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Announcements

� If you are not enrolled in the class, and still 
would like to be, come see me later
– There’s space for up to 35 students in the class

– That means 6 more seats, from the waiting list

� Don’t be scared by Homework #1
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Last Time

� Several of you were confused about why we only find 12 
of the 20 possible states in yesterday’s water jug problem:
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Last Time

� Someone asked about why we might want to choose the 
BFS strategy over IDS
– They are both complete, optimal, and complexities of O(bd) for 

time, but IDS has O(bd) for space
– It turns out, IDS has O(2×bd) time complexity
– Recall that in “big-O” notation, we ignore linear factors, so in the 

limit IDS is O(2×bd) → O(bd)

� Someone else asked why DFS has O(bm) space 
complexity, when it could expand more than b×m states
– This is an average case
– Also has to do with open/closed list management
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Last Time

� Yet someone else asked what search algorithms have to do 
with AI… my answer: AI is all search!!

� Even someone else pointed out that UCS appears to be 
Dijkstra’s Algorithm, a famous example of dynamic 
programming (DP)… and it is!!
– DP is a family of algorithms that are guaranteed to find optimal

solutions for problems
– They work by breaking the problem up into sub-problems and 

solving the simplest sub-problems first
– Other examples of DP are the Viterbi Algorithm, which is used in 

speech recognition software, and the CYK Algorithm, for finding 
the most probable “parse tree”  for natural language sentences
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Last Time

� We talked about building goal-based agents and 
utility-based agents using search strategies

� But the strategies we discussed were uninformed
because the agent is given nothing more than the 
problem definition

� Today we’ ll present informed search strategies
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Searching in Large Problems

� The search spaceof a problem is generally 
described in terms of the number of possible
states in the search:

Water Jug 12 states
Tic-Tac-Toe 39 states
Rubik’s Cube 1019 states
100-variable SAT 1030 states
Chess 10120 states
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Searching in Large Problems

� Some problems’  search spaces are too large to 
search efficiently using uninformed methods

� Sometimes we have additional domain knowledge
about the problem that we can use to inform the 
agent that’s searching

� To do this, we use heuristics (informed guesses)
– Heuristic means “serving to aid discovery”
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Heuristic Searching

� We define a heuristic function h(n):
– Is computed from the state at node n

– Uses domain-specific information in some way

� Heuristics can estimate the “goodness”  of a 
particular node (or state) n:
– How close is n to a goal node?

– What might be the minimal cost path from n to
a goal node?

10

Heuristic Searching

We will formalize a heuristic h(n) as follows:

h(n) � 0 for all nodes n

h(n) = 0 implies that n is a goal node

h(n) = �  implies that n is a “dead end” from
which a goal cannot be reached
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Best-First Search

� Best-first search is a generic informed 
search strategy that uses an evaluation 
function f(n), incorporating some kind of 
domain knowledge

� f(n) is used to sort states in the open list 
using a priority queue (like UCS)
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Greedy Search

� Greedy search is the best-first search strategy, 
with a simple evaluation function of f(n) = h(n)

� It relies only on the heuristic to select what is 
currently believed to be closest to the goal state

� Last time someone asked if UCS was the same as 
Greedy search… are they?
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Greedy Search Example

# of states tested: 3, expanded: 2

f(n) = h(n)

Path: S-C-G
Cost: 13
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Greedy Search Issues

� Greedy Search is generally faster than the 
uninformed methods
– It has more knowledge about the problem domain!

� Resembles DFS in that it tends to follow a path 
that is initially good, and thus:
– Not complete (could chase an infinite path or get caught 

in cycles if no open/closed lists)
– Not optimal (a better solution could exist through an 

expensive node)
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Greedy Search Issues
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Algorithm A Search

� To try and solve the problems of greedy search, 
we can conduct an A search by defining our 
evaluation function f(n) = g(n) + h(n)

� g(n) is the minimal cost path from the initial node 
to the current node

� This adds a UCS-like component to the search:
– g(n) is the cost to reach n
– h(n) is the estimated cost from n to a goal
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Algorithm A Search Issues

� A Search is an informed strategy that incorporates 
both the real costsand the heuristic functions to 
find better solutions

� However, if our heuristic makes certain errors 
(e.g. estimating � along the path to a goal):
– Still not complete

– Still not optimal
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Admissible Heuristics

� Heuristic functions are good for helping us find 
good solutions quickly

� But it’s hard to design accurate heuristics!
– They can be expensive to compute
– They can make errors estimating the costs

� These problems keep informed searches like the 
A search from being complete and optimal
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Admissible Heuristics

� There is hope! We can add a constraint on our 
heuristic function that, for all nodes n in the search 
space, h(n) � h*(n)
– Where h*(n) is the true minimal cost from n to a goal

� When h(n) � h*(n), we say that h(n) is admissible

� Admissible heuristics are inherently optimistic, 
(i.e. they never overestimate the cost to a goal)
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A* Search

� When we conduct an A search using an 
admissible heuristic, it is called A* search

� A* search is complete if
– The branching factor is finite
– Every action has a fixed cost

� A* search is optimal
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A* Search Example

# of states tested: 4, expanded: 3
f(n) = g(n) + h(n)

Path: S-B-G
Cost: 9
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Proof of A* Optimality

� Let:
– G1 be the optimal goal

– G2 be some other goal

– f* be the cost of the optimal path (to G1)

– n be some node in the optimal path, but not to G2

� Assume that G2 is found using A* search
where f(n) = g(n) + h(n), and h(n) is admissible
– i.e. A* finds a sub-optimal path, which is shouldn’ t 
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Proof of A* Optimality

� g(G2) > f*
by definition, G2 is sub-optimal

� f(n) � f*
by admissibility: since f(n) never overestimates the 
cost to the goal it must be � the cost of the optimal 
path

� f(G2) � f(n) 
G2 must be chosen over n, by our assumption

� f(G2) � f*
by transitivity of the � operator
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Proof of A* Optimality

� f(G2) � f* (from previous slide)

� g(G2) + h(G2) � f*
by substituting the definition of f(n)

� g(G2) � f*
since G2 is a goal node, h(G2) = 0

� This contradicts the assumption that G2 is sub-
optimal (g(G2) > f* ), thus A* is optimal in terms 
of path cost

� A* never finds a sub-optimal goal
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Devising Heuristics

� Often done by relaxing the problem
� See AI: A Modern Approach for more details

� The goal of admissibleheuristics is to get as close 
as possible to the actual cost without going over

� Trade-off: 
– A really good h(n) might be expensive to compute
– Could we find the solution faster with a simpler one?
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Devising Heuristics

� If h(n) = h* (n) for all n:
– Only nodes on optimal solution are searched
– No unnecessary work
– We know the actual cost from n to goal

� If h(n) = 0 for all n:
– Heuristic is still admissible
– A* is identical to UCS

� The closer h is to h* , the fewer nodes will need to 
be expanded; the more accurate the search will be
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Devising Heuristics

� If h1(n) � h2(n) � h*(n)
for each non-goal node n:
– We say h2 dominatesh1

– h2 is closer to actual cost, but is still admissible

– A* using h1 (i.e. A1*) expands at least as 
many, if not not more nodes than A2*

– A2* is said to be better informed than A1*

28

Devising Heuristics

Madison
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Let’s revisit our Madison-
to-El-Paso example from 
yesterday, but instead of 
optimizing dollar cost, 
we’re trying to reduce 
travel distance

What’s a good heuristic to 
use for this problem?

Is it admissible?

Baton
Rouge270

Phoenix
1,420
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Optimal Searching

� Optimality isn’ t always required (i.e. you 
want some solution, not the best solution)
– h(n) need not be admissible (necessarily)
– Greedy search will often suffice
– This is all problem-dependent, of course

� Can result in fewer nodes being expanded, 
and a solution can be found faster
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Partial Searching

� So far we’ve discussed algorithms that try to find 
a path from the initial state to a goal state

� These are called partial search strategies because 
they build up partial solutions, which could 
enumerate the entire search space to find solutions
– This is OK for small “ toy world”  problems

– This is not OK for NP-Complete problems or those 
with exponential search spaces
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Next Time

� We will discuss complete search strategies, 
in which each state/node represents a 
complete, possible solution to the problem

� We will also discuss optimization search, 
where we try to find such complete 
solutions that are optimal (the best)


