
1

1

Search

Burr H. Settles

CS-540, UW-Madison

www.cs.wisc.edu/~cs540-1

Summer 2003

2

Announcements

� Homework #1 is out today (6/18) and will
be due next Friday (6/27)

� Please hand in Homework #0 (the info
card/sheet about you) as soon as you can

�
Read Chapter 4 in AI: A Modern Approach
for next time

3

Clarifications from Last Time

� We talked about the features of agents
(situatedness, autonomy, etc.) and of environments
(discrete/continuous, deterministic/stochastic, etc.)

� These are formalisms that we use to help in
modeling a problem:
– We as the programmers get to draw these lines!
– Can be sometimes arbitrary
– Generally used at a single level of abstraction

4

Recap of Last Time

� The different types of agent programs:
– Lookup table

– Simple reflex agent

– Model-based reflex agent

– Goal-based agent

– Utility-based agent
Let’s talk
about these}

5

Goal-Based Agents

� We are interested in how we can design
goal-based agents to solve problems

� There are three major questions to consider:
– What goal does the agent need to achieve?

– What knowledgedoes the agent need?

– What actionsdoes the agent need to do?

6

Goal-Based Agents

�
What goal does the agent need to achieve?

� How do you describe the goal?
– A situation to be reached

– The answer to a question

– A set of properties to be acquired
� How do you know when the goal is reached?

– With a goal test that defines what it means
to have achieved/satisfied the goal

2

7

Goal-Based Agents

�
What knowledge does the agent need?

� The information needs to be:
– Sufficient to describe everything relevant to

reaching the goal
– Adequate to describe the world state/situation

� We’ ll use a closed world assumption:
– All necessary information about a problem domain is

observable in each percept so that each state is a
complete description of the world

• i.e. There is never any hidden information

8

Goal-Based Agents

�
What actions does the agent need to do?

� Given:
– An set of available actions
– A description of the current state of the world

� Determine:
– Which actions can be applied (those applicable/legal?)
– What the exact state of the world will be (or likely be)

after an action is performed in the current state
• No history information needed to compute the new world state

– What is the action is likely to lead me to my goal?

9

Motivation

� We want to design a goal-based agent to
solve a puzzle called the water jug problem

� What better motivation is there than to keep
from being blown up!?!?!

10

Case Study: Die Hard III

� Imagine you are given two containers:
a 3-gallon water jug, and a 4-gallon jug

� Initially both jugs are empty
� You have 3 actionsavailable to you:

– Fill a jug completely
– Dump a jug completely
– Pour as much water as possible from one of the jugs

into the other
� You must end up with a jug having exactly

2 gallonsof water in order to disarm the bomb!!

11

How Can a Machine Do This?

� We want our agent to search for a sequence
of actions that lead to a solution

� To do this we formalize the problem as a
search task, considering our three questions:
– What goal does the agent need to achieve?
– What knowledge does the agent need?
– What actions does the agent need to do?

12

Formalizing a Search

� State: specific description of the world
– Combination of jug volumes

� State space: set of all possible states in our
problem environment
– 4 × 5 = 20 water jug states

� Search node: data structure where the state
information is stored for the search

� Search tree: directed graph G = (V,E)
– V is a set of nodes (states)
– E is a set of edges (actions turning one state to another)

3

13

Formalizing a Search

� Initial state: designated start state
– 2 empty jugs

� Successor states: collection of states generated by
applying actions to a particular state

� Goal state: state which satisfies to the object of
our search task
– One jug with 2 gallons

� Goal test: way of deciding a goal state

14

Formalizing a Search

� Open list: list of states which are waiting to
be considered in the search

� Closed list: list of states which have already
been considered in the search

� Solution: path from the initial state to a goal

15

Water Jug Search Setup

� State: ordered pair “AB”
– A is the 3 gallon jug; B is the 4 gallon jug

� State space: our 14 possible states
� Edges: generated by our six possible actions:

– fill(A), dump(A), pour(A,B)
– fill(B), dump(B), pour(B,A)

� Initial state: the state “00”
� Goal state: any state “n2” or “2n”

– Where n can be any number

16

Water Jug Search Algorithm
OPEN = { 00 } / / st at es we' r e consi der i ng

CLOSED = { } / / st at es we' ve al r eady seen

whi l e OPEN i s not empt y {

X = st at e r emoved f r om OPEN

i f X i s (n2) or (2n) t hen

r et ur n sol ut i on

el se {

add X t o CLOSED

gener at e successor st at es vi a act i ons on X

i gnor e successor s al r eady i n OPEN or CLOSED

add successor s t o OPEN

}

}

r et ur n FAI LURE / / no sol ut i on f ound

17

Water Jug Search Tree
00 04

3430

fill(A)

fill(B)

fill(B) ClosedOpenState

--00--

Goal!!24

00, 30, 04, 03, 34, 31, 33, 0124, 1001

00, 30, 04, 03, 34, 31, 3301, 2433

00, 30, 04, 03, 34, 3133, 0131

00, 30, 04, 03, 3431, 3334

00, 30, 04, 0334, 31, 3303

00, 30, 0403, 34, 3104

00, 3004, 03, 3430

0030, 0400

31
pour(B,A)

03

pour(A,B)

33

fill(A)

24

pour(B,A)

01

dump(A)

10

pour(B,A)

18

The Open List

� In this example, we used a FIFO scheme (or a
queue) to track states in our open list. This is
called a breadth-first search (BFS)

� There are several other ways to manage states in
the open list… we call each method a different
search strategy

� If we use a LIFO scheme (a stack), we perform
what is called depth-first search (DFS)

4

19

Water Jug Search with DFS
00 04

3430

fill(A)

fill(B) ClosedOpenState

--00--

Goal!!32

00, 04, 31, 01, 10, 1432, 34, 3014

00, 04, 31, 01, 1014, 34, 3010

00, 04, 31, 0110, 34, 3001

00, 04, 3101, 34, 3031

00, 0431, 34, 3004

0004, 3000

31
pour(B,A)

01

dump(A)

10

pour(B,A)

14

fill(B)

32

pour(B,A)

fill(A)

20

Water Jug Search Comparison
00 04

3430

fill(A)

fill(B)
31

pour(B,A)

01

dump(A)

10

pour(B,A)

14

fill(B)

32

pour(B,A)

fill(A)

00 04

3430

fill(A)

fill(B)

fill(B)
31

pour(B,A)

03

pour(A,B)

33

fill(A)

24

pour(B,A)

01

dump(A)

10

pour(B,A)

Breadth-First
Search

Solution

Depth-First
Search

Solution

21

A Note on Finding Solutions

� In this problem, our solution is a sequenceof
actions, or path from the initial state to a goal state

� Search nodes are irresponsible, because they don’ t
keep track of their children!
– In practice, we make each node remember its parent

instead, then backtrack from the goal to the initial state

22

Responsible Children
00 04

3430

fill(A)

fill(B)
31

pour(B,A)

01

dump(A)

10

pour(B,A)

14

fill(B)

32

pour(B,A)

fill(A)

00 04

3430

fill(A)

fill(B)

fill(B)
31

pour(B,A)

03

pour(A,B)

33

fill(A)

24

pour(B,A)

01

dump(A)

10

pour(B,A)

Breadth-First
Search

Solution

Depth-First
Search

Solution

23

Utility-Based Agents

� Recall that utility-based agentsare goal-
based agents that can determine which
solutions are best

� What solution is best in the water jug
problem example?

� What if actions have costs?

24

Searching with Costs

� For the water jug problem, the costs to fill, dump,
or pour a jug are all the same

� Uniform-cost search (UCS) is a strategy we use if
there are costs associated with actions (edges), and
we want the least expensive solution to a goal

� We use a priority queue for the open list, where
states are ranked by the total cost of the path from
the initial state

5

25

Example with Costs

Madison

Denver

St. Louis

El Paso
Houston

Nashville

Kansas
City

$15
$48

$27

$48

$16

$18

$36
$48

$21
$12

Suppose we want to travel
by train to the Armadillo
Convention in El Paso, and
we want to find the least
expensiveseries of tickets
from Madison

Cities are our states, and
tickets are actions. Let’s try
comparing BFS, DFS, and
UCS strategies…

Baton
Rouge$14

Phoenix
$42

26

BFS Solution

MDSNPKHBEH

MDSNPKHBEK

Goal!!E

MDSNPKHBEB

MDSNPKHBEP

MDSNPKHBN

MDSNPKHS

MDSNPD

MDSNM

--M--

ClosedOpenState

Madison

Denver

St. Louis

El Paso

Phoenix

Kansas
City

$15
$48

$27

$48

$18

$36
$48

$21
$12

Total Cost: $96
Houston

Nashville

$16

Baton
Rouge$14

$42

27

DFS Solution

MNBHSDB

Goal!!E

MDBHESDH

MNBSDN

MNSDM

--M--

ClosedOpenState

Total Cost: $90

Madison

Denver

St. Louis

El Paso

Kansas
City

$15
$48

$27

$48

$18

$36
$48

$21
$12 Houston

Nashville

$16

Baton
Rouge$14

Phoenix
$42

28

UCS Solution

Goal!!E

MSKDNHE:63, B:64, P:75H

MSKDNH:51, B:64, P:75N

MSKDN:48, H:51, P:75D

MSKD:48, N:48, H:51, P:75K

MSK:33, D:48, N:48, H:51S

MS:15, D:48, N:48M

--M:0--

ClosedOpenState

Madison

Denver

St. Louis

El Paso

Kansas
City

$15
$48

$27

$48

$18

$36
$48

$21
$12

Total Cost: $63
Houston

Nashville

$16

Baton
Rouge$14

Phoenix
$42

29

Other Search Strategies

� Depth-limited search (DLS)
– If memory space is a major concern, one can

conduct a simple DFS with a fixed depth limit l

� Iterative deepening search (IDS)
– Conduct a depth-limited search at increasing

depth limits until a solution is found

30

Other Search Strategies

� Bi-directional search (BDS)
– If we want to find a particular goal node, we can search

from both ends of the search space

– Conducts a BFS from both the start and goal states until
they meet somewhere in the middle

6

31

Evaluating Search Strategies

� Completeness
If a solution exists, will it be found?
– A complete algorithm will find a solution

� Optimality
If a solution is found, is it guaranteed to be the
best one? (remember utility-based agents)
– An optimal algorithm will find a solution with the

minimum cost

32

Evaluating Search Strategies

� Time Complexity
How long does it take to find a solution?
– Measured for worst or average case
– Measured in number of states expanded/tested

(i.e. the size of the closed list)

� Space Complexity
How much space is used by the algorithm?
– Measured in terms of the states generated

(i.e. the size of the open + closed lists)

33

Evaluating Search Strategies

O(bm)

O(bm)

No

No

Depth-
first

O(bd/2)O(bd)O(bl)O(bd)O(bd)Space
Complexity

O(bd/2)O(bd)O(bl)O(bd)O(bd)Time
Complexity

Yes
(if all costs
are equal)

Yes
(if all costs
are equal)

NoYesYes
(if all costs
are equal)

Optimal?

YesYesNoYesYesComplete?

Bi-direc-
tional

Iterative
deepening

Depth-
limited

Uniform-
cost

Breadth-
first

Strategy

b is the branching factor of the problem, d is the depth of the shallowest solution, m is the
maximum depth of the search tree, and l is the depth limit

34

Uninformed Search

� All the strategies discussed so far are called
uninformed search strategies because there is no
information provided other than the problem
definition

� Next we’ ll discuss informed or heuristic search
strategies that try to speed things up by using
domain knowledge to guide the search

