Informed Search
| N

Burr H. Settles

CS-540, UW-Madison
WWW.Cs.wisc.edu/~cs540-1
Summer 2003

Announcements

m If you are not enrolled in the class, and still
would like to be, come see me later

— There's space for up to 35 studentsin the class

— That means 6 more seats, from the waiting list

m Don’'t be scared by Homework #1

Last Time

m Several of you were confused about why we only find 12
of the 20 possible states in yesterday’ s water jug problem:

Depth-First
Search wu@A)
Solution

Solution

Last Time

m Someone asked about why we might want to choose the
BFS strategy over IDS

— They are both complete, optimal, and complexities of O(b?) for
time, but IDS has O(bd) for space

— Itturnsout, IDS has O(2xbd) time complexity

— Recall that in “big-O”" notation, we ignore linear factors, so in the
limit IDSis O(2xb%) - O(b%)

m Someone el se asked why DFS has O(bm) space
complexity, when it could expand more than bxm states
— Thisisan average case
— Also hasto do with open/closed list management

Last Time

m Yet someone el se asked what search algorithms have to do
with Al... my answer: Al isall searcht!!

m Even someone else pointed out that UCS appears to be
Dijkstra’s Algorithm, a famous example of dynamic
programming (DP)... and it is!!

— DPisafamily of algorithmsthat are guaranteed to find optimal
solutions for problems

— They work by breaking the problem up into sub-problems and
solving the simplest sub-problems first

— Other examples of DP are the Viterbi Algorithm, which isused in
speech recognition software, and the CYK Algorithm, for finding
the most probable “parse tree” for natural language sentences

5

Last Time

m Wetalked about building goal-based agents and
utility-based agents using search strategies

m But the strategies we discussed were uninformed
because the agent is given nothing more than the
problem definition

m Today we'll present informed search strategies

Searching in Large Problems

m The search space of aproblem is generaly
described in terms of the number of possible
states in the search:

Water Jug 12 states
Tic-Tac-Toe 3P states
Rubik’s Cube 109 dates
100-variable SAT 10 dtates
Chess 1010 dtates

Heuristic Searching

m We define a heuristic function h(n):
— Iscomputed from the state at node n
— Uses domain-specific information in some way

m Heurigtics can estimate the “goodness’ of a
particular node (or state) n:
— How closeisnto agoal node?

— What might be the minimal cost path from n to
agoa node?

@ Searching in Large Problems

m Some problems’ search spaces are too largeto
search efficiently using uninformed methods

. m Sometimes we have additional domain knowledge
about the problem that we can use to inform the
agent that’ s searching

m Todo this, we use heuristics (informed guesses)
— Heuristic means “serving to aid discovery”

= Heuristic Searching

Wewill formalize a heuristic h(n) asfollows:

h(n)>0 forall nodesn

Best-First Search

m Best-first search is ageneric informed
search strategy that uses an evaluation
function f(n), incorporating some kind of
domain knowledge

m f(n) is used to sort states in the open list
using apriority queue (like UCS)

11

|
h(n)=0 impliesthat nisagoa node
h(n) = impliesthat nisa“dead end” from
which agoal cannot be reached
| -

= Greedy Search

m Greedy search isthe best-first search strategy,
with a simple evaluation function of f(n) = h(n)

- m |t reliesonly on the heuristic to sdect what is
currently believed to be closest to the goal state

m Last time someone asked if UCSwasthe same as
Greedy search... arethey?

= Greedy Search Example

f(n) = h(n)
of statestested: 3, expanded: 2
State Open Closed
- s8 =
. S C:3,B4,A8 S
C G:0,B:4,A:8 SC
G Goal!!
Path: S-C-G
Cost: 13

= Greedy Search Issues

Glisthe 4 1 G2isthe
solution optimal
found with solution

greedy
search

E and F will never
be expanded since
h=w

15

m Greedy Search Issues

m Greedy Search is generally faster than the
uninformed methods
— It has more knowledge about the problem domain!

. m Resembles DFS in that it tends to follow a path
that isinitially good, and thus:
— Not complete (could chase an infinite path or get caught
in cyclesif no open/closed lists)

— Not optimal (a better solution could exist through an
expensive node)

= Algorithm A Search Issues

m A Search isan informed strategy that incorporates
both thereal costs and the heuristic functionsto
find better solutions

m However, if our heuristic makes certain errors
(e.g. estimating o a ong the path to a goal):
— Sill not complete
— Sill not optimal

17

= Algorithm A Search

m To try and solve the problems of greedy search,
we can conduct an A search by defining our
evaluation function f(n) = g(n) + h(n)

L m g(n) isthe minimal cost path from theinitial node

to the current node

m This adds a UCS-like component to the search:
— g(n) isthe cost to reach n
— h(n) isthe estimated cost from n to a goal

= Admissible Heuristics

m Heurigtic functions are good for helping usfind
good solutions quickly

- m But it's hard to design accurate heuristics!

— They can be expensive to compute
— They can make errors estimating the costs

m These problems keep informed searches like the
A search from being complete and optimal

= Admissible Heuristics

m Thereishope! We can add a constraint on our
heuristic function that, for all nodes nin the search
space, h(n) <h*(n)

— Where h*(n) is the true minimal cost from n to a goal

|
m When h(n) < h*(n), we say that h(n) is admissible
* Admissible heuristics are inherently optimistic,
(i.e. they never overestimate the cost to a goal)
19
I

= A* Search Example

f(n) = g(n) + h(n)

of statestested: 4, expanded: 3

State | Open Closed
- s8
S A:9,B:9, C:11
- A B:9, G:10, C:11, Do, Ei0 | SA
B G:9, C:11, D:oo, Eic0 SAB
G Goal!!
Path: S-B-G
Cost: 9
21
| -

= A* Search

m When we conduct an A search using an
admissible heuristic, it iscaled A* search

I = A* searchis complete if

— The branching factor isfinite
— Every action has afixed cost

m A* search isoptimal

w Proof of A* Optimality

m g(G2) > f*
by definition, G2 is sub-optimal
m f(n) < f*
by admissibility: since f(n) never overestimatesthe
- cost to the goal it must be < the cost of the optimal
path
m f(G2) < f(n)
G2 must be chosen over n, by our assumption
m f(G2) < f*
by transitivity of the < operator

23

w Proof of A* Optimality

m Let:
— G1 be the optimal goal
— G2 be some other goal

- — f* bethe cost of the optimal path (to G1)

— n be some node in the optimal path, but not to G2
m Assumethat G2 isfound using A* search
wheref(n) = g(n) + h(n), and h(n) is admissible
— i.e. A* finds a sub-optimal path, which is shouldn’t

= Proof of A* Optimality

n f(G2) < * (from previous slide)
m g(G2) + h(G2) < f*
by substituting the definition of f(n)

m " IC)=r

since G2 isagoa node, h(G2) =0

m This contradicts the assumption that G2 is sub-
optimal (g(G2) > f*), thus A* isoptimal interms
of path cost

* A* never finds a sub-optimal goal

Devising Heuristics

m Often done by relaxing the problem
B See Al: A Modern Approach for more details

m Thegoal of admissible heuristicsisto get as close
as possible to the actua cost without going over

m Trade-off:
— A really good h(n) might be expensive to compute
— Could we find the solution faster with a simpler one?

25

Devising Heuristics

m If h(n) = h*(n) for all n:
— Only nodes on optimal solution are searched
— No unnecessary work
— We know the actual cost from n to goal
m If h(n) = Ofor dl n:
— Heuristic is still admissible
— A* isidentical to UCS
m Thecloser histo h*, the fewer nodes will need to
be expanded; the more accurate the search will be

26

Devising Heuristics

m If h1(n) <h2(n) <h*(n)
for each non-goal node n:
— We say h2 dominates hl
—h2iscloser to actual cost, but is still admissible
—A* using hl (i.e. Al1*) expands at least as
many, if not not more nodes than A2*
— A2* issaid to be better informed than A1*

27

Devising Heuristics

Let’srevisit our Madison- Madison
to-El-Paso example from
yesterday, but instead of
optimizing dollar cost,
we're trying to reduce
travel distance

What's a good heuristic to
use for this problem?

Isit admissible?

Optimal Searching

m Optimality isn't always required (i.e. you
want some solution, not the best solution)
— h(n) need not be admissible (necessarily)
— Greedy search will often suffice
— Thisisall problem-dependent, of course

m Can result in fewer nodes being expanded,
and a solution can be found faster

29

Partial Searching

m So far we' ve discussed algorithms that try to find
apath from theinitial stateto agoal state

m These arecalled partial search strategies because
they build up partial solutions, which could
enumerate the entire search space to find solutions

— Thisis OK for small “toy world” problems

— Thisisnot OK for NP-Complete problems or those
with exponential search spaces

Next Time

m We will discuss complete search strategies,
in which each state/node represents a
complete, possible solution to the problem

m We will also discuss optimization search,
where we try to find such complete
solutions that are optimal (the best)

31

