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Abstract— Random networks of nonlinear functions have a
long history of empirical success in function fitting but few
theoretical guarantees. In this paper, using techniques from
probability on Banach Spaces, we analyze a specific architecture
of random nonlinearities, provide L∞ and L2 error bounds for
approximating functions in Reproducing Kernel Hilbert Spaces,
and discuss scenarios when these expansions are dense in the
continuous functions. We discuss connections between these
random nonlinear networks and popular machine learning al-
gorithms and show experimentally that these networks provide
competitive performance at far lower computational cost on
large-scale pattern recognition tasks.

I. INTRODUCTION

Conventional wisdom in the earliest days of artificial
intelligence held that randomly connected “associator units”
that computed random binary functions of their inputs were
sufficient for a great many pattern recognition tasks [1], but
these randomized networks have largely been superseded by
deterministic architectures trained by back propagation (such
as multi-layer neural networks), convex optimization (such
as Support Vector Machines) or by greedy algorithms (such
as Adaboost). Recently, largely motivated by the fact that
randomization is computationally cheaper than optimization,
architectures based on random nonlinearities have been re-
gaining popularity in the machine learning community for
large scale data analysis [2], [3], [4], [5]. There is ample
evidence that these randomized function fitting algorithms
are fast and accurate, but very few theoretical guarantees are
available.

In this paper, we analyze the ability of certain randomized
function classes to approximate other well-studied classes of
functions. Using tools from probability theory on Banach
spaces, we show that with high probability, a fixed target
function in a Reproducing Kernel Hilbert Space can be
approximated well in the L∞ and the L2 sense as a linear
combination of a few randomly chosen basis functions. For
the class of functions we consider, the approximation rate
turns out to be the same as that obtain by choosing the
basis optimally. This result implies that learning architectures
that fit data sets with a linear combination of randomly se-
lected basis functions can approximate a variety of canonical
learning algorithms that select the basis functions by costly
optimization procedures. We also provide empirical evidence
that randomizing instead of optimizing over the choice of the
bases dramatically decreases the computational effort needed

for practical learning tasks while still producing accurate
input-output mappings.

II. RELATED WORK

Seminal work by Barron and Jones provided a large class
of functions that could be approximated to high accuracy
with finite sums of K tunable basis functions:

f̂ (x) =
K

∑
k=1

ck φ(w′kx+bk) . (1)

Here, φ is a nonlinear function, and wk and bk are the
parameters and ck are the weights of f̂ . When φ is the
cosine function, Jones showed that functions with absolutely
integrable Fourier transforms could be approximated with L2
error below O(1/

√
K) using only K terms [6]. When φ is

sigmoidal, Barron showed that any function whose derivative
was an absolutely integrable in the Fourier domain could
also be approximated with L2 error below O(1/

√
K) using

only K terms [7]. Barron also investigated approximation by
sigmoids in the L∞ norm over a compact set [8], and this
result was tightened and generalized to other nonlinearities
by quantifying their VC dimension [9] or their Rademacher
complexity [10].

The proofs of these approximation results are typically
either existential—relying, for example, on random sam-
pling of the weights ck from an unknown distribution—or
are constructive and achieved via a greedy algorithm. The
constructive proofs are particularly interesting because they
imply specific algorithms for fitting functions to data sets
by simply setting the target function to be the empirical
distribution of the data. In fact, the greedy constructive
proofs of these results resemble popular greedy data fitting
algorithms such as Adaboost [11] and Matching Pursuit [12].
These constructive proofs build up f̂ stagewise by greedily
adding at each stage a term ck φ(w′kx + bk) to f̂ to reduce
the discrepancy between f̂ and the target function. In a
data fitting setting, when the dataset is large, computing wk
and bk at each stage involves a computationally expensive
optimization procedure. The approximation bounds presented
here are constructive yet probabilistic: the parameters wk and
bk are selected via a simple sampling procedure and the
weights ck are then the minimizers of a convex cost function.

A number of popular data fitting algorithms such as
the SVM and Kriging search over an infinite-dimensional



Reproducing Kernel Hilbert Space (RKHS) of functions [13],
[14]. These Hilbert spaces are making them particularly
attractive in data fitting algorithms because they are dense
in the space of square-integrable functions [15], but still
admit a finite representation that grows only linearly with the
number of data points to fit [16]. We show that weighted
sums of random functions are dense in an RKHS defined
by the choice of basis functions and sampling distribution.
When the number of data points is large, weighted sums of
random functions provide a more parsimonious functional
representation that is much faster to compute than fitting the
RKHS representation.

This work builds on two of our previous papers [4], [17]
by providing L∞ approximation error bounds, and additional
results about the denseness of random function spaces in
their corresponding RKHSs.

III. APPROXIMATION WITH RANDOM FEATURES

Let {φ(·;θ) : w ∈ Θ} be a family of functions on a
compact set X ⊂ Rd parameterized over the set Θ. For
example, we will consider φ(x;θ) = cos(w′x + b) with θ =
(w,b) and Θ = Rd × [−π,π]. We are interested in approx-
imating mixtures of the form f (x) =

∫
Θ

α(θ)φ(x;θ) dθ by
a finite sum of the form (1). For these mixtures, define a
norm ‖ f‖p := supθ

∣∣∣α(θ)
p(θ)

∣∣∣ where p is a fixed probability
distribution on Θ. We also define the set of mixture of φ

with finite ‖ · ‖p norm:

F (X ,Θ,φ , p)=
{

f (x)=
∫

Θ

α(θ)φ(x;θ)dθ

∣∣∣∣‖ f‖p<∞

}
.

To simplify the presentation, unless there is confusion, we
will denote F (X ,Θ,φ , p) by F . Furthermore, by linearity,
we may assume throughout that |φ(x;θ)| ≤ 1 for all x and
θ .

The following two theorems show that a given f ∈F can
be approximated to resolution O(‖ f‖p/

√
K) by a function

of the form

f̂ (x) =
K

∑
k=1

ckφ(x;θk) (2)

where θ1, . . . ,θK are sampled iid from p(θ).
The first theorem concerns the L2 approximation error

considered in [7], [6], [15] and applies to arbitrary basis
functions φ and distributions p.

Theorem 3.1: Let µ be any probability measure on X , and
define the norm ‖ f‖2

µ =
∫

X f 2(x) µ(dx). Suppose φ satisfies
supx,θ |φ(x;θ)| ≤ 1. Fix f ∈F . Then for any δ > 0, with
probability at least 1−δ over θ1, . . . ,θK drawn iid from p,
there exist c1, . . . ,cK so that the function

f̂ (x) =
K

∑
k=1

ckφ(x;θk) (3)

satisfies

‖ f̂ − f‖µ <
‖ f‖p√

K

(
1+
√

2log 1
δ

)
. (4)

In contrast to the approximation bounds reviewed in
Section II, which use the probabilistic method to show the

existence of θk’s that yield a good f̂ , the random sampling
employed here actually produces parameters θk which yield
a good f̂ with very high probability. When µ is the empirical
measure over some data set, this theorem gives a bound on
the distortion incurred by fitting the data with random basis
instead of a function in F . The proof appears in [17].

One can obtain much stronger approximation guarantees
if the nonlinear function φ is well-behaved. The uniform
pointwise error in the approximation of f by f̂ can be
bounded if φ is of the form φ(x;θ) = φ(θ ′x) with φ : R→R
Lipshitz.

Theorem 3.2: Let φ(x;θ) = φ(θ ′x), with φ : R→ R L-
Lipschitz, φ(0) = 0, and |φ | < 1. Suppose furthermore that
p has a finite second moment. Fix f ∈ F . Then for any
δ > 0, with probability at least 1−δ over θ1, . . . ,θK drawn
iid from p there exist c1, . . . ,cK so that the function

f̂ (x) =
K

∑
k=1

ckφ(θ ′kx) (5)

satisfies

‖ f̂ − f‖∞ <
‖ f‖p√

K

(√
log 1

δ
+4LB

√
Eθ ′θ

)
, (6)

where B = supx∈X ‖x‖2.
As above, f̂ converges to the target f as O(1/

√
K). The

rate depends on δ only logarithmically. It depends more
strongly on the norm of the target function and the variance
of the sampling distribution p. The proof, which appears in
the appendix, is similar to that of Theorem 3.1, and addition-
ally borrows the notion of the Rademacher complexity of φ

from estimation error bounds in statistical learning theory
[18]. Indeed, a similar statement to Theorem 3.2 can be
obtained for any function class φ(x;θ) with low Rademacher
Complexity.

IV. RELATIONSHIP TO REPRODUCING KERNEL HILBERT
SPACES

While the function class F is well approximated by a
random set of bases, it appears at first glance that this a
rather small set of functions. However this class of functions
is dense in a Reproducing Kernel Hilbert Spaces (RKHS)
defined by φ and p, implying that it is quite rich. RKHSs are
commonly used in machine learning to represent complicated
functions in a non-parametric way because they are dense in
the set of continuous functions. But algorithms for fitting
functions in an RKHS to data have superlinear complexity
in the number of data points. When the number of data
points is large, randomized nonlinear expansions provide
a compact and computationally efficient alternative to the
RKHS representations.

For a given function φ(x;θ) : X ×Θ→ R and probability
distribution p(θ) on Θ, we can define the corresponding
kernel k on X×X as

k(x,y) =
∫

Θ

p(w)φ(x;θ)φ(y;θ)dθ . (7)

This is clearly positive definite as for any x1, . . . ,xm ∈ X ,
the matrix K with entries Ki j = k(xi,x j) is an integral of



rank-one outer product matrices Zθ = [φ(xi;θ)φ(x j;θ)]. The
RKHS defined by the kernel k, denoted H , is the completion
of the set of all finite linear combinations of the form

f (x) = ∑
t

atk(x,xt), xt ∈ X , (8)

with the inner product that satisfies 〈k(·,xt),k(·,xs)〉 =
k(xt ,xs).

The following proposition introduces an alternative rep-
resentation of this Reproducing Kernel Hilbert Space using
standard definitions and results [19]:

Proposition 4.1: Let X , Θ, φ , p, and H be as above and
let the space Ĥ be the completion of the set of all functions
of the form f (x) =

∫
Θ

α(θ)φ(x;θ) dθ such that∫
θ

α(θ)2

p(θ)
dθ < ∞ , (9)

with the inner product

〈 f ,g〉=
∫

θ

α(θ)β (θ)
p(θ)

dθ , (10)

where g(x) =
∫

Θ
β (θ)φ(x;θ) dθ . Then Ĥ = H .

This result follows immediately from Theorem 2 in §III.3
of [20] which is attributed to Aronszajn: to every positive
definite kernel, k(x,y) there corresponds one and only one
Hilbert space with k(x,y) as a reproducing kernel. For
completeness, we provide a proof in the Appendix. Using
this proposition, we see that F is a subset of the RKHS
H : For any f ∈F , by Hölder’s inequality,∫

θ

α(θ)2

p(θ)
dθ =

∫
θ

α(θ)2

p(θ)2 p(θ)dθ ≤ ‖ f‖2
p , (11)

which, by the definition of F , is finite. In fact, F is a dense
subset of H :

Theorem 4.2: Let F and H be defined as above for
a given function φ(x;θ) and probability distribution p(θ).
Then F is dense in H .

This implies that whenever H is dense in the space
of continuous functions, F is also dense in the space of
continuous functions. To prove the theorem, observe that
functions of the form of (8) are dense in H . But these func-
tions can also be written in the form

∫
Θ

α(θ)φ(x;θ) dθ via
the identification α(θ) := p(θ)∑t atφ(xt ;θ). Since |α(θ)| ≤
p(θ)∑t |at |, and since at are finite, |α(θ)|/p(θ) is also finite,
implying that f is in F

The denseness of F in H implies that in a data fitting set-
ting, one has the luxury of choosing whether to fit a function
in H or in F . The Representer Theorem [16] guarantees
that for a large number of function fitting problems, the
optimal f ∈H takes the finite form f (x) = ∑

N
i=1 aik(x,xi)

where x1, . . . ,xN are the examples provided for the fit. If N
(the number of data points) is smaller than K (the number
of random basis functions needed for a desired quality-of-
fit) one can directly compute the kernel k corresponding to p
and φ via (7) and fit the N parameters ai. On the other hand,
when N is very large, optimizing over the ai is expensive,
and fitting the K parameters ci of a random expansion of the

form (2) is much faster. Moreover, even if the Representer
Theorem does not apply, such as when the optimization
problem involves derivatives of the function to be fit, sums
of random bases provide excellent approximations to the true
optimum.

V. EXAMPLES

This section provides several examples of random bases
and their corresponding sampling distributions. In each ex-
ample, we describe the RKHS that is being approximated by
F and examine the relation to existing supervised learning
techniques. The discussion is summarized in Figure 1.

a) Random Fourier Bases: Sinusoidal nonlinearities of
the form φ(x,θ) = cos(ω ′x + b) with θ = (w,b) and Θ =
Rd × [−π,π] are 1-Lipschitz and satisfy the assumptions
of Theorem 3.2. These features project their input onto a
randomly chosen line, and then pass the resulting scalar
through a sinusoid.

When b is drawn from a distribution on [−π,π] that is
symmetric about 0, the corresponding kernel according to
(7) is

k(x,y) =
∫ ∫ 2π

0
p(b)p(ω)cos(ω ′x+b)cos(ω ′y+b) dbdω

=
1
2

∫
p(ω)cos(ω ′(x− y)) dω. (12)

This kernel is shift invariant, meaning k(x,y) = k(x− y).
In fact, any shift invariant kernel can be represented using

random cosine features. Given a shift invariant kernel, the
corresponding φ and p can be recovered by simply letting
φ(x,θ) = cos(ω ′x + b), and setting p(w) to the inverse
Fourier transform of k, and p(b) to the uniform distribution
on [−π,π]. We explored this result, which is based on
Bochner’s theorem [21], in [4].

This observation is of practical importance because certain
RKHSs are known to work well in many data fitting appli-
cations. Approximating these RKHSs with a small number
of random features enables us to fit huge datasets cheaply,
by avoiding the machinery of kernel machines. For example,
to approximate the RKHS induced by the Gaussian kernel,
k(x,y) = exp(−γ‖x− y‖2

2), it suffices to sample w from the
inverse Fourier transform of k, which is just a Gaussian with
mean 0 and covariance 2γI.

b) Random Stumps: Decision stumps are sigmoidal
basis functions commonly used with the Adaboost algorithm.
They have the form φ(x;θ) = sgn(xi − t), with θ = (t, i),
where the threshold t is a real number in some interval
and i ∈ [1 . . .d] is some integer that indexes a component
of x ∈Rd . To alleviate the computational cost of the greedy
algorithm employed in Adaboost to fit θ , one can select i
and t randomly.

To identify the RKHS that corresponds to this sam-
pling distribution, consider first the one-dimensional example
where X is contained in the interval [a,b]. Suppose t is
selected uniformly at random from [a,b]. Then, for a≤ x <
y≤ b,

1
b−a

∫ b

a
sgn(x− t)sgn(y− t) dt = 1−2

y− x
b−a

, (13)



φ(x;θ) θ p(θ) k(x,y)
Fourier cos(ω ′x+b) (ω,b) ∈ Rd+1 b∼ unif[−π,π] exp(−γ‖x− y‖2)

p(ω)∼N (0,2γI)
Stump sgn(xk− t) t ∈ R, k ∈ {1, . . . ,d} k uniform 1− 1

a‖x− y‖1
t ∼ unif[−a,a]

Bins Indicator vector δ ∈ [0,∞)d , u ∈ [0,δ ] ∏
d
k=1 γ2δk exp(−γδk) exp(−γ‖x− y‖1)

of x in random grid

Fig. 1. Examples of Random Features, their sampling distributions, and their corresponding kernels.

so the induced kernel is k(x,y) = 1 − 2 |x−y|
b−a . In higher

dimensions, when t is sampled in the interval [−a,a] and the
components are selected uniformly at random, assuming that
X is contained in a hypercube [−a,a]d , the kernel becomes
k(x,y) = 1− 1

a‖x− y‖1.
c) Random Bins: Binning basis functions partition the

input space using an axis-aligned grid, and assign a binary
indicator to each partition. Such partitionings are known
to be universal approximators and are sometimes referred
to as axis-aligned “arrangements.” [22] Computing optimal
values for the parameters of these grids is difficult. Here we
summarize why randomly selecting the pitch and shift of the
grids results in arrangements that can approximate complex
target functions with little computational effort. For more
details, see [4].

Unlike the previous examples, this set of bases is vector-
valued, with φ(x;θ) mapping X to a bit string in {0,1}N .
We first describe φ for X ⊂ [−a,a] and then extend to the
multidimensional setting. For a given grid pitch δ , consider
the grid shift u ∈ [0,δ ] and a binning function φ(x,u) that
returns an bit vector that indicates x’s bin by mapping x ∈R
into a binary bit string {0,1}d2a/δe with the nth bit set if x
falls in the interval [u + nδ ,u +(n + 1)δ ] and 0 otherwise.
Thus φ ′(x,u)φ(y,u) is 1 if x and y fall in the same bin, and
zero otherwise. When the grid shift u is drawn uniformly at
random from the interval [0,δ ], the corresponding kernel can
be shown to be

khat(x,y;δ ) =
1
δ

∫
φ(x;u)′φ(y;u)du (14)

= max
(

0,1− |x− y|
δ

)
. (15)

Other one-dimensional kernels can be obtained as mix-
tures of this kernel. Draw the pitch δ from some distri-
bution p(δ ) and sample u uniformly from [0,δ ]. In this
case, the parameter set is θ = (δ ,u), with δ ∈ [0,∞), and
u ∈ [0,δ ], and the resulting kernel is given by k(x,y) =∫

∞

0 khat(x,y;δ )p(δ ) dδ . For example, when p(δ ) is the
Gamma distribution δ exp(−δ ), the resulting kernel is the
Laplacian kernel, kLaplacian(x,y) = exp(−|x−y|). The RKHS
associated with this kernel is also dense in the set of
continuous functions.

To represent multi-dimensional kernels of the form
∏

d
m=1 k(|xm− ym|), the binning process is applied over each

dimension of X ⊂Rd independently. The probability that the
mth components of x,y∈ X are binned together in dimension
m by the above process is k(|xm−ym|), where xm and ym are

the mth components of x and y respectively. Since the binning
process is independent across dimensions, the probability
that x and y are binned together in every dimension is
∏

d
m=1 k(|xm− ym|). In the case of the Laplacian kernel, the

resulting d-dimensional kernel is exp(−‖x− y‖1).
In this multivariate case, φ(x;θ) encodes the integer vector

[ x̂1,··· ,x̂d ] corresponding to each bin of the d-dimensional grid
as a binary indicator vector. In data fitting applications, the
total number of occupied bins is at most the number of data
points, so unused bins can be eliminated from the represen-
tation. With simple data structures, function expansions of
this sort can be computed and stored efficiently [4].

VI. NUMERICAL EXPERIMENTS

To show that the space F is rich enough for typical data
fitting problems, Table I summarizes the results of some
experiments. The table also provides wall clock times to
showcase the speed of randomized fitting. These experi-
ments compare the results of fitting data with functions
in F via least squares and of fitting data with the cor-
responding RKHS H using state-of-the-art algorithms for
kernel machines. The experiments were conducted on five
standard large-scale datasets from the UCI machine learning
repository [23]. The results in the literature pertaining to the
SVM solvers SVMlight and libSVM were replicated using
binaries provided by the respective authors. For the random
feature experiments, regressors and classifiers were trained
by solving the ridge regression problem minw ‖Φ′w− y‖2

2,
where y denotes the vector of desired outputs and Φ denotes
the matrix of random bases evaluated on the training data.
To evaluate the resulting function on a data point x, it suf-
fices to compute w′φ(x;θ). Despite its simplicity, regression
with random bases is faster than, and provides competitive
accuracy with, alternative methods. Random Fourier bases
perform better on the tasks that largely rely on interpolation.
On the other hand, Random Bins perform better on those
for which the standard SVM requires many support vectors,
because they explicitly preserve locality in the input space.
This difference is most dramatic in the Forest dataset.
Figure 2 shows that good performance can be obtained even
from a modest number of bases.

Figure 3 compares regression with Random Stumps
against Adaboost on the UCI adult dataset. Since is
much faster than Adaboost, we could afford to run Random
Stumps for larger K than Adaboost. These additional runs are
included in the plots. Adaboost expends considerable effort



Dataset Fourier+LS Binning+LS Exact SVM
CPU 3.6% 5.3% 11%
regression 20 secs 3 mins 31 secs
6500 instances 21 dims D = 300 P = 350 ASVM
Census 5% 7.5% 9%
regression 36 secs 19 mins 13 mins
18,000 instances 119 dims D = 500 P = 30 SVMTorch
Adult 14.9% 15.3% 15.1%
classification 9 secs 1.5 mins 7 mins
32,000 instances 123 dims D = 500 P = 30 SVMlight

Forest Cover 11.6% 2.2% 2.2%
classification 71 mins 25 mins 44 hrs
522,000 instances 54 dims D = 5000 P = 50 libSVM

TABLE I
Comparison of testing error and training time between ridge regression with random bases and various state-of-the-art exact kernel methods reported in
the literature. For classification tasks, the percent of testing points incorrectly predicted is reported, and for regression tasks, the RMS error normalized

by the norm of the ground truth.
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Fig. 2. On the Forest dataset, using random binning, error decays quickly as the number of random bases grows (left). Training time grows slowly as
the number of random bases grows (right).

in choosing its decision stumps and obtains low test error
using only a few of them.

Random Stumps achieve similar accuracy as Adaboost
in orders of magnitude less time. It requires many more
stumps than Adaboost because it chooses them randomly.
But because it is fast, the function can be learned much more
quickly with Random Stumps.

APPENDIX

a) Proof of Theorem 3.2: In what follows, for con-
venience, we use the notation ‖ f‖∞ and ‖ f (x)‖∞ inter-
changeably to denote supx∈X | f (x)|. Construct f̂ as defined
in Equation (5) with ck ≡ α(θk)

K p(θk)
and the random variable

v(θ1, . . . ,θK) = ‖ f̂ − f‖∞. (16)

We bound the deviation of v from its expectation using
McDiarmid’s inequality.

First, observe that v is stable under perturbation of any
one of its arguments. Indeed, for any θ1, . . . ,θK and θ̃k, by
the triangle inequality and the boundedness of φ , we have

|v(θ1, . . . ,θK)− v(θ1, . . . , θ̃k, . . . ,θK)| (17)

≤ 1
K

∥∥∥∥α(θk)
p(θk)

φ(θ ′kx)− α(θ̃k)
p(θ̃k)

φ(θ̃ ′kx)
∥∥∥∥

∞

≤
2‖ f‖p

K
. (18)

Call this quantity ∆.

Next, bound the expectation of v. The choice of c1, . . . ,cK
ensures that Eθ f̂ = f . By a standard argument [18],

Ev = Esup
x∈X
| f̂ (x)−E f̂ (x)| (19)

≤ 2
K Eθ ,ε sup

x∈X

∣∣∣∣∣ K

∑
k=1

εk ckφ(θ ′kx)

∣∣∣∣∣ , (20)

where ε1, . . . ,εK is a sequence of Rademacher random vari-
ables.

Since the function ckφ(·) is L‖ f‖p-Lipschitz in its scalar
argument and ckφ(0) = 0, by Theorem 4.12 of [24] (repli-
cated in Theorem 12(4) of [18]), Cauchy-Schwartz, and
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Fig. 3. Comparisons between Random Stumps and Adaboosted decision stumps on the adult dataset. The leftmost figure plots test error of each
classifier as a function of K. The accuracy of Random Stumps catches up to that of Adaboost as K grows. The second column plots the total training and
testing time as a function of K. The third column combines the previous two columns. It plots testing+training time required to achieve a desired error
rate. For a given error rate, Random Stumps are an order of magnitude faster than Adaboost.

Jensen’s inequality,

Ev≤ 2
K Esup

x∈X

∣∣∣∣∣ K

∑
k=1

εk ckφ(θ ′kx)

∣∣∣∣∣ (21)

≤ 4L‖ f‖p
K Esup

x∈X

∣∣∣∣∣ K

∑
k=1

εk θ
′
kx

∣∣∣∣∣ (22)

≤ 4L‖ f‖pB
K E

∥∥∥∥∥ K

∑
k=1

εk θk

∥∥∥∥∥
2

(23)

≤
4L‖ f‖pB√

K

√
E‖θ1‖2

2. (24)

Call this quantity µ .
Using McDiarmid’s concentration inequality, we now have

Pr [v≥ µ + ε]≤ Pr [v≥ Ev+ ε]≤ exp
(
− 2ε2

K∆2

)
. (25)

Setting the right hand side to δ and solving for ε yields the
theorem.

b) Proof of Proposition 4.1: By Theorem 2 in §III.3
of [20], the proposition follows if we can show the following
three facts

1) k(x, ·) ∈ Ĥ for all x ∈ X .
2) For all f ∈ Ĥ, x ∈ X , f (x) = 〈 f ,k(x, ·)〉
3) The span of k(x, ·) is dense in Ĥ

Since k(x,y) =
∫

Θ
(p(θ)φ(x;θ))φ(y;θ) dθ ,

‖k(x, ·)‖2
k =

∫
Θ

p(θ)φ(x;θ)2 dθ ≤ 1

so k(x, ·)∈ Ĥ . To prove 2, let f (x) =
∫

Θ
α(θ)φ(x;θ) dθ and

observe

〈 f ,k(x, ·)〉=
∫

Θ

α(θ)(p(θ)φ(x;θ))
p(θ)

dθ

=
∫

Θ

α(θ)φ(x;θ)dθ = f (x) .

The proof of 3 is now immediate: if k(x, ·) is not dense in
Ĥ , there exists a g ∈ Ĥ which is orthogonal to k(x, ·) for
all x ∈ X . But, by 2, this means g = 0, completing the proof.
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