
1

1

Informed Search

Burr H. Settles

CS-540, UW-Madison

www.cs.wisc.edu/~cs540-1

Summer 2003

2

Announcements

� If you are not enrolled in the class, and still
would like to be, come see me later
– There’s space for up to 35 students in the class

– That means 6 more seats, from the waiting list

� Don’t be scared by Homework #1

3

Last Time

� Several of you were confused about why we only find 12
of the 20 possible states in yesterday’s water jug problem:

00 04

3430

fill(A)

fill(B)
31

pour(B,A)

01

dump(A)

10

pour(B,A)

14

fill(B)

32

pour(B,A)

fill(A)

00 04

3430

fill(A)

fill(B)

fill(B)
31

pour(B,A)

03

pour(A,B)

33

fill(A)

24

pour(B,A)

01

dump(A)

10

pour(B,A)

Breadth-First
Search

Solution

Depth-First
Search

Solution
4

Last Time

� Someone asked about why we might want to choose the
BFS strategy over IDS
– They are both complete, optimal, and complexities of O(bd) for

time, but IDS has O(bd) for space
– It turns out, IDS has O(2×bd) time complexity
– Recall that in “big-O” notation, we ignore linear factors, so in the

limit IDS is O(2×bd) → O(bd)

� Someone else asked why DFS has O(bm) space
complexity, when it could expand more than b×m states
– This is an average case
– Also has to do with open/closed list management

5

Last Time

� Yet someone else asked what search algorithms have to do
with AI… my answer: AI is all search!!

� Even someone else pointed out that UCS appears to be
Dijkstra’s Algorithm, a famous example of dynamic
programming (DP)… and it is!!
– DP is a family of algorithms that are guaranteed to find optimal

solutions for problems
– They work by breaking the problem up into sub-problems and

solving the simplest sub-problems first
– Other examples of DP are the Viterbi Algorithm, which is used in

speech recognition software, and the CYK Algorithm, for finding
the most probable “parse tree” for natural language sentences

6

Last Time

� We talked about building goal-based agents and
utility-based agents using search strategies

� But the strategies we discussed were uninformed
because the agent is given nothing more than the
problem definition

� Today we’ ll present informed search strategies

2

7

Searching in Large Problems

� The search spaceof a problem is generally
described in terms of the number of possible
states in the search:

Water Jug 12 states
Tic-Tac-Toe 39 states
Rubik’s Cube 1019 states
100-variable SAT 1030 states
Chess 10120 states

8

Searching in Large Problems

� Some problems’ search spaces are too large to
search efficiently using uninformed methods

� Sometimes we have additional domain knowledge
about the problem that we can use to inform the
agent that’s searching

� To do this, we use heuristics (informed guesses)
– Heuristic means “serving to aid discovery”

9

Heuristic Searching

� We define a heuristic function h(n):
– Is computed from the state at node n

– Uses domain-specific information in some way

� Heuristics can estimate the “goodness” of a
particular node (or state) n:
– How close is n to a goal node?

– What might be the minimal cost path from n to
a goal node?

10

Heuristic Searching

We will formalize a heuristic h(n) as follows:

h(n) � 0 for all nodes n

h(n) = 0 implies that n is a goal node

h(n) = � implies that n is a “dead end” from
which a goal cannot be reached

11

Best-First Search

� Best-first search is a generic informed
search strategy that uses an evaluation
function f(n), incorporating some kind of
domain knowledge

� f(n) is used to sort states in the open list
using a priority queue (like UCS)

12

Greedy Search

� Greedy search is the best-first search strategy,
with a simple evaluation function of f(n) = h(n)

� It relies only on the heuristic to select what is
currently believed to be closest to the goal state

� Last time someone asked if UCS was the same as
Greedy search… are they?

3

13

Greedy Search Example

of states tested: 3, expanded: 2

f(n) = h(n)

Path: S-C-G
Cost: 13

1 5

3 97

8

4

S
h=8

A
h=8

E
h=�

D
h=�

B
h=4

G
h=0

C
h=3

5Goal!!G

SCG:0, B:4, A:8C

SC:3, B:4, A:8S

--S:8--

ClosedOpenState

14

Greedy Search Issues

� Greedy Search is generally faster than the
uninformed methods
– It has more knowledge about the problem domain!

� Resembles DFS in that it tends to follow a path
that is initially good, and thus:
– Not complete (could chase an infinite path or get caught

in cycles if no open/closed lists)
– Not optimal (a better solution could exist through an

expensive node)

15

Greedy Search Issues

2 2

1 2

S
h=5

A
h=3

C
h=3

B
h=4

D
h=1

G2
h=0

G1
h=0

E
h=2

1 1

3

2 2

1 2

S
h=5

A
h=3

C
h=3

B
h=4

D
h=1

F
h=�

G
h=0

E
h=�

1 1

99

G1 is the
solution

found with
greedy
search

G2 is the
optimal
solution

E and F will never
be expanded since
h = �

16

Algorithm A Search

� To try and solve the problems of greedy search,
we can conduct an A search by defining our
evaluation function f(n) = g(n) + h(n)

� g(n) is the minimal cost path from the initial node
to the current node

� This adds a UCS-like component to the search:
– g(n) is the cost to reach n
– h(n) is the estimated cost from n to a goal

17

Algorithm A Search Issues

� A Search is an informed strategy that incorporates
both the real costsand the heuristic functions to
find better solutions

� However, if our heuristic makes certain errors
(e.g. estimating � along the path to a goal):
– Still not complete

– Still not optimal

18

Admissible Heuristics

� Heuristic functions are good for helping us find
good solutions quickly

� But it’s hard to design accurate heuristics!
– They can be expensive to compute
– They can make errors estimating the costs

� These problems keep informed searches like the
A search from being complete and optimal

4

19

Admissible Heuristics

� There is hope! We can add a constraint on our
heuristic function that, for all nodes n in the search
space, h(n) � h*(n)
– Where h*(n) is the true minimal cost from n to a goal

� When h(n) � h*(n), we say that h(n) is admissible

� Admissible heuristics are inherently optimistic,
(i.e. they never overestimate the cost to a goal)

20

A* Search

� When we conduct an A search using an
admissible heuristic, it is called A* search

� A* search is complete if
– The branching factor is finite
– Every action has a fixed cost

� A* search is optimal

21

A* Search Example

of states tested: 4, expanded: 3
f(n) = g(n) + h(n)

Path: S-B-G
Cost: 9

1 5

3 97

8

4

S
h=8

A
h=8

E
h=�

D
h=�

B
h=4

G
h=0

C
h=3

5

SABG:9, C:11, D:∞, E:∞B

Goal!!G

SAB:9, G:10, C:11, D:∞, E:∞A

SA:9, B:9, C:11S

--S:8--

ClosedOpenState

22

Proof of A* Optimality

� Let:
– G1 be the optimal goal

– G2 be some other goal

– f* be the cost of the optimal path (to G1)

– n be some node in the optimal path, but not to G2

� Assume that G2 is found using A* search
where f(n) = g(n) + h(n), and h(n) is admissible
– i.e. A* finds a sub-optimal path, which is shouldn’ t

23

Proof of A* Optimality

� g(G2) > f*
by definition, G2 is sub-optimal

� f(n) � f*
by admissibility: since f(n) never overestimates the
cost to the goal it must be � the cost of the optimal
path

� f(G2) � f(n)
G2 must be chosen over n, by our assumption

� f(G2) � f*
by transitivity of the � operator

24

Proof of A* Optimality

� f(G2) � f* (from previous slide)

� g(G2) + h(G2) � f*
by substituting the definition of f(n)

� g(G2) � f*
since G2 is a goal node, h(G2) = 0

� This contradicts the assumption that G2 is sub-
optimal (g(G2) > f*), thus A* is optimal in terms
of path cost

� A* never finds a sub-optimal goal

5

25

Devising Heuristics

� Often done by relaxing the problem
� See AI: A Modern Approach for more details

� The goal of admissibleheuristics is to get as close
as possible to the actual cost without going over

� Trade-off:
– A really good h(n) might be expensive to compute
– Could we find the solution faster with a simpler one?

26

Devising Heuristics

� If h(n) = h* (n) for all n:
– Only nodes on optimal solution are searched
– No unnecessary work
– We know the actual cost from n to goal

� If h(n) = 0 for all n:
– Heuristic is still admissible
– A* is identical to UCS

� The closer h is to h* , the fewer nodes will need to
be expanded; the more accurate the search will be

27

Devising Heuristics

� If h1(n) � h2(n) � h*(n)
for each non-goal node n:
– We say h2 dominatesh1

– h2 is closer to actual cost, but is still admissible

– A* using h1 (i.e. A1*) expands at least as
many, if not not more nodes than A2*

– A2* is said to be better informed than A1*

28

Devising Heuristics

Madison

Denver

St. Louis

El Paso
Houston

Nashville

Kansas
City

360
1,020

910

620

600

250

930
790

430
740

Let’s revisit our Madison-
to-El-Paso example from
yesterday, but instead of
optimizing dollar cost,
we’re trying to reduce
travel distance

What’s a good heuristic to
use for this problem?

Is it admissible?

Baton
Rouge270

Phoenix
1,420

29

Optimal Searching

� Optimality isn’ t always required (i.e. you
want some solution, not the best solution)
– h(n) need not be admissible (necessarily)
– Greedy search will often suffice
– This is all problem-dependent, of course

� Can result in fewer nodes being expanded,
and a solution can be found faster

30

Partial Searching

� So far we’ve discussed algorithms that try to find
a path from the initial state to a goal state

� These are called partial search strategies because
they build up partial solutions, which could
enumerate the entire search space to find solutions
– This is OK for small “ toy world” problems

– This is not OK for NP-Complete problems or those
with exponential search spaces

6

31

Next Time

� We will discuss complete search strategies,
in which each state/node represents a
complete, possible solution to the problem

� We will also discuss optimization search,
where we try to find such complete
solutions that are optimal (the best)

