
t=1

‖ϕ(t)(x)− ϕ(t)(y)‖2 =
1
D

D∑
t=1

2
σ2

t

(1− cos (σtτt)) ≤
1
D

D∑
t=1

τ2
t . (4)

It therefore follows that

Pr
[
‖Θ(x)−Θ(y)‖2 ≥ (1 + ε)`2

]
≤ Pr

[
1
D

D∑
t=1

τ2
t ≥ (1 + ε)`2

]
≤ e

−D
2

�
ε2

2 − ε3

3

�
(5)

where the second inequality is a well known known concentration inequality a χ-squared random variable
(see, e.g., [17]).

Parts (b) and (c) require a more detailed verification, but follow from a standard Chernoff Bound anal-
ysis. We will sketch the argument here and not include the full proof. We explicitly bound the moment
generating function of the everywhere non-positive process cos(σω′(x− y))− 1 by using the upper bound
exp(α) ≤ 1+α+α2 for all α ≤ 0. Using this upper bound allows us to bound Eω[s(cos(σω′(x−y))−1)]
by employing Claim 5 above. From this bound, one can then use some moderately tedious algebra and
properties of the exponential function to yield the desired concentration inequalities.

The analysis in this section proves the following “compactified” version of the Johnson-Lindenstrauss
Lemma where the entire metric space is mapped to a compact region of space with radius at most w. Indeed,
this should not be surprising given our discussion above of how the randomized Nash device wraps random
projections around the circle. In the limit that w goes to infinity, the following statement is exactly equivalent
to the Johnson-Lindenstrauss Lemma (though weaker in the constants).

Corollary 7. For any 0 < ε < 1
2 , w > 0, and any integer k, let D be an even integer greater than

22(ε2/2 − ε3/3)−1 log(k). Then for any set V of k points in RU , there is a map Φ into RD such that
‖Φ(x)‖ ≤ w for all x ∈ V , and, for all x,y ∈ V , ‖Φ(x)− Φ(y)‖2 ≤ (1 + ε)‖x− y‖2 and

‖Φ(x)− Φ(y)‖2 ≥


(1− ε)‖x− y‖2 ‖x− y‖ ≤

√
εw

(1− 1
w2 ‖x− y‖2)‖x− y‖2 √

εw ≤ ‖x− y‖ ≤ 1√
2
w

1
4w2 ‖x− y‖ ≥ 1√

2
w

(6)

Furthermore, this map can be found in randomized polynomial time.

This corollary is proven by a union bound argument, noting that for D > 22(ε2/2− ε3/3)−1 log(k), the
probability of all of the constraints being violated is at most 1/k.

3.2 Embedding Close Neighbors

We now turn to a recipe for combining multiple instances of these trigonometric embeddings into a global
map that preserves local distances using the probabilistic partitions discussed in 2. Specifically we concern
ourselves with the “close neighbors,” pairs x and y satisfying ‖x− y‖ ≤ ∆∗

k(x, y). Let D = C ′dlog k/ε2e,
where C ′ is some universal constant to be determined later. We construct a locally padded cardinality-based
probabilistic partition P̄(t) as in Lemma 3. Now fix a partition P (t) ∈ P(t). We define a trigonometric
embedding for every cluster C ∈ P (t).
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Let σC = 212 ln k/ε · ∆(C)−1, and let {ωC |C ∈ P (t), 1 ≤ t ≤ D} be i.i.d. samples from a
U -dimensional Gaussian N (0, IU ). For x ∈ C define σ(t)(x) = σC , ω(t)(x) = ωC , and A(t)(x) =
min

{
d(x,X \ C), σ(t)(x)−1

}
, and let

Φ(t)(x) = A(t)(x)
[

cos(σ(t)(x)ω(t)(x)′x)
sin(σ(t)(x)ω(t)(x)′x)

]
.

The function A(t) serves as the amplitude of the embedding. For padded x, this number is equal to the
amplitude defined in Section 3.1, and the amplitude rolls off to zero near the boundary of each cluster.
In each cluster, we have a different trigonometric embedding, and continuity is maintained because the
amplitude is zero at the boundaries of the clusters.

We define our embedding Φ : X → l2D
2 by concatenating D instances of Φ(t): Φ = 1√

D

⊕
1≤t≤D Φ(t).

3.2.1 Embedding Analysis

We first analyze the relationship between the embeddings Φ(t) and the Nash-type embeddings of Section 3.1
and show that they have similar distortion. We then employ the Lovász Local Lemma to show that the
distance constraints are satisfied everywhere with positive probability.

For each x, let ϕ(t)(x) denote ϕ(x;σ(t)(x), ω(t)(x)), the trigonometric embedding function with param-
eters given by the σ and ω of the cluster P (t)(x). We have the following lemma:

Lemma 8. Let x, y ∈ X . Then,

1. If P (t)(x) 6= P (t)(y), ‖Φ(t)(x)− Φ(t)(y)‖ ≤ 2‖x− y‖.

2. If C := P (t)(x) = P (t)(y), ‖Φ(t)(x)− Φ(t)(y)‖2 ≤ ‖x− y‖2 + ‖ϕ(t)(x)− ϕ(t)(y)‖2.

3. If C := P (t)(x) = P (t)(y), σ−1
C ≤ d(x,X \ P (t)(x)) and σ−1

C ≤ d(y, X \ P (t)(y)), then ‖Φ(t)(x)−
Φ(t)(y)‖ = ‖ϕ(t)(x)− ϕ(t)(y)‖.

Proof. First, we observe that for all x and y

‖Φ(t)(x)−Φ(t)(y)‖2 = (A(t)(x)−A(t)(y))2+2A(t)(x)A(t)(y)
(
1− cos

(
σ(t)(x)ω(t)(x)x− σ(t)(y)ω(t)(y)y

))
Here we used the trigonometric identities that sin2(θ) + cos2(θ) = 1 and cos(θ1 − θ2) = cos(θ1) cos(θ2) +
sin(θ1) sin(θ2). We now proceed case by case.

For (1), note that since the cosine bounded below by −1, we have

‖Φ(t)(x)− Φ(t)(y)‖2 ≤ (A(t)(x)−A(t)(y))2 + 4A(t)(x)A(t)(y)

= (A(t)(x) + A(t)(y))2

≤ (d(x,X \ P (t)(x)) + d(y, X \ P (t)(y)))2

but if x and y fall in different clusters, ‖x− y‖ ≥ d(y, X \ P (t)(y)) and ‖x− y‖ ≥ d(x,X \ P (t)(x)), and
the assertion follows.

If C = P (t)(x) = P (t)(y), recall that ‖Φ(t)(x)− Φ(t)(y)‖2 = σ−2
C (1− cos (σCω′

C(x− y))). We have
that A(t)(x)A(t)(y) ≤ σ−2

C . We also need to show that |A(t)(x)−A(t)(y)| ≤ ‖x− y‖ for all x, y ∈ P (t)(x).
We show that A(t)(x) − A(t)(y) ≤ ‖x − y‖ and the claim holds by reversing the roles of x and y. There
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are two cases: if A(t)(y) = σ−1 then A(t)(x) ≤ σ−1 and A(t)(x) − A(t)(y) ≤ 0. Otherwise A(t)(y) =
d(y, X \ P (t)(y)) and A(t)(x) ≤ d(x, X \ P (t)(x)) implying A(t)(x) − A(t)(y) ≤ d(x,X \ P (t)(x)) −
d(y, X \ P (t)(y)) ≤ ‖x− y‖ since P (t)(x) = P (t)(y).

Finally, for (3), we only need use the fact that A(t)(x) = A(t)(y) = σ−1
C .

For x, y ∈ X , let us now classify the different coordinates t according to the cases of Lemma 8. Define
the sets

T 6=(x, y) = {t|P (t)(x) 6= P (t)(y)}
T=(x, y) = {t|P (t)(x) = P (t)(y)}
T◦(x, y) = {t|d(x,X \ P (t)(x)) ≥ σ(t)(x)−1 ∨ d(y, X \ P (t)(y)) ≥ σ(t)(y)−1}

(7)

so that we have the upper and lower bounds for our embedded distances

‖Φ(x)− Φ(y)‖2 ≥ 1
D

∑
t∈T=(x,y)∩T◦(x,y)

‖ϕ(t)(x)− ϕ(t)(y)‖2, and (8)

‖Φ(x)− Φ(y)‖2 ≤ 1
D

 ∑
t∈T=(x,y)

‖ϕ(t)(x)− ϕ(t)(y)‖2 +
∑

t∈T6=(x,y)∪(T=(x,y)\T◦(x,y))

2‖x− y‖2

 . (9)

We now turn to the part of the analysis that relies on the Lovász Local Lemma, to prove the existence of
a probabilistic partition where for every pair of close neighbors (x, y), |T=(x, y) ∩ T◦(x, y)| ≥ (1− 2ε)D.
We then deduce from the analysis in Section 3.1, via a second application of the the Local Lemma, that the
properties of the embedding hold with positive probability.

Apply Lemma 4 with ξ = ε. Consider pairs x, y that are close neighbors, that is: ‖x − y‖ ≤ ∆∗
k(x, y)

where ∆∗
k(x, y) = c1

√
ε/ ln k · ∆k(x, y), and c1 = 2−19. Note that c1 is chosen so that 1

8σ(t)(x, y)−1 ≤
∆∗

k(x, y) ≤ 1
2σ(t)(x, y)−1, where σ(t)(x, y) = min{σ(t)(x), σ(t)(y)}, for all 1 ≤ t ≤ D (this follows from

Lemma 3). Assume w.l.o.g that σ(t)(x, y) = σ(t)(x) (otherwise switch the roles of x and y). Consider
t ∈ T (δ)(x) then B(x, η(δ) ·∆(P (t)(x)) ⊆ P (t)(x). It follows that d(x, X \ P (x)) ≥ η(δ) ·∆(P (t)(x)) ≥
2σ(t)(x)−1, by definition. Now consider y ∈ X such that ‖x− y‖ ≤ σ(t)(x)−1 then P (t)(y) = P (t)(x) and
d(y, X \ P (t)(y)) ≥ d(y, X \ P (t)(x))− ‖x− y‖ ≥ σ(t)(x)−1. Hence, t ∈ T=(x, y) ∩ T◦(x, y). Thus, we
conclude from the lemma that |T=(x, y) ∩ T◦(x, y)| ≥ (1− 2ε)D. Plugging this bound into 8 and 9 yields:

‖Φ(x)− Φ(y)‖2 ≥ (1− 2ε) ·
∑

t∈T=(x,y)∩T◦(x,y) ‖ϕ(t)(x)− ϕ(t)(y)‖2

|T=(x, y) ∩ T◦(x, y)|
, and (10)

‖Φ(x)− Φ(y)‖2 ≤
∑

t∈T=(x,y) ‖ϕ(t)(x)− ϕ(t)(y)‖2

|T=(x, y)|
+ 4ε‖x− y‖2. (11)

We will next apply the Local Lemma again over events related to the Nash-type embeddings for the
different clusters. Define:

L(x, y) =

∑
t∈T=(x,y)∩T◦(x,y) ‖ϕ(t)(x)− ϕ(t)(y)‖2

|T=(x, y) ∩ T◦(x, y)|
and U(x, y) =

∑
t∈T=(x,y) ‖ϕ(t)(x)− ϕ(t)(y)‖2

|T=(x, y)|

Consider the pairs x, y that are close neighbors, that is: ‖x−y‖ ≤ ∆∗
k(x, y). Let ε′(x, y) = max{ε,∆∗

k(x, y)−2‖x−
y‖2}. We define the following events for each such pair. Let AU (x, y) be the event that U(x, y) > (1 +
ε)‖x− y‖2 and let AL(x, y) be the event that L(x, y) < (1− ε′(x, y)). Let A(x, y) = AL(x, y)∨AU (x, y).
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We create a dependency graph GA whose vertices are the events A(x, y). Note that the event A(x, y)
depends only on the random variables associated with clusters C ∈ P (t) where P (t)(x) = P (t)(y). We place
an edge between two events A(x, y) and A(x′, y′) if P (t)(x) = P (t)(x′) for some t ∈ T=(x, y)∩T=(x′, y′).
Note that if there is no edge between the two events then they are independent. On the other hand assume if
there is an edge then for some t, P (t)(x) = P (t)(y) = P (t)(x′) = P (t)(y′). Then max{‖x−x′‖, ‖x−y′‖} ≤
∆(P (t)(x)) ≤ ∆k(x)/16, by Lemma 3, and x′, y′ ∈ B(x,∆k(x)). This implies that the number of such
pairs is at most

(
k
2

)
which bounds the maximum degree of the dependency graph GA.

The fact the x, y are close neighbors implies that ‖x − y‖ ≤ ∆∗
k(x, y) ≤ 1√

2
σ(t)(x, y)−1. Now, by

part (a) of Lemma 6 the probability that U(x, y) > (1 + ε)‖x − y‖2 is at most e−D(ε2/4+ε3/6) ≤ k−2/4.
Similarly by Lemma 6(b) the probability that L(x, y) < (1 − max{ε, σ2

m‖x − y‖2})‖x − y‖2 is at most
e−3Dε2/32 ≤ k−2/4, where σm ≤ maxt∈T σ(t)(x, y) ≤ ∆∗

k(x, y)−1/2. Hence the probability the event
A(x, y) occurs is at most k−2/2 < 1/(e(

(
k
2

)
+ 1)). Since the dependency graph has degree at most

(
k
2

)
, the

probability of an event A(x, y) occurring satisfies the conditions of the Local Lemma, implying that there is
positive probability that none of the events A(x, y) occur. Therefore for any close neighbors x, y such that
‖x− y‖ ≤ ∆∗

k(x, y) we have:

‖Φ(x)− Φ(y)‖2 ≥ (1− 2ε)L(x, y) ≥ (1− 2ε−max{ε,∆∗
k(x, y)−2‖x− y‖2})‖x− y‖2

≥ (1− 3 max{ε, ε′(x, y)})‖x− y‖2, and (12)

‖Φ(x)− Φ(y)‖2 ≤ U(x, y) + 4ε‖x− y‖2 ≤ (1 + 5ε)‖x− y‖. (13)

completing the analysis of the embedding of close neighbors.

3.3 Embedding farther Neighbors

In this section, we extend the embedding to cover all pairs such that ‖x − y‖ ≤ 1
2∆k(x, y). To this end,

we add another component to the embedding Ψ : X → RD. The embedding Ψ is based on ideas similar to
those of [32, 1]. For each 1 ≤ t ≤ D, define a function Ψ(t) : X → R2 and let {ν(t)(C)|C ∈ P (t), t ∈ T}
be i.i.d symmetric {0, 1}-valued Bernoulli random variables. The embedding is defined for each x ∈ X as
Ψ(x) = 1√

D

⊕
1≤t≤D Ψ(t)(x) with

Ψ(t) =
√

ε · ν(t)(P (x)) · d(x,X \ P (t)(x)) .

Our final embedding will be Φ̂ = Φ⊕Ψ.

3.3.1 Embedding Analysis

First observe that the upper bound on the distance in the embedding is maintained with only small loss. This
follows since ‖Ψ(x)−Ψ(y)‖ ≤

√
ε‖x− y‖, as follows by a standard argument (see, e.g., [1]), and we have

‖Φ̂(x)−Φ̂(y)‖2 = ‖Φ(x)−Φ(y)‖2+‖Ψ(x)−Ψ(y)‖2 ≤ (1+5ε)‖x−y‖2+ε‖x−y‖2 = (1+6ε)‖x−y‖2.

We now turn to show that the embedding provides a lower bound on the distance between images of
neighbors which are not “close”. We can partition the pairs x, y such that ∆∗

k(x, y) ≤ ‖x−y‖ ≤ 1
2∆k(x, y)

into two sets as follows: W= = {{x, y} | |T=(x, y)| ≥ D/2} and W 6= = {{x, y} | |T 6=(x, y)| > D/2}.
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Consider first a pair in W=. For such pairs we show that the Φ component of the embedding gives a good
lower bound on the distance. Recall that

‖Φ(x)− Φ(y)‖2 ≥
∑

t∈T=(x,y) ‖ϕ(t)(x)− ϕ(t)(y)‖2

D
≥ 1

2
·
∑

t∈T=(x,y) ‖ϕ(t)(x)− ϕ(t)(y)‖2

|T=(x, y)|
. (14)

Let LB(x, y) =
P

t∈T=(x,y) ‖ϕ(t)(x)−ϕ(t)(x)‖2

|T=(x,y)| and define the event B(x, y) that LB(x, y) < 2−5∆∗
k(x, y)2.

As before we create a dependency graph GB whose vertices are these events and place an edge between two
events B(x, y) and B(x′, y′) if P (t)(x) = P (t)(x′) for some t ∈ T=(x, y) ∩ T=(x′, y′). Note that if there
is no edge between the two events then they are independent. By the same argument made before we can
bound the degree of GB by

(
k
2

)
.

We have that ‖x − y‖ ≥ ∆∗
k(x, y) ≥ 1

8(maxt∈T σ(t)(x, y))−1 ≥ 1
8σ−1

m . Now, by Lemma 6, the
probability that LB(x, y) < 2−7σ−2

m is at most e−Dε2/32 < k−2/2, where σm ≤ maxt∈T σ(t)(x, y) ≤
∆∗

k(x, y)−1/2. Hence, the probability that event B(x, y) occurs is at most k−2/2 < 1/(e(
(
k
2

)
+ 1)), which

satisfies the conditions of the Local Lemma, implying that there is positive probability that none of these
event occur. We conclude that for every pair x, y in W=,

‖Φ̂(x)− Φ̂(y)‖2 ≥ ‖Φ(x)− Φ(y)‖2 ≥ 1
2
LB(x, y) ≥ 2−6∆∗

k(x, y)2, (15)

that is: ‖Φ̂(x)− Φ̂(y)‖ ≥ 1
8∆∗

k(x, y).
Next we deal with pairs in W 6=. Here we will make use of the Ψ component of the embedding. By

applying Lemma 4 with ξ = 1/4 we infer that with positive probability for every x ∈ X there exists
a set T ′(x) = T (3/4)(x) such that |T ′(x)| ≥ D/2 and for each t ∈ T ′(x), B(x, η(3/4)∆(P (t)(x))) ⊆
P (t)(x), and therefore ε · d(x,X \ P (t)(x)) ≥ σ(t)(x)−1/2. We note that this event is positively correlated
with the former application of the lemma and so this assertion holds in conjunction with our analysis of
Φ. Assume w.l.o.g that σ(t)(x, y) = σ(t)(x) (otherwise switch the roles of x and y), then we have that:
ε · d(x,X \ P (t)(x)) ≥ ∆∗

k(x, y).
For such a pair x, y define B′(x, y) to be the event that ‖Ψ(x) − Ψ(y)‖ < 1

16∆∗
k(x, y). Define a

dependency graph GB′ whose vertices are these events. We place an edge between two events B′(x, y)
and B′(x′, y′) if one of {x, y} is in the same cluster as {x′, y′} for some t ∈ T . Note that if there is no
edge between two events then they are independent. On the other hand assume there exists t ∈ T such that
P (t)(x) = P (t)(x′). Therefore there are at most k such points x′. Now consider all such pairs including
x′. Denote the other points in these pairs y′1, . . . , y

′
s. Let z be the point which maximizes ∆k(z) over all

y′js and x′. Since ‖x′ − y′j‖ ≤ 1
2∆k(x′, y′j) = 1

2 max{∆k(x′),∆k(y′j)} ≤ 1
2∆k(z). We conclude that

‖z − y′j‖ ≤ ‖x′ − z‖+ ‖z − y′j‖ ≤ ∆k(z) and therefore all y′js are in the ball around z containing at most
k points so that s ≤ k. We conclude that there are at most k2 such pairs, which provides an upper bound on
the degree of GB′ .

Note that for each t ∈ T ′(x) with probability at least 1/4, ν(P (t)(x)) = 1 and ν(P (t)(y)) = 0, as
P (t)(x) 6= P (t)(y). Hence using Chernoff bounds we have that the probability that there are less than 1/8
fraction of the coordinates t ∈ T ′(x) such |Ψ(t)(x) − Ψ(t)(y)| ≥ ∆∗

k(x, y) is at most e−D/16. Hence the
probability that event B′(x, y) occurs is at most e−D/16 ≤ k−2/4 < 1/(e(k2 + 1)), satisfying the condition
for the Local Lemma. We can therefore conclude that there is positive probability that non of the events
B′(x, y) occur.

Therefore for every x, y ∈ W 6=, ‖Φ̂(x)− Φ̂(y)‖ ≥ ‖Ψ(x)−Ψ(y)‖ ≥ 1
16∆∗

k(x, y), thus completing the
proof of Theorem 1.
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4 Maintaining Separation of Distant Pairs

In many applications it is desirable that not only our distortion for neighbors is small but also that the distant
pairs (non-neighbors) will not become too close in the embedding so that the local structure is preserved. To
obtain this type of property we can use any non-expansive embedding Υ : X → `D

2 that provides guarantees
for the distortion of the distant pairs via a similar trick to the one in Section 3.3, i.e., add a component

√
εΥ

to the embedding Φ̂. Let Φ̄ = Φ̂⊕ (
√

εΥ) then:

‖Φ̄(x)−Φ̄(y)‖2 = ‖Φ̂(x)−Φ̂(y)‖2+ε‖Υ(x)−Υ(y)‖2 ≤ (1+ε)‖x−y‖2+ε‖x−y‖2 = (1+2ε)‖x−y‖2,

whereas the lower bound for neighbors given by Φ̂ still holds and the lower bound for far neighbors is given
by Υ with just an additional

√
ε factor loss.

If we assume nothing about the metric space X there is no such low dimensional embedding that will
give good guarantees. However, in this section we show that under reasonable assumptions on the local
growth structure of the space there exists an embedding that provides reasonable bounds and in particular
guarantees that the local structure of the space would be preserved. This is made possible by combining
newly developed techniques of Abraham, Bartal and Neiman for local embeddings [2] and low-dimensional
embedding doubling metrics [4].

Given a metric space (X, d) we say that X has doubling constant λ if for any x ∈ X , r ∈ R+ the ball
B(x, r) can be covered by at most λ balls of radius r/2. The doubling dimension of X is dim(X) = log λ.

In recent work of Abraham, Bartal and Neiman [4] it is shown that every metric space embeds in `D
2

where D = O(dim(X)/θ) with distortion O(log1+θ n) (in fact, their embedding can be shown to have con-
stant average distortion [1, 4]). Hence one choice for the component Υ could be this embedding, and com-
bining it with Φ̂ as described above, we obtain a global embedding in dimension O(ε−2 log k+θ−1dim(X))
that guarantees that the distance distant pairs does not shrink below ∆k(x, y)/ log1+θ n. However, as this
bound depends on the global size of the set this still does not promise full preservation of the local structure.
To overcome this we give an improvement of this embedding using ideas from [2].

Following [2, 4] we obtain the following:

Theorem 3. Given a metric space (X, d), 1 ≤ p ≤ ∞, and θ > 0, there exists an embedding of X into `D
p

in dimension D = O(dim(X)/θ) and scaling distortion where the distortion for pairs x, y ∈ X and k̃ s.t.
d(x, y) ≤ ∆k̃(x) is O(log1+θ k̃/θ).

The proof of Theorem 3 will appear in the full version of the paper. We use the embedding in Theorem 3
for the component Υ as explained above. This provides stronger distortion bounds for distant pairs. More-
over, under very weak condition on the subset of points X we can assure that the local structure of the space
is maintained. Namely we say X satisfies a weak growth rate (a similar assumption appears in [2])condition
WGR(α, β) for some constants α > β ≥ 1 if for every x ∈ X and r > 0, |B(x, αr)| ≤ |B(x, r)|β . In fact,
this implies that the lower bound on the distortion guarantees by Theorem 3 is a monotonic function of the
distance from any particular point. The following is a corollary of Theorem 3:

Corollary 9. Given a metric space (X, d) satisfying WGR(α, β). For any 1 ≤ p ≤ ∞, and 0 < θ ≤
logβ(α/β), there exists an embedding f of X into `D

p in dimension D = O(dim(X)/θ) such that for any
x, y ∈ X and k̃ s.t. d(x, y) ≥ ∆k̃(x) then ‖f(x)− f(y)‖p ≥ ∆k̃(x) · Ω(α−1θ/ log1+θ k̃(x))).
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